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A notion of an unbounded partial Hilbert algebra is introduced and some properties and 
examples of such an algebra are furnished. Noncommutative versions of Arens L W spaces over 
partial Hilbert algebras are formulated and shown to be unbounded partial Hilbert algebras. 
Moreover, necessary and sufficient conditions for the L W spaces to be pure unbounded partial 
Hilbert algebras are established. 

I. INTRODUCTION 

Partial *-algebras have been systematically studied in 
recent publications by Antoine and his co-workers. 1-4 These 
are generalizations of *-algebras. In particular, a partial Op
*-algebra is a generalization of an Op-*-algebra.5 These gen
eralizations appear in several physical contexts.4 

In this paper, we introduce the notion of an unbounded 
partial Hilbert algebra. This is an extension of the concept of 
an unbounded Hilbert algebra. The latter has been system
atically studied by Inoue. 6

•
7 

The organization of this paper is as follows. In Sec. II, 
we review the basic notions and notation which we employ 
throughout the discussion. In Sec. III, we formulate our no
tion of unbounded partial Hilbert algebras and present some 
relevant results. The idea of a pure unbounded partial Hil
bert algebra is also considered. Examples of unbounded par
tial Hilbert algebras are furnished in Sec. IV. Using the re
sults of this paper, one readily sees that the space L 2 (ffi)B,r) 
introduced in Ref. 8 in the course of our study of Dirichlet 
forms is also an unbounded partial Hilbert algebra. To give 
further examples of unbounded partial Hilbert algebras, we 
introduce noncommutative L'" spaces over partial Hilbert 
algebras in Sec. V and study a number of their properties. In 
Sec. VI, we show that the L'" spaces are indeed unbounded 
partial Hilbert algebras and give necessary and sufficient 
conditions for their purity. The sort of study carried out in 
this paper is useful in the understanding of unbounded left 
partial Hilbert algebras which are themselves crucial in any 
formulation of a Tomita-Takesaki theory9 in the context of 
partial *-algebras. The results of this paper generalize a 
number of results obtained by Inoue in Refs. 6 and 7. 

II. PARTIAL *-ALGEBRAS 

The notion of a partial *-algebra2
,3 is fundamental in 

what follows. We shall therefore briefly introduce it and, in 
the process, discuss certain related concepts. 

Definition: A partial *-algebra is a triple (~{,*,n con
sisting of a complex linear space ~{, an antilinear involution 
Xl--H* ofW into itself and a subset r of~{ X ~{ with the follow
ing properties: 

(i) (X'YI)' (X'Y2)Er, and (A 1,A2)EC2 imply 
(X,AJYI + A2Y2)Er, where C = the complex numbers; 

(ii) (X,Y)Er implies the existence ofa member X'Y in ~{ 
and the map (u,v )>--->-u· v of r into W is such that if (x,y) and 
(x,z) lie in r, then X' (ay + {3z) = a(x'Y) + {3(x'z), 
(a,{3)EC2

; 

(iii) (X,Y)Er implies (y*,X*)Er and (x'y)* =y*·X*. 
Remark' (1) Let (W,*,n be a partial *-algebra and 

(X,Y)Er. Then x (resp. y) is called a left multiplier (resp. a 
right multiplier of y (resp. x). 

For XE~r, we write ML (x) [resp. MR (x)] for the set of 
all left multipliers (resp. right multipliers) of x. Further
more, if ~ is a subset of W, then we define ML (~) and 
MR (~) by 

ML (~) = {XEW: XEML (y)'VyE~}, 
and 

MR (~) = {XEW: XEMR (y)'VyE~}. 

We remark that M L (~) [resp. M R (~) ] is the set of univer
sal left (resp. right) multipliers of~. 

(2) Given the notion of multipliers, we see that 

(X,y)Er <=> XEML (y) <=> yEMR (x). 

Therefore, we may replace the relation (x,y )Er by xEM L (y) 
or yEMR (x) and refer briefly to ~{as a partial*-algebra. We 
adopt this procedure in the sequel. 

( 3) It is noteworthy that the partial multiplication 
(x,Y)>--->-x'Y ofa partial*-algebra ~{is not required to be asso
ciative. Although it is possible to endow ~r with a notion of 
associativity, such a notion may be too strong in some in
stances.2 Therefore we shall employ the following weaker 
concept. 

Definition: A partial *-algebra is said to be semiassocia
tive if x,yE~{, with yEM R (x), implies 

(i) Y'zEMR (x), for all ZEMR (~{), 
and 

(ii) X' (y'z) = (x'Y) 'Z, for all ZEMR (W). 
Remark: (1) It is clear that the notion of semiassociati

vity may also be formulated in terms of left, rather than 
right, multipliers. Examples of semiassociative partial *-al
gebras may be found in Ref. 2; others will be encountered in 
the sequel. 

(2) It is useful to note that ML (~{) and MR (W) are 
algebras whenever W is semi associative. 

(3) If~{ is an arbitrary partial*-algebra which contains 
a member e with the properties that eEML (W) nMR (W), 
e* = e and e'x = x = x'e for all XE~r, then W is said to be 
unital and e is called the unit of W. 

(4) We conclude this section by introducing some nota
tion from the theory of unbounded linear operators on Hil
bert spaces. 

Let J¥' be some Hilbert space and ~ a set of closable 
linear operators each with a dense domain in J¥' which it 
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maps into JY. For AEC£, we write A for the minimal closed 
extension of A and define ~ by 

~ = {A: AEC£}. 

If A,BE~, then we define their strong sum A +B and 

strong product A-B by A + Band AB, respectively, when
ever these closures exist. Furthermore, the strong scalar 
multiplication A-C of AEC and CEC£ is defined by 

A-C = AC, if A #0, 

and 

A-C = ° if A = 0. 

Finally, if B(JY) is the Banach *-algebra of all endo
morphisms of JY and J( is a set of linear operators with 
domains and ranges in JY, we define the bounded part J( b 

of J( by 

J( b = J( nB(JY). 

III. UNBOUNDED PARTIAL HILBERT ALGEBRAS 

Throughout the rest of this paper, ~r is an arbitrary se
miassociative partial *-algebra, unless otherwise stated. 

Definition 3.1: We say that a sesquilinear form 

7: ~rX~r ..... c 
is a bitrace on ~r if it enjoys the following additional proper
ties: 

(i) 7(X,X);;;oO, V XE~r; 
(ii) 7(X,X) = 0, iff x = 0; 
(iii) 7(Y*,X*) = 7(X,y), Vx,yE~r; 

(iv) 7(ZX,Y) = 7(X,Z*Y), Vx,y,zE~ such that ZEML (x) 

andz*EML (y). 
Remark: Antoine4 defines an h form as a non-negative 

sesquilinear form satisfying 3.1 (iv). It follows that a bitrace 
is a faithful h form possessing the additional property 3.1 
(iii). 

Notation: We denote the set of all bitraces on ~ by btr 
(~). 

Remark' For 7E btr(~), define 11'llr:~"'" [0,00) by 

Ilxllr = (7(X,X»)1/2, XE~. 

Then, the pair (~r, 11'11 r) is a normed space. 
Definition: Let 7E btr( ~f). Then, we say that the pair 

(~I, 7) is a partial Hilbert algebra if the pair (~r, 11'11 r) is a 
Banach space. 

Remark: Let 7Ebtr(~I). We denote the 11'llr comple
tion onr bY.\)r and the extension of the involution onr to.\)r 

by J. The map J is bijective. 
We shall utilize the following result in the sequel. 
Proposition 3.2: Let 7E btr(~f). Then, MR (~I) is dense in 

.\)r iff ML (~) is dense in .\)r· 
Proof Suppose thatMR (~f) isdensein.\)r. LetxE.\)r be 

arbitrary and 7(X,y) = ° VyEML (~I). Then, by 3.1 (iii), 

7(y*,JX) = 0, VyEML (~[), 

i.e., 

7(Z,JX) = 0, VzEMR (~I), 

since the transformation Ul---+U* maps ML (~) onto MR (~[) 

and is bijective. Hence Jx = 0, in view of the denseness of 
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M R (~I) in .\)r' Hence x = 0, showing that M L (~) is indeed 
dense in .\)r' A similar argument holds when the roles of 
MR (~[) and ML (~) are interchanged. This concludes the 
proof. 

Remark: If M R (~) is dense in .\) r' then the bitrace 7 is a 
weakly GNS hform in the sense of Antoine,4 since 7 is faith
ful. 

Definition: A member 7 ofbtr(~) will be called regular 
if MR (~) is dense in .\)r' 

Notation: ( 1 ) We write btr (~) for the set of all the regu
lar members ofbtr(~). 

(2) Throughout the rest of this paper, 7 denotes a fixed 
member ofbtr(~), unless otherwise stated. 

Definition: For each XE~, define 1T(X) and 1T' (x) on 
MR (~) and ML (~), respectively, as follows: 

1T(X)y = xy, yEMR (~I), 

and 

1T'(X)Z=ZX, ZEML(~)' 

We call1T (resp. 1T') the left (resp. right) regular repre
sentation onI. 

Remark: For each XE~r, 1T(X) and 1T'(X) are closable 
linear operators on their respective domains and 
1T(X)*~1T(X*), 1T'(X)*~1T'(X*). 

Notation: Define ~(o and ~rb by 

~rO={xEMR (~I): 1T(X)EB(.\)r)}' 

~rb ={xEML (~): 1T' (x)EB(.\)r)}' 

Furthermore, let 

~~ ={x'y: x,yE~o}' 

~~2={X'y: x,yE~b}. 

It follows from the semiassociativity of~r that ~r6 and ~r~ 
are subsets of MR (~I) and ML (~), respectively. Further
more, ~r6 c ~ro and ~{~ C ~(b . 

Proposition 3.3: The set ~6 is dense in.\)r iff the set ~r~2 is 
dense in .\) r . 

Proof The argument is analogous to that used in the 
proof of Proposition 3.2. 

Definition 3.4: We call the pair (~r, 7) an unbounded par
tial Hilbert algebra over ~ro (or over ~rb ) if m6 (resp. ~r~) is 
dense in .\) r . 

Proposition: The pair (~(,7) is an unbounded partial Hil
bert algebra over ~ro iff (~r, 7) is an unbounded partial Hilbert 
algebra over ~rb. 

Proof This is a restatement of Proposition 3.3. 
):( 

Definition: An unbounded partial Hilbert algebra (~{,7) 
over ~ro (resp. ~b) will be called pure if ~ro# ~r (resp. 
mb #~I). 

Remark 3. 5: ( 1) Let 1To (resp. 1Tb ) denote the left (resp. 
right) regular representation of~b (resp. ~o). 

(2) For each XE.\)r> define 1To(x) and 1Tb (x) by 

1To(X)y= 1Tb(y)x, YE~{o, 

1Tb (x)y = 1To(y)X, YE~rb. 
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Then,1To(x) [resp. 1Tb (x) ], XES)r, is a linear operator on S)r 

with domain ~o (resp. ~b). 
(3) Notice thaeo 

1To(JX) = 1To(X)* 

and 

1Tb (Jx) = 1Tb (x)* 

for each XES)r' 
Proposition 3.6: For each XE~r, 

(1) 1T(X) = 1To(X), 1T'(X) = 1Tb (x), 

(2) 1T(X*) = 1T(X)*, 1T'(X*) = 1T'(X)*. 

Proof(1)LetxE~.Toprovethat 1T(X) = 1To(x),first 
note that 1T(X) ::J 1To(X), by the definition of these operators. 

Hence, 1To(X)*::J1T(X)*. Since 1TO(X) * = 1To(X*), by Re

mark 3.5 (3), and 1T(X) *::J 1T(X*), we have 

1To(X) = 1To(X)** = 1To(X*)*::J1T(X*)*::J 1T(X). 

Therefore, 1To(X) = 1T(X), as claimed. 

The claim 1T' (x) = 1Tb (x) is similarly established. 

(2) Let xE~L To prove 1T(X*) = 1T(X) *, we use the re
sult in (1 ) above to get 

1T(X*) = 1To(X*) = 1TO(X) * = 1T(X)*. 

We show similarly that 1T'(X*) = 1T'(X)*. This con
cludes the proof. 

l:( 

Remark: The following result is readily verified. So we 
omit its proof. 

Proposition 3.7: (1) Let AI' A2EC and x, x j , y, YjE~r, 
j = 1,2. Then, the following relations hold: 

and 

(i) 1T(A IXI +A2X2) =A I1T(X I ) +A21T(X2), 

(ii) 1T(X I 'X2) = 1T(X I )1T(X2), if xlEML (x2), 

(iii) 1T(X*)C1T(X)*, 

(i') 1T'(A IYI +A2Y2) =A I1T'(YI) +A21T'(Y2)' 

(ii') 1T' (YI'Y2) = 1T' (Y2)1T' (YI)' if YI EMdY2)' 

(iii') 1T' (y* ) C 1T' (Y) *. 

(2) Define the involution # on 1T(~) and 1T'(~) by 

1T(X)# = 1T(X*), XE~r, 

1T'(y) # = 1T'(y*), yE~L 

Then, 1T( ~) and 1T' (~!) are partial # -algebras and 

1959 

(i) 1T{MR (~»)b = 1T(~o), 

(ii) 1T(X)#=1T(X*), 'Q'XE~, 

(iii) J1T(X)J = 1T'(X)# on ~b, 'Q'XE~, 

(i') 1T'(ML (~»)b = 1T'(~rb), 

(ii') 1T'(X)# = 1T'(X)*, 'Q'XE~, 

(iii') J1T'(X)J = 1T(X)# on ~ro, 'Q'XE~, 

(iv) 1T(X)1T'(y) = 1T'(Y)1T(X) on ~on~rb, 'Q'x,yE2L 

l:( 

J. Math. Phys., Vol. 30, No.9, September 1989 

Remark: The sets 1T(~!) and 1T' (~) also have the 
structure of partial *-algebras. More precisely, we have the 
following result. 

Proposition 3.8: The sets 1T( ~O and 1T' (~) are partial 
*-algebras of closed linear operators on S)r under the alge
braic operations of strong sum, strong multiplication, strong 
scalar multiplication, and the formation of adjoints. 

Furthermore, 

J1T(X)J = 1T'(X), 

and 

J1T'(X)J = 1T(X)*, XE~L 

Proof' Using Propositions 3.6 and 3.7, this is proved es
sentially as in the second reference of Ref. 6. 

Remark: ( 1) In the next section, we give some examples 
of unbounded partial Hilbert algebras. 

(2) Inoue I I has also given a formulation of the notion of 
an unbounded partial Hilbert algebra. However, his Defini
tion 5.2 of an unbounded partial Hilbert algebra is different 
from our Definition 3.4. Furthermore, the results contained 
in this section are different from those obtained by Inoue, 
who does not at all consider the notion of a pure unbounded 
partial Hilbert algebra. Finally, we remark that Example 4.1 
and Example 4.3 of the present paper are not considered by 
Inoue and, moreover, the ideas and analysis in Secs. V and 
VI of this paper are entirely absent from Ref. 11. 

IV. EXAMPLES OF UNBOUNDED PARTIAL HILBERT 
ALGEBRAS 

In this section, we give three examples of unbounded 
partial Hilbert algebras. 

Example 4.1: Let ~ be the Sobolev space H -I (R), i.e., 
H -I (R) is the completion of the Schwartz space.Y (R) of 
Coo, rapidly decreasing functions 12 in the norm topology 
given by 

j~lljll =(Joo dp II(p) 1:)112, 
- 00 1 + Ipi 

wherelis the Fourier transform ofjE.Y(R). Then, ~ is a 
linear space of generalized functions. i2 Define the product of 
two members of~ as their convolution, denoted by *, and the 
involutionj~j# in ~ by 

(j#)-(p) = I(P)' pER. 

With the product and involution just introduced, ~ is a 
partial # -algebra, since, for example, the generalized func
tionjsuch thatl(p) = Ipli/4,pER, lies in ~butj.j does not 
lie in~. 

Let 

~ = {jE~: 11111 00 < oo} 

Then, it is not difficult to see that 

ML (~l) = ~ = MR (~!). 

Furthermore, it is clear that ~r is semiassociative. Next, 
define r: ~r X ~r ---+ C by 
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Then, it is straightforward to see that r is a bitrace on ~e 
Moreover, we have 

~o=~=~h 

and 

~6 = ~o= ~q, 

where ~() is some subset of~. 
It is clear that ~ ~ Y (R). Therefore, ~ is dense in the 

Hilbert space S)T which is the II'IIT completion of~, where 
II/IIT = (r(J,/»)I/2,JE~e Hence, ris a regular bitrace. 

The set ~o also contains Y(R) since/EY(R) implies 
IEY(R) and 

I(p) = 1. (p)f;(p), 

with 

II (p) = (1 + IpI2)I(p) 

and 

12(P) = (1 + Ip12) -I, pER, 

showing that/l,hE~o. Hence ~() is also dense in S)T' and we 
conclude that the pair (~r,r) is an unbounded partial Hilbert 
algebra over ~[() = ~[h. 

Finally, the pair (~[,r) is apure unbounded partial Hil
bert algebra over ~r() = ~rh since the function I with 
I(p) = IpII/\ pER, lies in ~[ but not in ~r() = ~[h. 

Example 4.2: Let ~[ be a von Neumann algebra which 
admits a semifinite, faithful, normal trace r satisfying 
r(e) < 00, where e is the unit one We denote the involution 
on[ by *. 

Since a trace is automatically a bitrace, it is clear that 
7E btr( ~l). Furthermore, ~[ is semiassociative since ~r is, in 
fact, associative. 

Next, we have 

(i) ML (~l) = ~[= MR (~O, 

(ii) ~{() = ~{ = ~[h, 

(iii) ~6 = ~[ = ~{~2, since e lies in ~() = ~~. 

Let S)T be the II'IIT completion onr, where 

Ilxii T = (r(x*x»)I/2, XE~e 

From (i), it follows that r is a regular bitrace and from 
(iii), we conclude that the pair (~,r) is an unbounded par
tial Hilbert algebra. But since ~{o = ~{ = ~h, the pair (~{, r) is 
not a pure unbounded partial Hilbert algebra over ~{() = ~~. 

Example 4.3: Let Jf' be a separable Hilbert space, with 
inner product ( . , . ) and H a self-adjoint linear operator on a 
dense domain in Jf'such that exp( - /3H) is nuclear l3 for 
every /3> O. Let (I., ) and (An) be the normalized eigenvec
tors and the corresponding eigenvalues of H. Then, by the 
nuclearity of exp ( - /3H) for each /3 > 0, we have that (In) 

is an orthonormal basis for Jf' and also that 

OC A I e - f3 "< 00, for /3 > O. (4.1 ) 
n=l 

Let fiJ = nf3>oD(ef3H
), where D(A) denotes the do

main of A. Observe that fiJ contains (In)' Hence fiJ is dense 
in Jf'. 

We introduce the weak partial Op*-algebra 
.:t" ,;; (fiJ ,Jf') on fiJ as follows. 14 
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Let .:t" + (fiJ ,Jf') denote the set of all linear operators A 
on Jf'such that D(A) = fiJ and D(A *) :J fiJ, where * is the 
operator adjoint. Then, .:t" + (fiJ ,J¥") is a linear space when 
equipped with the usual notions of addition and scalar multi
plication. Furthermore, .:t" + (fiJ ,J¥") admits an involution 
+ defined by 

A + = A * t fiJ, AE.:t" + (fiJ ,Jf'), 

and a partial multiplication D defined as follows: for 

A I' A 2E.:t" + ( fiJ ,Jf') , 

with 

A 2fiJ CD(A 1+ *) 

and 

A 1+ fiJ CD(A n, 
put A lDA2 =A t *A 2• Then, endowed with the involution + 
and partial mUltiplication D, the linear space .:t" + (fiJ ,Jf') 
becomes a partial Op*-algebra, denoted by .:t" ,;; (fiJ ,Jf'). 

Define fiJ (.:t",;; (fiJ ,J¥"») by 
* 

fiJ .!.:t" ,;; (fiJ ,Jf'») = n D(A *). 
AE .Y .;; (9) ,,}!',) 

Notice that fiJ * (.:t" ,;; (fiJ ,Jf') ) ~ fiJ . 

Now, define ~ to be .:t" ,;; (fiJ ,Jf') . 
In what follows, we assume that .:t",;; (fiJ ,Jf') 'is a self

adjoint partial Op*-algebra, i.e., that 

fiJ * (.:t" ,;; (fiJ ,Jf'») = fiJ 

and also that 

(4.2) 

for all xEB(Jf') n.:t" (fiJ) and /3 > 0, where .:t" (fiJ) is the 
subspace of .:t" + (fiJ ,Jf') consisting of all operators which 
leave fiJ invariant. From the self-adjointness of 
.:t" ,;; (fiJ ,Jf'), it follows, by Ref. 2, Proposition 3.4, that ~[ is 
semiassociative. 

Let r: ~[X~{-+C be given by 
00 

r(x,y) = I (xl."yln )e- f3An
, x,yE~e (4.3 ) 

11=1 

We remark that the pair (~{,r) appears in Ref. 4. 
From Eqs. (4.3) and (4.1), one sees that r(e,e) < 00, 

where e is the unit of ~e 
Next, we have the following (Ref. 2, p. 311): 

MR (~l) = {aEB(Jf'): afiJ cfiJ} = B(Jf') n.Y(fii), 

ML (~{) = {aEB(Jf'): a+ fiJ cfiJ}. 

We remark that M R (~) and M L (~) are, in general, dis
tinct. 

Let 1T (resp. 1T') be the left (resp. right) regular repre
sentation one 

Let S)T be the completion of~ in the norm 11'11 T induced 
by the form in (4.3). Then, we find that 

(i) ~{() = {xEMR (~l): 1T(X)EB(S)T)} = MR (~l), 

(ii) ~r~ = {xEML (~): 1T'(X)EB(S)T)} = ML (~), 

(iii) ~r6 = MR (~{)DMR (~) = MR (~), 

~[i = ML (~)DML (~{) = ML (~r), (4.4) 

since the unit e lies in ML (~{) nMR (~), 
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and 

2lb -=1= !f .: (Ii) ,£') = 2l. 

Furthermore, we have the following proposition. 
Proposition: 1" is a regular bitrace on 2l if M R (21) is dense 

in S)r. 
Proof Let MR (2l) be dense in S)r, X,yE2l and (xp) pE:"l' 

(Yq ) '/EN be a sequence in M R (2l) such that 

lim Ilx-xpllr =0= lim Ily-yqllr. 
p-- 00 q ....... 00 

Since 
00 

Ilzll; = I liz!', We ~(3A" 
n=l 

for zE2l, we may assume, as we do henceforth, that (xp) pEN 

and (Yq) '/EN converge to x and y, respectively, in the 111·111 r 

topology on 2l, where 

Illzlll;= I (1IzfnW+llz+fnW)e~(3A", ZE2l. 
11=1 

It then follows that 

lim I «Y - Yq )fn'(x - Xp )fn)e ~(3A" = 0 
p.q-- oc n = I 

and 

lim I «y - Yq )+fn'(x - Xp )+!")e~(3A,, = 0, 
p.q-- ex: If = 1 

since 

Inti «Y - yq)fn'(x - xp)!,,)e~/H"1 
<Illy - Yqlllrllix - xpllir 

and 

I lit I «y-yq)+fn'(X-Xp)+!,,)e~(3A"1 

< Illy - Yq Illr Illx - Xp Illr· 
From the foregoing, we get finally that 

1"(x,y) = lim 1"(xp,Yq) 
p,q- 00 

00 

= lim I (xpe~{3H12fn,Yqe~{3H12fn) 
P.q--oo n= 1 

= lim tr( (xpe~ {3B 12) +D(yqe ~ {3H 12») 
p.q- 00 

= lim tr(e~{3HYqxp+)' by using (4.2) 
p,q-- 00 

00 

= lim I (fn,e~{3HYqXp+ fn) 
p.q- 00 n = I 

1· ~ (y +!, +!,) ~ {3An = 1m ~ q n'Xp n e 
P.q-- 00 n = 1 

= 1"(Y+,x+), by (4.5) 

where 
00 

tr(z) = I (fn,zfn)' 
n=1 

This concludes the proof. 
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(4.5 ) 

Thus it is evident that if we could show that M R (2l) is 
dense in S)r' then we could draw the following conclusions. 

( 1) 1" is a regular bitrace on 2l; 
(2) (2l,1") is an unbounded partial Hilbert algebra, in 

view of ( 4.4) (iii); and 
( 3) (2l, 1") is a pure unbounded partial Hilbert algebra 

over 210 (resp. 2lb ), in view of ( 4.4) (iv). 
The relevant result is the following. 
Proposition: MR (2l) is dense in S)r. 
Proof Let x be an arbitrary member of S)r. For arbitrary 

fEIi) , xf lies in £' and may be expressed as follows: 
00 

xf = I (fn ,xf)fn' 
n=1 

whence 
00 

IlxfW = I I (fn,xfW < 00, 
n=1 

where 11·11 is the norm induced on £'by (.,.). 
Next, define xm , 1 <m < 00, by its action on £' as fol

lows: 
m 

xmg = I (x*fn,g)fn' 
11=1 

for arbitrary gE£'. Then, XmEMR (2l)' for each m. Further
more, 

Ilx-xmll; = I (xfp -x",/p,xfp _xIJp)e~{3Ap 
p=1 

00 00 I I I (fn ,xi;, We ~ {3Ap 
p=ln=m+1 

I I I (.t;"x*!" We ~{3Ap. 
n=m+lp=l 

Hence 

,n- 00 

Thus, since x was arbitrary in S)r, it follows that MR (2l) is 
dense in S)r. This concludes the proof. 

V. L'o SPACES OVER PARTIAL HILBERT ALGEBRAS 

Let (2f,1") be an unbounded partial Hilbert algebra and 
2lo,1TO,S)r be as previously introduced. In this section, we 
construct L W -spaces over 2l0, as done in Ref. 6 for unbound
ed Hilbert algebras, and study some of their properties. 

Let ~ 0(2l0 ) be the von Neumann subalgebra of B(S)r) 

generated by 1To(2lo). The bitrace 1" induces a trace 1"0' 

called the natural trace, on ~ o(2lo) which is defined 

through its action on 1To{2lo) as follows: 

1"o(1To{X)* 1To(Y»)=1"(x,y), x,yE2lo· 
For 1 <p< 00, let LP(~ 0(2l0),1"0) be Segal's noncommu

tative LP space (Refs. 15-17) over ~ 0 (2l0 ) with respect to 
1"0. Then, we make the definitions 
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L"'(~o(2Io),'To)== n LP(~o(2Io),'To), 
i<p< 00 

L~(~o(~r(),'To)== n LP(~o(~ro),'To), 
2<.p < 00 

L '"(~ro''T) =={XES)r: 1TO(X)E L '"(~ o(~r(»,'To)}, 

L ~(~ro,'T) == {XES)r: 1TO(X)E L ~(~ o(~ro),'To)}· 

These are the noncommutative analogues of the L'" -spaces 
introduced in Ref. 18 by Arens. We also set 

Define II' II (2.p) on L ~ (~ro, 'T), 1 ~p ~ 00, as follows: 

Ilxll (2,p) = max( Ilx112' Ilxllp )' XE L ~ (2Io,'T), 

where 

IIXllp = II1To(x) lip, 

for XES)r with 

1To(X)ELP(~o(~ro),'To), 2~p~00. 

We have the following result. 
Proposition 5.1: For 1 ~p~ 00, 11'11 (2.p) is a norm on 

L~(~ro,'T) andL~(~ro,'T) is 11·11(2.p) complete. 
Proof: It is clear that 11'11 (2.p) is a norm on L ~ (~ro, 'T) in 

view of the faithfulness of 1To. So let us prove the 11'11 (2,p) 
completeness of L ~ (~ro,'T). 

Suppose that (x,,) is a Cauchy sequence in L ~ (~ro,'T). 
From the completeness of S)r and U (~()(~ro,'To»), there ex
ist XES) rand TEU (~ 0 (~ro), 'To) such that 

II ..... 00 

and 

lim II 1To(X,,) - T lip = o. 
n_ 00 

We shall show that T= 1To(X). 

Let (-,.) denote the inner product of L 2( ~ 0 (~ro), 'To). 
Then, for y,zElJ( n n 2Io, we have 

lim I'T[Y,( 1TO(xn) - T)z] I 
II + 00 

= lim I 'To [ 1To(y).·( 1To(Xn ) - T)· 1To(Z) ] I 
n- 00 

= lim I 'To [ 1To(z) ·1To(y) •• ( 1TO(xn) - T)] I 
n-oo 

~ lim I I 1To(z)-1To(y) • lip' II 1TO(xn) - T lip = 0, 
n-oo 

where 

J...+J....=1. 
P p' 

Also, 

lim I (y,( 1TO(xn) - 1To(x) )z) I 
n- 00 

n- 00 

Hence, Tz= 1To(X)Z, for all zElJ(nnMR (~ro), from the 
uniqueness oflimits. Since Tand 1To(X) are essentially mea-
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surable, it follows by Ref. 15, Theorem 4, that T +1To(X) is 
also essentially measurable. Hence, by Ref. 15, Lemma 
(1.2), D( n n2Io is dense in S)T and we conclude that 

T = 1To (x) . So L ~ (2Io,'T) is 11'11 (2,p) complete. ):( 
Remark: (1) Since 2Io is II'IIT dense in S)T' one readily 

sees that L ~ (2Io,'T) = S)T and that L 2( ~ o(2Io),'To) is isome
trically isomorphic to S)T' 

(2) In the sequel, we regard L ~(2Io,'T) [resp. 
L'" (2Io, 'T) ] as endowed with the projective limit topology ~ 
(resp. 7"') generated by the norms 

{11·11(2.p): 2~p<00} 

(resp. {11'llp: l~p<oo}) 

of the Banach spaces 

{L~(~ro''T): 2~p< oo} 

[resp. {L p(~ro,'T): 1 ~p < oo}]. 

(3) The next result will be used in the sequel. 
Proposition 5.2: (i) If l~p < q~2, then 

L ~ (~ro''T) = S)r ~L i (~ro,'T) ~L ~ (2Io,'T) ~L ~ (~ro,'T)· 

(ii) If2~p<q, then 

L ~ (~ro,'T) = S)r ~L ~ (~ro,'T) 

~L i (mo,'T) ~L ~(mo''T) ~L r (~ro,'T)· 
(iii) The projective limit topology r{ on L ~(~ro,'T) is 

equivalent to the projective limit topology generated by the 
norm topologies {II'II (2,11) : 2~ n < 00, n an integer} of the 
Banach spaces {L ~ (~ro,'T): 2~n < 00, n an integer}. 

Proof: (i) and (ii) are proved as in Ref. 7, Lemma (2.3); 
and (iii) follows from the fact that for each pE [2,00 ), there is 
a positive integer n such that n~p < n + 1, whence we have 

the estimate Ilxllp~llxlln + Ilxlln+ I forallxEL~(mo,'T)· 

Proposition 5.3: If 

L P( ~ ()O (~ro),'To) = L i (~o( ~ro),'To) 
and 

L~ (2ro,'T) = L H~ro,'T), for some q>p>2, 

then 

L; (~ro,'T) = L ~(~ro,'T) for all rE[p,oo). 

Proof: Let 

XE L ~ (~To' 'T) = L i (~ro, 'T ) . 

Then 

l1To(x) IqlPE L P(~ o(~ro),'To). 

):( 

From the inequality 2 < 2q/p~q and Proposition 5.2 (ii), we 
get 

L ~ (~ro,'T) ~L 2qlp(~r()O'T) ~L i (mo,'T), 

whence 

XE L ~qlp(~ro,'T), 

i.e., 

l1To,(X) 12qlPEL i(~O(2IO)''To)· 

Hence 
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I1TO(X) Iq/PE L P( <]I o( mo),70)nL 2( <]I 0(mO),70) 

= L ~ (<]I O(mO) ,70) = L i (<]I o(~[o),To). 

Next, we show that l1To(x)l(q/P)'EL~(<]Io(mo),To). 
To see this, notice first that since 

l1To(X) 1
2q/PEL '(<]Io(mo),To), 

it follows that 

l1To(X) Iq/PEL P(<]I o(mo),To)nL 2(<]1 o(mo),To) 

whence 

I1TO(X) 1
2(q/P)'EL '(<]I o(~[o),To). 

Hence 

l1To(X) I (q/P)'EL 2( <]I 0' (~[o), To)· 

Furthermore, since 

l1To(X) Iq/PEL q(<]I o(mo),To), 

it follows that 

l1To(X) Iq'/PEL '(<]I o(mo),To), 

whence 

I1TO(X) I (q/P)'EL P( <]I o(mo),To)' 

Thus 

l1To(X) I (q/P)'E L P( <]I o(mo),To) nL 2( <]I o(~[o),To) 

= L ~ (<]I o(~[o),To). 

By iterating the last argument, we get that 

l1To(x)l(q/P)"EL~(<]Io(~[o),To), n = 1,2, .... 

Since q/p> I, we conclude from Proposition 5.2 that 
xEL ~(mo,T). This completes the proof. 

VI. PURITY OF THE UNBOUNDED PARTIAL HILBERT 
ALGEBRAS L "'(~o,.r) and L~(~o,.r) 

In this section, we show that L'" (~[o,T) and L ~(~[o,T) 
are unbounded partial Hilbert algebras and then we furnish 
necessary and sufficient conditions for their purity. 

Notation: Define (~[O)b and (mo)~ by 

(mo) b = {xES)r: 1To (x)EB(S)r)} 

and 

Notice that 

(mo) b = L 2' (~[o, T). 

Moreover, (mo) b is a partial Hilbert algebra which is maxi
mal amongst all partial Hilbert algebras contained in .\)r' 

Remark: The following result is proved essentially as in 
Ref. 7, Lemma 2.2. 

Proposition 6.1: (1) For I<:p < 2, the set (mo)~ is dense 
in L ~ (mo,T). 

(2) For 2<:p<: 00, the set (mO)b is dense in L ~ (mo,T). 
Remark: The next result discloses that L(" (~[o,T) and 

L ~(~[o,T) are unbounded partial Hilbert algebras. 
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Theorem 6.2: The space L'" (~[o,T) [resp. L ~(mo,T)] is 
an unbounded partial Hilbert algebra containing 

(~[o)~ [resp. (mO)b]' 

Proof Let x,yEl/" (~[o,T). Then, there are X,Y in 

V"( <]I o(mo),To) such that X = 1To(X) and Y = 1To(y). Now, 
for any pEl I, 00 ), we have 

IIX·Yllp<:IIXI12PII Y112P' 

Hence 

X· Y = 1To(X)· Xo(y)E L "'(<]I o(mo),To), 

whence 

1TO(X'y) E L ("( <]I o(mo),To), 

if XEML (y). This shows that x'yEL(" (~[o,T) whenever 
x,yEL'" (~[o,T) and X'y is defined. Also, since 

IIX*llp = IIXllp, for pE[l,oo), 

it follows that x*EL OJ (mo, 7) for each xEL OJ (mo, T). Hence 
LOJ (mo,T) is a partial *-algebra. Furthermore, since every 
xELOJ (mo,T) is also a member of S)T' it is easy to see that the 
restriction of T to L OJ (mo, T) XL OJ ( mo, T) is a bitrace. 

Next, suppose that x,yE(mO)b with XEML (y). Then, 
x'yE(mo)~, and for any pEl 1, 00 ), we have 

Ilx'yll~ = To(l1To(X'y) IP) 

Hence 

= To(l1To(X'y) IP-'I1To(X'Y) Il 
<: Ilx'yll~- '1Ix'yll, 

<: Ilxll~- '1Iyll~- '11x11211y112 

= Ilxll~- 211x11211yll~ 

<: Ilxllf2.00) Ilyllf2.00)· 

Ilx'yllp <: Ilxll (2.00) Ilyll (2.00)' 

x,yE(~[O)b' with XEML (y). This shows that 
(~ro)2CL'"(~[o,T). The density of (~[o)i in L'"(mo,T) fol
lows from Proposition 6.1. 

Similarly, we readily show that L ~(mo,7) is a partial 
*-algebra and that the restriction of T to 
L ~(mo,T) XL ~(mo,T) is a bitrace. Moreover, (moh is con
tained in L ~(mo,7) since for arbitrary pE(2,00) and 
xE(moh, we have 

Ilxll~ = To(l1To(X)jP-211To(x)1 2
) 

<: Ilxll~- 211xll~ <: Ilxllf2.00)' 

whence 

Ilxllp <: Ilxll (2.00)' 

The density of (moh in L ~(mo,T) follows from Proposition 
6.1. This concludes the proof. ):! 

Remark: Concerning the purity of the unbounded par
tial Hilbert algebras L OJ (mo, 7) and L ~ ( mo, T), we get the 
following result. 

Theorem 6.3: Let (m, T) be a partial Hilbert algebra over 
~[o. Then, the following conditions are equivalent: 
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(1) L ~(ffi:o,1') is pure. 
(2) LW (ffi:o,1') is pure. 
(3) .\)r is not a partial Hilbert algebra, i.e., (ffi:o) b =I-.\)r· 

(4) L ~(ffi:o,1') =I-.\)r' 
(5) L ~ (ffi:o,1') =l-L i (ffi:o,1') for some q > p;;;.2. 
(6) L ~ (ffi:o,1') =l-L ~ (l.>io,1') and 

L ~ (~o(ffi:o),1'o)=l-L ~ (~o(ffi:o),1'o), 

for each p > 2. 
Proof (6) =:} (5); this is obvious. 
(5) =:} (4). Suppose (5) holds but L ~(ffi:o,1') = .\)r' 
Then, by Proposition 5.2 (ii), we have L~ (ffi:o,1') 

= L 1 (ffi:o,1'), for 2<.p < q, a contradiction. 
(4) =:} (3). Suppose (4) holds but .\)r = (ffi:o) b' Then, 

since 

.\)r ~L ~(ffi:o,1') ~ (ffi:o) b' 

we have.\)r = L ~(ffi:o,1'), a contradiction. 
(3) =:} (2). Suppose (3) holds butL'U (ffi:o,1') = (ffi:o)~. 

Then, 

i.e., 

XE.\)r8 (ffi:o)~, X =1-0, implies xl$L W(ffi:o,1'). 

Thus, we must have 

(*)IIXll p = 00, for some pE[l,oo), if x=l-O. 

Now, either pE(2,00) or else pE ( 1,2). 

Suppose pE(2, 00 ). Then Ilxll q = 00 V q > p, by Propo
sition 5.2 (ii). Hence 

XE n (L 1(ffi:o'1') n.\)r8 (ffi:o)~ )=L~- (ffi:o,1'), 
2<I<p 

whence 

.\)r8 (ffi:o)~ CL~- (ffi:o,1'). 

But clearly, 

L~- (ffi:o,1') c.\)r8 (ffi:o)~. 

Thus 

L ~- (ffi:o,1') = .\)r8 (ffi:o)~· 

But L~- (ffi:o,1'), being the projective limit of the Banach 

spaces {L' (ffi:o,1') n.\)r8 (ffi:o)~, 11'11 (2,1) : 2<.t <p}, is not a 
Hilbert space unless p = 2. Hence, from (*), we must have 

IIxl12 = 00, O=l-xE.\)r8 (ffi:o)~, a contradiction. 
Similarly, if pE [ 1,2), then it follows that Ilx lip = 00 for 

alII <.q <p, and x =1-0, by Proposition 5.2 (i). Hence 

XE U (L 1(ffi:o,1') n.\)r8 (ffi:o)! )=L~+ (ffi:o,1') 
p<I<2 

and we see again that 

L~+ (ffi:o,1') = .\)r8 (ffi:o)~· 

But L~+ (ffi:o,1'), being the inductive limit of the Banach 

spaces {L~+ffi:o,1')n (ffi:o)L 11'11(2,1): p<t<.2}, is not a 
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Hilbert space unless p = 2, Hence from (*), we get that 

IIxl1 2 = 00, O=l-xE.\)r8 (ffi:o)~, a contradiction. 
(2) =:} (1). This follows from the purity of L W (ffi:o, 7) 

and the inclusion L ~(ffi:o,1') ~L W(ffi:o,1'). 
( 1) =:} (6). Suppose (1) holds but 

L ~ (ffi:o,1') = L ~ (ffi:o,1') 

and 

L ~(~ o(ffi:o),1'o) = L ~(~ o(ffi:o)1'o), 

for each p > 2. Then, by Proposition 5.3, we get 

.\)r = L ~ (ffi:o,1') = L ~(ffi:o,1'). 

Thus.\)r is a partial Hilbert algebra since L ~(ffi:o,1') is such. 
But the maximal partial Hilbert algebra contained in .\)r is 
(ffi:O)b' Hence.\)r = (ffi:O)b, whence L~(ffi:o,1') = (ffi:O)b' a 
contradiction. This concludes the proof. ):( 
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The vector model is formulated in a general form that allows its application for calculating 
square moduli of matrix elements involving continuous bases. The model is applied to positive 
discrete unitary irreducible representations of SU ( 1,1) and the classical estimates are 
compared with the exact results. 

I. INTRODUCTION 

The vector model was originally defined for SU (2) (see, 
e.g., Refs. 1-4). It has recently5 been applied to positive dis
crete unitary irreducible representations (UIR's) of 
SU (1,1) for the case of a discrete basis, i.e., a basis that 
diagonalizes a compact generator. It is the purpose of the 
present short paper to set up the formulation of the vector 
model in a slightly more general form that extends its do
main of application. This is done in Sec. II. As a result, var
ious square moduli of matrix elements involving continuous 
bases of positive discrete UIR's of SU (1,1) are evaluated 
and compared with the exact results in Secs. III-V. Results 
obtained from the vector model will be called classical esti
mates in the following. Section VI concludes this work. 

It is emphasized that only positive discrete UIR's are 
considered throughout this paper. 

II. BASIC FORMULATION OF THE VECTOR MODEL 

The basic features of the vector model for SU (2) are 
now briefly recalled. The vector model for SU (2) associates 
to a vector in the space of the UIR considered a set of classi
cal vectors in a three-dimensional space as follows. The UIR 
is specified by j, and one has, with standard notation, 

(J; +J; +J;)lj,m) =j(j+ 1)lj,m), (1) 

Jz[j,m) = m[j,m). (2) 

Let 0 be the origin of an orthonormal frame with axes J J x' Y' 

Jz. According to the two equations above, the vector model 
associates to the vector [j,m) a set of vectors with origin 0, 
with square modulus equal to jU + 1), and with projection 
on the Jz axis equal to m. The remaining components rela
tive to the other axes can be specified by an azimuthal angle 
q;. The probability density relative to the variable q; is sup
posed to be a constant by symmetry considerations. 

For a proper description of the vector model, two ques
tions remain to be answered. First, how does a group element 
act on the previous set of classical vectors? Second, how can 
one determine the classical square modulus for SU (2) ma
trix elements? 

The first question is solved by considering the homo
morphism ofSU(2) onto the transformation group SO(3). 
Otherwise stated, the group elements are generated by the 
differential operators 

J x = -i~! -z ~). (3) 

and so on by circular permutation for the two other genera
tors. Let t be the parameter for the integral curves of a one
dimensional subgroup generated by exponentiation of a real 
linear combination of iJx' iJy , and iJz. The elements of this 
one-dimensional group are represented by exp( - 7' d Idt). 
The action of this element on a classical vector of origin 0 
and extremity M is specified by requiring that M moves a 
parameter distance 7' along the integral curve of d I dt. 

The second question is solved by interpreting the square 
modulus of exact matrix elements as a probability. The ini
tial assumption of constant probability density for the azi
muthal angle q; leads to a determined probability density for 
the final extremities of the set of vectors that was moved 
upon the action of the group element. For more details we 
refer to Refs. 1-4. 

The vector model for UIR's ofSU ( 1,1) within a discrete 
basis can be described essentially in the same way with ob
vious changes (see Ref. 5). In particular, the homomor
phism to be considered is the one of SU ( 1,1) onto the trans
formation group SO (2,1 ). Thus if K x' Ky, and Kz denote the 
elements of the Lie algebra of SU ( 1,1) (see Ref. 6), 

[Kx,Ky] = - iKz' [Ky,Kz ] = iKx' [Kz,Kx] = iKy' 
(4) 

one makes the following correspondence: 

Kx = - i(Y!!.. + z !!..), 
dz dy 

(5) 

K = -i(-Z"!!"'-X!!") 
y dx dz' 

(6) 

Kz = - (x ~ - y !). (7) 

When one tries to apply the vector model to more general 
situations, as, for example, by considering positive discrete 
UIR's of SU ( 1,1) in continuous bases, one must have some 
assumption that generalizes the constant probability density 
assumption for the azimuthal angle q;. This generalized as
sumption will be given after some definitions and notation 
are introduced. 

The letter y for a vector of an UIR of SU ( 1,1) indicates 
that this vector has the eigenvalue y( y + 1) for the Casimir 
operator defined by 

(8) 

Let Iy,v,(a,h,c) be a vector of a positive discrete UIR of 
SU (1,1) specified by y, which satisfies 
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(aKx + bKy + cKz ) Iy,v,(a,b,c» = vly,v,(a,b,c». (9) 

In the case a = b = 0, c = 1, one obtains the discrete basis 
considered in Ref. 5, and v varies from - y to plus infinity 
by steps of unity. In the case a = c = 0, b = 1, one obtains a 
continuous basis and v can vary continuously from minus 
infinity to plus infinity. 7 The set of classical vectors corre
sponding to Iy,v, (0, 1,0» is shown in Fig. 1. It is the intersec
tion of a hyperboloid with the plane Ky = v. (For the partic
ular cases y = -!, - 1, the geometrical pictures are 
different, as noted in Ref. 5, but this does not change the line 
of arguments.) It is now clear that the previous set of classi
cal vectors can no longer be parametrized by a parameter 
that varies on a compact domain, as was the case for the 
angle <p when considering a discrete basis for VIR's of 
SV ( 1,1 ).5 It remains to define some kind of probability den
sity for these vectors. The name probability density is used 
from now on in a rather large sense since we do not require 
the integral of this probability density over its whole domain 
to converge. The situation is quite analogous to the one en
countered when considering the scalar product between two 
improper vectors associated to a particle with well defined 
position and well defined momentum. This scalar product 
yields a plane wave and the integration of the square modu
lus with respect to the position or the momentum clearly 
diverges. 

The fundamental hypothesis of the vector model that 
appears to be the most natural and general is the one of con
stant probability density with respect to the volume element 
dx dy dz in the space generated by Kx,Ky,Kz ' 

It is clear that the constant probability density hypothe
sis with respect to the azimuthal angle <p that was used pre
viously is a particular case of the above hypothesis. 

As a direct consequence one obtains for the classical 
estimate of the square modulus corresponding to different 
bases the following expression: 

I (y,v,(a,b,c) Iy,v', (a',b ',c'» 12 =A I J(Xn,Yn'Zn;y,v,v'), 
n 

( 10) 

where A is independent of v and v' and remains to be deter
mined. Here J is the absolute value of the Jacobian, 

z 

y 

x 0 

FIG. I. Hyperboloid associated with a positive discrete VIR. The vectors 
whose common origin is 0 and whose extremities lie at the intersections of 
the hyperboloid with the plane y = v are associated with the state 
Ir,v,CO,I,O) Cseethetext). 
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dx dx 

d(y(y+ 1») dv 

J= 
dy dy 

d(y(y+l») dv 

dz dz 

d(y(y+ 1») dv 

of the transformation given by 

y(y+ 1) =r_y2_x2, 

v = ax + by + cz, 

v' = a'x + b 'y + c'z, 

dx 

dv' 

dy 

dv' 

dz 

dv' 

, (11) 

(12) 

(13) 

(14) 

evaluated at all the real points (xn,Yn,zn), which are the 
solutions of the three equations above, with the restriction 
that negative values of Zn should be rejected because we are 
considering positive discrete VIR's. In practice, zero, one, or 
two points satisfy these conditions. If there is no solution, the 
classical estimate is zero and one says that the matrix ele
ment lies in the classically forbidden domain. 

The results obtained from Eqs. (10)-( 14) will be com
pared with the exact results in Sec. III, and they are the 
starting point for the other applications considered in Secs. 
IV and V. 

III. CONNECTION BETWEEN DIFFERENT BASES 

The SV ( 1,1) VIR's in continuous bases have been stud
ied by different authors (see, e.g., Ref. 7-9). The classical 
estimates given by Eq. (10) will be compared to the exact 
results obtained by Linblad and Nagel7 for some different 
bases. For practical calculations, it appears more convenient 
to use Eq. (10) in the following form: 

1 (y,v,(a,b,c) Iy,v',(a',b ',c'» 12 

(15) 

The three different cases studied in Ref. 7 are now consid
ered. 

First, Eq. (15) yields for the classical estimate 

1 (y,v, (0,0, 1) Iy,v', (0, 1,0» 12 
=A [v2 - y(y+ 1) _ V'2]-1!2. (16) 

The normalization constant can now be determined by re
quiring that the integral over v' inside the classical domain be 
unity. One finds 

A = I/1T. (17) 

This y-independent value for A will be retained in all subse
quent calculations. Equations (16) and (17) have to be 
compared with the result obtained from Eq. (4.17) ofRef.7, 
which involves gamma functions and a hypergeometric 2FJ 

function of argument - 1. The numerical comparison for 
the case y = -~, v = "J,} is reported in Fig. 2. Only positive 
values of v' have been considered, since both results are even 
functions of v'. It is seen on this figure that the exact result 
decreases very rapidly outside the classical domain. It oscil
lates around the classical estimate inside the classical do
main. At the limit of the classical domain the classical esti
mate diverges. 
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FIG. 2. Squaremodulusof(r = -1. v = ~,(O,O,I) Ir = -1' v',(O, I,D) > as 
a function of v'. The vertical dashed line corresponds to the limit of the 
classical domain. The dashed line curve inside the classical domain repre
sents the classical estimate. 

For the computation of the exact result we use a three 
term recursion relation with respect to v [see Eq. (4.4) of 
Ref. 7]. For v = - y this relation becomes a two term recur
sion relation and the initial value is easily computed since the 
hypergeometric function is then equal to unity. 

Second, Eqs. (15) and (17) yield for the classical esti
mate 

1 (y,v, (0,0,1) Iy,v', (1,0,1» 12 

= [2vv' - V'2 - y(y + 1)] -1/2/11'. (18) 

[It is recalled that the v' corresponding to the (1,0,1) basis 
must be positive for positive discrete UIR's (see Ref. 7).] 
This has to be compared with the result obtained from Eq. 
(5.10) of Ref. 7, which involves gamma functions and a 
Whittaker function. The numerical comparison for the case 
y = - 25, v = 35 is reported in Fig. 3. It is seen again on this 
figure that the exact result decreases very rapidly outside the 
classical domain. It oscillates around the classical estimate 
inside the classical domain. At the limits of the classical do
main the classical estimate diverges. 

It can be noticed that for integer values of - y the exact 
result given by Eq. (5.10) of Ref. 7 can be rewritten as 

(y,v, (0,0,1) ly,v',(I,O, 1) > = v2 (v') 1/2Rv. _ y_ 1 (vv'), (19) 

where Rn" (r) denotes the radial hydrogenic wave function 
corresponding to principal and orbital quantum numbers n 
and l. According to this relation we have used the algorithm 
described in Ref. 10 for the numerical computations report
ed in Fig. 3. A more direct and economical method, which is 
also valid for half-integer values of - y, can be developed on 
the basis of the three term recursion relation with respect to v 
[see Eq. (5.3) of Ref. 7]. 
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Third and finally, Eqs. (15) and (17) yield for the clas
sical estimate 

1 (y,v, (0, 1,0) Iy,v', (1,0,1» 12 = (2m') -I. (20) 

This v-independent expression corresponds exactly to the 
exact result obtained from Eq. (5.20) of Ref. 7. 

IV. MATRIX ELEMENTS OF FINITE 
TRANSFORMATIONS 

For comparison with the exact results of Ref. 7 we shall 
consider successively 

C1 == 1 (y,v',(O,I,O) lexp( - i'T(Kx + K z »)ly,v,(O,l,O) W, 
C2== 1 (y,v',(O,I,O) lexp( - irKz ) ly,v,(O,I,O» 1

2
, 

C3 == 1 (y,v',(I,O, 1) lexp( - irKz ) ly,v,(I,O, 1) W, (21) 

C4== 1 (y,v',(I,O,1) lexp( - irKy) 1 y,v, (1,0,1» 12. 

First we consider C 1. A set of classical vectors with con
stant value ofy,y = v, corresponds to the stately,v,(O, 1,0». 
According to Eqs. (5)-(7) the integral curves of the para
bolic generator Kx + K z = - i d /dt can be parametrized 
as follows: 

z+x= w, 

x = - !wt 2 + (w2 
- y(y + 1 »)I(2w), 

(22) 

(23) 

y = wt. (24) 

Under the action of exp( - ir(Kx + K z »), a point on the hy
perboloid, characterized by y, w, t, is moved to the point 
characterized by y,w,t + r. In particular, y becomes y + wr. 
Therefore the probability density relative to y in the final 
configuration is determined by the probability density rela
tive to w in the initial configuration. This latter one is given 
by 

1 (y,w, (1,0,1) Iy,v, (0, 1,0» 12. 

One therefore has 

C1 = 1 (y,(v' - v)h,(I,O,1) ly,v,(O,I,O) Wh. (25) 

0.05 

0.04 

0.02 

v' 

o 10 20 30 40 50 50 lO 

FIG. 3. Square modulus of (r = - 25, v = 35, (0,0, I) I r = - 25, 
v', ( 1,0, I ) > as a function of v'. The vertical dashed lines correspond to the 
limits of the classical domain. The dashed line curve inside the classical 
domain represents the classical estimate. 
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Using Eq. (20) one finally obtains 

Cl={O(V
I

-V)[21T(V' -V)]-I, ~fr~spositi~e, (26) 
O(v - v') [21T(V - v')] - 1, 1f r 1S negatlve, 

where 0 denotes the Heavisidefunction [O(x) = O,ifxnega
tive, = 1, otherwise]. This has to be compared with the fol
lowing exact expression, obtained from Eq. (6.2) of Ref. 7: 

Cl = if r positive, (27) l
[21T(V' - v) (1- exp( - 21T(V' - v»)] -I, 

[21T(V' - v)( - 1 + exp(21T(V' - v»))] -I, 

if r negative. 
The classical estimate therefore is a good approximation 
provided that the absolute value of v' - v not be too small. 

For C2 one has to consider the integral curves of K z • 

After the action of exp( - irKz ), the initial value v for y 
becomes v cos ( r) + x sin ( r). Therefore the final probabili
ty density relative to y is determined by the initial probability 
density relative to x. This latter one is given by 

I <y,x,( 1,0,0) ly,v,(O,l,O» 12. 

One therefore has 

C2= I <y,(v' - v cos( r) )lsin( r),(1,O,O) ly,v,(O, 1,0) WI 

Isin(r)l. (28) 

Using Eqs. (15) and (17) one finally obtains 

C2= (21T) -I [y( Y + l)sin2( r) + v2 

+ V,2 _ 2vv' cos( r)] -1/2. (29) 

The exact result [see Eq. (6.4) of Ref. 7] involves hypergeo
metric functions 2FI but simplifies greatly in the case v = 0, 
y = - 1. For this particular case, one obtains 

I<y= -l,v',(O,I,O)1 

Xexp( -irKz)ly= -I,v=0,(0,I,0»1 2 

= (21TV')-I[coth(1TV' ) 

- cos(2v' Inltan( r12) I)lsinh( 1TV' ) ]. (30) 

It is seen that the classical estimate then provides a good 
approximation if v'is large. 

For C3 one again has to consider the integral curves of 
K z. After the action of exp( - irKz), the coordinate y be
comes y cos ( r) + x sin ( r), the coordinate x becomes x co
s( r) - y sine r), and the coordinate z remains unchanged. 
The initial value v for x + zthus becomes v + (cos ( r) - I)x 
- sin ( r)y. Therefore the probability density relative to 

x + z in the final configuration is equal to the probability 
density relative to (cos( r) - I)x - sine r)y in the initial con
figuration. 

One therefore has 

C3= I <y,v' - v,(cos(r) - 1, - sin(r),O)ly,v,(1,O, 1) W· 
(31) 

Using Eqs. (15) and (17) one finally obtains after some 
calculations 

C3=(21Tlsin(rl2)1l- I [vv' - y(y+ I)sin2(r12)]-I/2. 
(32) 

This has to be compared with the exact result obtained from 
Eq. (6.6) of Ref. 7: 

C3 = [J _ 2y- I (2Ivv'11/2/Isin( r12) 1)/sin( rl2)] 2, (33) 
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where J denotes the Bessel function regular at the origin. II It 
is seen that in the case y = - ~ and v and v' equal to zero, the 
two results are identical. It is also seen II that, in the limit 
where vv'/sin2(rl2) goes to infinity, 

C3 = [1TVV'] -1/2 cos2(2Ivv' 11/2 Ilsin( r/2) I 

+ (2y+ 1)1T12 -1T/4). (34) 

In this limit it is clear that the exact result oscillates around 
the classical estimate. 

For C4 one has to consider the integral curves of the 
hyperbolic generator Ky = - i d Idt. According to Eqs. 
(5)-(7), one has the following parametrization: 

x= - [y(y+ 1) +y2] 1/2 sinh(t), (35) 

(36) 

Under the action of the operator exp( - irKy ), it is clear 
that x + z becomes (x + z)exp( - r). Therefore C4 should 
be zero except for v = v' exp(r). The exact result given by 
Eq. (6.7) of Ref. 7 is 

<y,v', (1,0, 1) lexp( - irKy) Iy,v, (1,0,1) 

= (VIV')1/2£5(v - v' exp(r»), 

where £5 denotes the Dirac function. 

v. CLEBSCH-GORDAN COEFFICIENTS 

(37) 

The exact expression for Clebsch-Gordan coefficients 
coupling two positive discrete UIR's of SU ( 1,1) in the y
continuous basis has been given by Mukunda and Radhak
rishnan. 12 According to our previous notations, these coeffi
cients take the form l2 

<y,v, (0, I,O);y'v', (0, 1,0) Iy" ,v", (0, 1,0» 

= £5(v + v' - vl)D(y,v,y',V',y"). (38) 

Conservation of Ky implies that there will always be a Dirac 
£5 function in front of the right-hand side ofEq. (38).12 One 
considers y, v, y', and v' all fixed. The diagram of Fig. 4 
corresponds to the vector relation K II = K + K I. Here 00' 
represents a vector associated to I y,v, (0,1,0) ). The second 
coordinate of 0' is equal to v. To the state ly',v',(O,I,O» are 
associated the vectors O/M, where M is on the inner hyper
boloid. The set of points M have fixed second coordinate v' 
with respect to the frame 0 (see Fig. 4). To ensure that M 
belongs to an hyperboloid characterized by y" relative to the 
first frame OxyZ' one must have 

C" 2 = (z + Z')2 - (x + X,)2 

= [(e2 + x2) 1/2 + (e'2 + X,2) 1/2f _ (x + X')2 

=!(e,e',x,x'), (39) 

where 

eI2=yl(y" + 1) + V" 2, (40) 

and v" is equal to the sum of v and v'. We also define e2 in 
terms of y, v, and e/2 in terms of y' and v', as in Eq. (40). The 
classical estimate for the probability density relative to e" 2 

follows by integrating over all positions of 0 ' and M on the 
hyperboloids for v and v' fixed and subject to the condition 
given by Eq. (39). Each position of 0' and M has to be 
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FIG. 4. Diagram corresponding to the coupling of two positive discrete 
UIR's in a continuous basis. The point 0' moves on the intersection of the 
outer hyperboloid with the plane y = v (see the text). 

weighted by its probability density. The probability density 
relative to x for v fixed is, according to Eqs. (15) and (17), 

I (y,x,( 1,0,0) I y,v, (0, 1,0» 12 
(41) 

As noted in Sec. II, this is an improper probability density 
since its integral with respect to x diverges, as can be clearly 
seen from the change of variable x = e sinh (qJ): 

(21T) -I J dx(e2 + x 2) -1/2 = (21T) -I J dqJ. (42) 

To obtain the probability density relative to e,,2 one therefore 
has to consider the following divergent integral, to be de
noted I: 

1= (21T)-2 J dx J dx'[(e2 +x2)(e,2+ x ,2)]-1/2 

x8[f(e,e',x,x') - e,,2]. (43) 

The above integral can be factorized into two parts, one of 
them corresponding to the improper normalization given by 
Eq. (42). This is achieved by performing the above change of 
variables for x and x'. One finally obtains 

1= [ (41T) -I J d(qJ - qJ ')8[ ee' cosh(qJ - qJ') 

,,2 ,2 2]] J _ e -~ -e (21T)-1 d(qJ+qJ'). (44) 

The first integral in the above product should provide the 
probability density relative to e"2. Using Eq. (40) one sees 
that the probability density relative to y" is obtained by mul
tiplying by the factor - (2y" + 1). One finally obtains for 
the classical estimate of the square modulus of the function 
Din Eq. (38) the following expression: 
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ID( y,v,y',v',y") 12 
== [( - y" _ ~)/1T] [e,,4 + e4 + e,4 _ 2e2e'2 

_ 2e,,2e,2 _ 2e"2e2] -1/2. (45) 

The exact result [seeEq. (4.11) of Ref. 12] involves a hyper
geometric function 3F2 of argument unity. The general 
expression, however, simplifies drastically in the case 
y = - 1 and v = O. One obtains, from Eq. (4.11) of Ref. 12, 

ID( - 1,0,y',v',y") 12 
= ( - y" - ~) / [ 1T( y" + y' + 1)( y" - y') ] . (46) 

It is seen that this v'-independent result corresponds exactly 
to the classical estimate obtained from Eq. (45). 

VI. DISCUSSION 

The classical estimate should not be used directly for the 
sake of accurate numerical computation of some given 
square moduli of matrix elements. The classical estimate can 
indeed oscillate round the exact value and is a very poor 
approximation at the limit of the classical domain. A reason
able numerical accuracy is, however, expected if the classical 
domain coincides with the exact domain. In this case the 
classical estimate can even coincide with the exact results as 
illustrated by some examples considered in this paper. 
Among the principal interests of the vector model we em
phasize the following three points. 

First, it provides the so-called classical domain. The ex
act results decrease very rapidly outside this domain. This is 
of considerable interest for noncompact groups because one 
thus has a criterion for truncating infinite expansions in 
practical calculations.5 

Second, it provides a simple geometric interpretation of 
many results. Most of these results could probably be ob
tained by other methods, but the geometrical point of view is 
particularly suitable for developing a rapid and global un
derstanding. 

Third and finally, it is essential for developing algor
ithms for the computation of the exact results: These exact 
results generally satisfy three term recursion relations, 
which are numerically stable only when progressing toward 
the classical domain. 3•5•I0,13 

The vector model could also be applied to the contin
uous UIR'sofSU( 1,1). (The case of negative discrete UIR's 
is obtained directly from the case of positive UIR's.) There 
should be no basic difficulties for this extension of the pres
ent work. The comparison with the exact results of contin
uous UIR's is, however, more difficult because they general
ly do not simplify for particular cases and the initialization of 
the three term recursion relations involved7 becomes more 
complicated. 
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The Clifford algebra in dimension d = 2m + I - 1, m>2, is treated using the finite m
dimensional projective geometry PG(m,2) over the field of order 2. The incidence properties 
of the geometry help in the problem of finding a complete commuting set of operators with 
which to label the 2 (d - 1)/2 spinor states of an irreducible representation. Full details are given 
in the case m = 3, d = 15, thus generalizing previous work for the m = 2, d = 7 case, and 
various conjectures are made concerning the cases m> 3. 

I. INTRODUCTION 

We will deal throughout with an irreducible representa
tion of the real Clifford algebra CHff(O,d), d = 2m + 1 - 1, 
for some m = 2,3, ... , in which the operators r I' r 2, .. ·,r d 

(representing a set of anticommuting imaginary units gener
ating the algebra) satisfy not only the relations 

(rj)2=-I, rjrj=-rjr j , i#j, (1.1) 

but also the relation 

( 1.2) 

Since the cases with which we deal satisfy d=7 (mod 8), 
then, as is well known, 1-6 the operators r j can be taken to be 
skew-adjoint operators acting upon a Euclidean space of real 
spinors of dimension 2(d- 1)2. 

We shall be interested in the finite group Go generated 
by the operators r it 

Go {±I,±rj,±rjrj,±rjrjrk""}. (1.3) 

On account of the relations (1.1) and (1.2), the display 
(1.3) will list each element of Go once, and only once, pro
vided that we impose the restrictions i <j < k < ... , and pro
vided also that we consider products of at most !(d - 1) of 
the operators rj' Consequently Go has order 

IGol = 2d. (1.4) 

One of our chief concerns will be to determine a suitable 
maximal Abelian subgroup Jrax of Go. A set of independent 
generators of Jrax can then (after the omission of - I) be 
used as a complete commuting set of operators, whose sets of 
simultaneous eigenvalues will therefore distinguish between 
the 2(d 1)/2 different spinor states. A solution to the prob
lem in the case d = 7 was spelled out in a previous paper7 (cf. 
also the earlier papers of Refs. 8 and 9) where it proved to be 
useful to associate the seven operators r j with the seven 
points of the two-dimensional projective geometry PG(2,2) 
over the field IF z = {O, l} of order 2. The present paper will 
demonstrate the relevance, and elegance, of methods based 
upon the corresponding m-dimensional projective geometry 
PG(m,2) over lF2 when applied to the case of the Clifford 
algebra Cliff(0,2m + 1 - 1), m = 3,4, .... 

To this end, let us quotient out Go by its center, 

Zo Z(Go) = {I, - I}, (1.5) 

which is seen also to be the commutator subgroup of Go. We 
thereby obtain an Abelian group 

( 1.6) 

of order 2d - 1 • Since the square of each element of Go is 
either + I or - I, the square of each element of Co is the 
identity 1 ( = Zo). Consequently, 

CO"" (lz) d - 1 = lz X lz X ... X lz (d - 1 factors), 
( 1.7) 

where lz denotes the (multiplicative) group of order 2. Un
der the canonical projection rr: Go ..... Co let Sj denote the im
ageofr j, 

Sj = {rj> - rJECo. (1.8) 

The elements S 1,SZ"",Sd generate Co and by (1.1) of course 
satisfy 

(sj)2=1, SjSj=SjSj. (1.9) 
However, they are not independent generators, since by (2) 
they are subject to the relation 

SISz .. 'Sd = 1. 

Corresponding to (1.3) we have the display 

Co = {l,Sj,SjSj,SjSjSk,'''}' 

( 1.10) 

(LIl) 

where i <j < k < ... and where products of at most! (d - 1) 
of the Sj are to be listed. 

Consider the set 

S={Sl,SZ,,,,,Sd}' (1.12) 

Given a subset a~S, we will term a a small or large subset 
according as lal <!(d - 1) or lal >!(d + 1). With a view to 
an imminent geometrical interpretation let us refer to the 
small subsets of S asjigures. These figures are in a one-one 
correspondence with the elements of Co; for example, the 
figure {SZ,S3,sS} corresponds to the element SZS3S5 of Co, and 
o corresponds to I. In fact we will identify Co with the set 0/ 
all jigures o/S, the group multiplication of figures a, p being 
therefore defined by 

{
all/3, if all/3 is small, 

ap = (al1p)C if all/3 is large, (1.13) 

and satisfying 

a Z = I( = 0)and ap = pa, for all a,pE Co. (1.14) 

Here r" denotes the complement in S of a subset r, and all/3 
denotes the symmetric difference of the subsets a, p, 

all/3= (anpC)U(pnaC) (aUp)\(an{j). 
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As is very well known, the set S * consisting of all the subsets 
of S is an Abelian group under the operation a, the identity 
element being the empty set 0; moreover, each a#0 is of 
order 2; aaa = 0. The extra twist in the definition ( 1.13) of 
the multiplication law for figures stems from (1.10), or in 
turn from (1.2): a subset a of S gives rise to the same group 
element in Co as the complementary subset a C 

• 

What we are doing can be phrased in slightly different 
languages. Loosely speaking, we can think of Co as the group 
(S *,a) of all the subsets of S, except that we identify a subset 
with its complement. That is, we introduce an equivalence 
relation - on subsets by 

a-/3 if and only if a=/3 or a=/3 c. (1.15) 

Better, perhaps, we should talk in terms of configurations, 
say, rather than figures, where a configuration is defined to 
consist of a (nonordered) pair {a,ac

} of complementary 
subsets of S. Multiplication of configurations is by way of 

{a,acH/3,/3C} = {r,y} ( 1.16) 

where 
r = aM = aCMc, y = aCM = aMc (1.17) 

In other (group theory) words, we define Co to be the quo
tient of S * by the subgroup {0,S} (the coset!! of this sub
group being the configurations {a,ac

}). However, we can 
always unambiguously (since d is odd) choose the smaller of 
the sets a,ac as coset representative of the coset {a,ac}, and 
end up with our original view of Co in terms of the multipli
cation (1.13) of figures. 

At first sight, it might appear that the Abelian group 
Co= (Z2)d-l is utterly trivial, and that our sole concern 
should be with the non-Abelian group Go. Surprisingly, as 
we shall see in Secs. II and III, certain interesting and nontri
vial questions arise, and can be settled, even at the Abelian 
level-once, that is, we bring Co to geometric life by viewing 
the d elements Si of the set S as the points of the finite m
dimensional projective geometry PG(m,2), d = 2m + 1 - 1. 

Before going into details, we should confess at the outset 
that our geometrical interpretation involves a reduction in 
symmetry. For each identification of the elements of S with 
the points ofPG(m,2) will single out certain triplet figures 
as privileged, to be interpreted as the lines ofPG(m,2). Now 
both Co and Go come along with a rich supply of automor
phisms. (In the case of the Abelian group Co, any automor
phism, other than the identity automorphism, is of course an 
outer automorphism.) In particular, each element of aEY d 

( = symmetric group on d symbols) gives rise to an element, 
also denoted u, of Aut Co by acting upon the generators 
SI, ... ,Sd in the obvious way. Each u( # 1 )EY d also induces 
an outer automorphism u, say, of Go, defined on generators 
r1, ... ,rd by 

u(rp ) = (sgn u)r u(p)' (1.18) 

Now the projectivities of PG(m,2), which (in the present 
case of IF 2) can be identified with the elements 
AEGL(m + 1,2) =GL(m + 1, lF2 ), form a privileged sub
group n, say, of Y d: elements of n are picked out by the 
property that they map lines onto lines. Thus our geometri
cal interpretation naturally goes along with selecting as pri
vileged a certain subgroup, also denoted n, of Aut Co. (Ele-
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ments of Aut Co not lying in n will not map lines onto lines; 
indeed they will not even map S onto S except when they lie 
in Yd') Similarly, we shall in effect be concerned with a 
corresponding subgroup n, say, of Aut Go, consisting of the 
outer automorphisms A arising from the elements 
AEGL(m + 1,2). 

Nevertheless, we shall be able to turn the loss of symme
try to our advantage, since in our search for a maximal Abe
lian subgroup ll"'ax of Go our attention will be usefully di
rected, in the first instance, to certain subgroups H of Go 
which are n-admissible, satisfying that is 

A(H) = H, for all AEGL(m + 1,2). (1.19) 

(Actually in the cases m = 3, 5, 7, ... , the maximal Abelian 
subgroups which we unearth will turn out to be preserved 
only under certain proper subgroups of n.) 

II. PG (m,2) AND THE GROUP Co 

A. PG(m,2) 

In the sequel, we will need very little more than the usual 
elementary incidence properties shared by projective geome
tries over an arbitrary field IF, together with some (easily 
computed) numbers relevant to the case in hand when 
IF = IF 2~ Nevertheless, let us commence this section by listing 
the relevant facts, and let us also point out the occasional 
special feature peculiar to the choice IF = lF2• (For more in
formation on finite projective geometries see, for example, 
the texts by Hirschfeld. \0,11) 

Let V( m + 1) denote a vector space of dimension 
m + lover IF 2' Since there are no scalars in IF 2 other than 0, 
1, V( m + 1) is essentially nothing more than an additive 
Abelian group which possesses m + 1 independent genera
tors of order 2, Each choice of ordered basis yields an iso
morphism of V( m + 1) with (IF 2) m + 1. In particular, 
I V(m + 1) I = 2m + 1 • The points of the projective geometry 
PG(m,2) can be taken to be the set 

So = So(m) = V(m + 1}\ {a} (2.1) 

of nonzero vectors of V( m + 1). (For generallF, one obtains 
the projective points by way of an equivalence relation upon 
So, settingy-x whenever y = AX, AElF" {a}; but in our case 
of IF 2 the only choice of A is I!) A (projective) subspace of 
dimension rofthe projective geometry PG(m,2) can be de
fined to be a subset ahSo such that the extended set aU{O} 
forms a (vector) subspace of dimension r + 1 of V( m + 1). 
Subspaces of PG(m,2) of (projective) dimensions 
0,1,2,3, ... ,r, ... ,(m - 1) are called, respectively, (projective) 
points, lines, planes, solids, ... , r-spaces, ... , hyperplanes. The 
empty subset of So has projective dimension - 1. 

We denote by S, = S r (m) the set consisting of all the r
spaces of PG (m,2). Putting 

N(r,m) = IS,(m)l, 

then of course, from (2.1), we have 

N(O,m) = 2m + 1 - 1. 

TocomputeN(r,m) for r> 0, letM(r,m) denote the number 
of ordered r-simplices in PG (m,2). Here, by an ordered r
simplex we mean an ordered set of r + 1 linearly indepen-
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dent points (which therefore span a projective r-space). 
Clearly 

M(r,m) = (2m+ 1_ 1)(2m+ 1_ 2) 

"'(2m+l-r-I)(2m+I_2'), 

and 

N( ) 
_ M(r,m) 

r,m -
M(r,r) 

(2m+I_1)(2m-1)"'(2m-'+I_1) 
= 

(2'+ I - 1 )(2' - 1)'" (2 - 1) 
(2.2) 

Incidentally, note thatthe order ofGL(m + 1,2) is, equally 
clearly, given by 

IGL(m + 1,2) 1= M(m,m). 

A choice of a particular m-simplex in PG(m,2) is re
ferred to as a choice of a simplex of reference. Usually in 
order to introduce (homogeneous) coordinates into an m
dimensional projective space, one has to make a choice not 
only of an ordered m-simplex of reference, but also to make 
the further choice of a "unit point," that is, a point not be
longing to any face of the simplex. However, in the case of 
PG(m,2), each m-simplex defines a unique unit point, 
which we will call the center of the simplex. For if 
PI,P2, ... ,Pm + I are the vertices of a simplex of reference, and 
if x = XtPI + X2P2 + ... + xm+ IPm + I lies in none of the 
faces of the simplex, then we require x i :;;60 for each 
i = 1,2, ... ,m + 1, whence for Xi EF2 we have Xi = 1, and x is 
uniquely given to be x = c where 

(2.3 ) 

For example, in the case m = 3, if PI,P2,P3,P4 denote the ver
tices of a tetrahedron of reference, and if ijkl is a permutation 
of 1234, then Pj,p k ,p I can be taken to be the vertices of a 
triangle of reference for the plane (m = 2) geometry of the 
ith face, the remaining four points of this geometry being the 
"midpoints" Pk + PI'Pj + PI'Pj + Pk of the sides of the tri
angle along with the center Ci = Pj + Pk + PI of the triangle. 
The four faces together account for 14 points of PG(3,2), 
the remaining 15th point being the center c = PI + P2 
+ P3 + P4 of the tetrahedron. 

A nonordered set of r + 2 points in PG(m,2), which 
consists of an r-simplex together with the center of this sim
plex, will be termed an r-frame. Clearly, the number of dis
tinct r-frames is M(r,m)/(r + 2)! Thus in PG(2,2) there 
are seven two-frames, while in PG(3,2) there are 105 two
frames and 168 three-frames. The plane geometry PG(2,2) 
is unusual in that the complement of a two-frame is a line. 
For if the four points of a two-frame are taken to be p, q, r, 
and c = P + q + r, then the remaining three points, namely 

P' = q + r, q' = P + r, r' = P + q, (2.4) 

are linearly dependent (sincep' + q' + r' = 0) and so form a 
line. 

The intersection a np of two (projective) subspaces of 
PG(m,2) is a subspace. Their joinj(a,p) is defined to be the 
smallest (projective) subspace containing both a and p. In 
terms of vector subspaces of V(m + 1), we have 
j(a,{J) U{O} = (aU{O}) + (PU{O}). Grassmann's rela-
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tion for the (vector) subspaces of V( m + I) yields a corre
sponding relation for the (projective) subspaces of 
PG(m,2) 

dim(anp) = dim a + dimp - dim j(a,{J). (2.5) 

In particular, a line not contained in a hyperplane always 
intersects the hyperplane in a point, and two distinct hyper
planes always intersect in an (m - 2) -space. If subspaces a, 
p are skew, that is, if anp = 0, note also from (2.5) that 

dimj(a,fJ) 

= dim a + dimp + 1 (if a,p are skew). (2.6) 

In particular, the join of a pair of skew lines in solid geometry 
is the whole space. In the sequel, we shall use over and over 
again the following further elementary consequence of 
(2.5). 

Lemma 2.1: For r = 0,1,2, ... ,m, every r-space of 
PG(m,2) intersects every (m - r)-space. 

Proof: From (2.5), dim(anfJ);;;;.O, since dimj(a,p) 
<,m. 

B. Duality 
A 

Consider now the vector space V(m + 1) dual to 
'" V(m + 1). Let us denote by (a,p) the value ofaEV(m + 1) 

atthevectorpEV(m + 1). ForgivennonzeroaEV(m + 1), 
the solutions of the equation (a,p) = ° form a vector hyper
plane in V( m + 1), and indeed every hyperplane of 
V(m + 1) can be represented in this way. Consequently 
each (projective) hyperplane ofPG(m,2) can be represent
ed in terms of the nonzero solutions of such an equation 
(a,p) = 0, moreover (special nature ofF2 ) for uniquely de
termined aEV(m + 1) \ {O}. Consequently, this last set can, 
and will, be identified with the set of hyperplanes in 
PG(m,2); 

Sm_1 =Sm_dm) 

= V(m + 1)\{0}. (2.7) 

Since a linear functional can take only the values 0,1, note 
that we have, for aESm _ I , pESo, 

( ) 
= {O, if pEa, 

a,p 1'f , 1 pUx. 
(2.8) 

Incidentally, note that Sm _ I in (2.7), just like So in 
(2.1 ), can be taken as a model for an m-dimensional geome
try, say the dual geometry PG(m,2) A. The "points" of the 
dual geometry are the hyperplanes of the original geometry, 
and similarly the "r-spaces" of the dual geometry are the 
(m - r - 1) -spaces of the original geometry. This leads on 
to the well-known principle of duality: a valid theorem in one 
geometry automatically gives rise [after reversing inclu
sions, interchanging joins and intersections, and replacing r
spaces by (m - r - 1) -spaces] to a valid "dual theorem" in 
the dual geometry. 

In the sequel, we shall need to deal with the linear char
acters of the Abelian group V( m + 1), and of its dual 
V(m + 1), in a multiplicative fashion. To this end, let us set 

X; = exp(iTr(a,p», pEv, aEV. (2.9) 

Then the 2m + I linear characters of V(m + 1) are given by 
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A 

Xa
: P-+X;, aEV(m + I), (2.10) 

and the 2 m + I linear characters of 'V< m + 1) are given by 

Xp: a-+x;, pEV(m + I). (2.11) 

Notice that the values of X: VX V-{ ± t}uponSm _ 1 XSo 
are given, from (2.8), by 

a={+I, if pEa, (2.12) 
XP _ 1, if pf!a. 

C. Subgroups of Co 

As promised in Sec. I we now view the group Co of fig
ures of the set S [see ( 1.12) and ( 1.13) ] in geometric terms, 
by identifying S with the set So of points of PG(m,2). For 
any collection :7 of figures of Co, let (:7) denote the sub
group of Co generated by :7. Of interest are the subgroups 
C1,C2"",Cm _ I generated by, respectively, the lines, 
planes, ... ,hyperplanes ofPG(m,2), 

Cr = Cr(m) = (Sr(m», r= 0,I,2, ... ,m, (2.13) 

where of course, by (1.10), Cm = {t}. 
Before proceeding further, it is well to clear up any pos

sible confusion that could arise between the additive "group 
of points" V(m + I) = SoU{O} and the multiplicative 
group Co generated by the points, and similarly between the 
additive "group of hyperplanes" 'V<m + 1) = Sm _ I U{O} 
and the multiplicative group Cm _ I generated by the hyper
planes. Given two distinct points, p, qESo, we can form their 
sum p + q within V( m + 1) and their product pq within Co. 
Of course p + q is quite different from pq, since p + q is an
other point, namely the third point on the linej(p,q) , while 
pq is the doubleton figure {p,q}. [In the case p = q then 
p + q is the zero vector of V( m + 1), while pp = p2 is the 
identity element 1 = 0 of Co.] No doubt we have been labor
ing the obvious-yet a surprise is in store (see the next 
lemma) when we consider hyperplanes. 

Lemma 2.2: If a, (3 are distinct hyperplanes, then 
a + (3= a(3. 

Before proving this lemma for general m, it may help to 
illustrate it in the plane, taking the seven points ofPG(2,2) 
to bep,q,r,c( =p+q+r), p', q', r', as in (2.4). Setting 
a = cpp' = {c,p,p'} and (3 = cqq' = {e,q,q'}, then a + (3 
will be another line, namely the third line y = err' = {e,r,r'} 
through e = a n(3. But, by (1. 9), (1.10), we have 

a(3y = cpp'qq'rr' = 1, (2.14) 

whence 

a(3 = y = a + (3. 
Remark: This plane result was, in effect, made use of in 

Ref. 7; unfortunately, in this earlier paper, the group of 
points and the group of lines were written multiplicatively. 
(They were denoted, respectively, Pg and L g.) 

Proof of Lemma 2.2: Set ..1= an(3. Now through the 
(m - 2 )-space A pass just three hyperplanes, namely a, (3, 
and y = a + (3. [This dualizes the result that on the line 
j(p,q) there are just three points, namely p,q and p + q.] So 
we can decompose So as a disjoint union off our small sets A, 
a',(3', y' such that a = Aa', (3 = ..1(3', Y = Ay'. Hence, using 
(1.10), (1.14), 

1974 J. Math. Phys., Vol. 30, No.9, September 1989 

(2.15 ) 

whence a(3 = y = a + (3. 
Remark: The fact that just three hyperplanes pass 

through an(3 could have been seen in terms of the result 
(2.8). For if a point pESo belongs neither to a nor to (3, then 
(a,p) = 1 = «(3,p) , whence (a + (3,p) = 1 + 1 = 0, and so 
all such points p belong to the hyperplane a + (3. [In fact, it 
is quite easy to compute the number of s-spaces within gen
eral "pencils" or "stars"-see (2.18) below.] 

Corollary: The subgroup Cm _ I (m) ofCo(m), which is 
~enerated by the hyperplanes, is isomorphic to the group 
V(m + I) (of order 2m + I). 

This follows from the lemma since, in the case a = (3 not 
considered in the lemma, a + a and a 2 are the identity ele
~ents, 0 and 1 = 0, of the respective groups 
V(m + I),Cm _ 1 (m). 

D. Stars 

The results (2.14), (2.15) are ripe for generalization. 
To this end, if a is a given r-space lying inside a given t-space 
y, let us define stars (a,y) to be the family of s-spaces, 
(r<,s<,t), which lie inside ybut which all contain a, 

stars (a,y) = {(JESs: ac;;;,(3c;;;,y}. (2.16) 

(In certain cases such a family is called a pencil rather than a 
star.) In the special case t = m, i.e., y = So, we adopt the 
notation stars (a), 

stars (a) = {(JESs: ac;;;,(3} 

and in the special case r = - 1, i.e., a = 0, we adopt the 
notation Ss (y): 

Ss(y) = {(JESs: (3c;;;,y} = stars (0,y). 

Setting now 

N(r,s,t) = I stars (a,y) I,(dim a = r, dim y = t), (2.17) 

we have, by duality in PG(t,2), 

N(r,s,t) =N(t-s-l, t- r-l), (2.18) 

where N ( , ) is as given in (2.2). Consider now the prod
uct, within Co, of all N(r,s,t) members (3 of stars (a,y), say 

(2.19 ) 

In the case when y = So we denote the corresponding prod
uct of the members of stars (a) by sts (a). 

Theorem 2.3: 

(i) sts (a,y) = y; (ii) sts (a) = 1. (2.20) 

In each case the result is independent of the choice of s and of 
a. 

Proof Consider the number of times a point pESo occurs 
in the product (2.19). If pEa then p occurs in each (3 of the 
star, that is, N(r,s,t) times. If pf!a, but pEy, thenj(p,a) is a 
(r + 1) -space, and so the number of times such a point p 
occurs in (2.19) is N(r+ l,s,t). Since N(r,m) in (2.2) is 
odd, we see that each point pEy occurs an odd number of 
times in the product (2.19). But clearly a point pf!y does not 
occur. The theorem therefore follows from (1.9) [and from 
(1.10) in the case part of (ii) of the theorem]. 

Illustrations: We have the following particular cases of 
Theorem 2.3. 
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(a) If ...1. 1,...1.2".1.3 are three distinct concurrent lines of a 
plane a, then 

AIA~3 = a. (2.21) 

(b) If ...1. 1".1.2, ... ".1.7 are the seven distinct lines of a plane a, 
then 

...1. 1...1.2" '...1.7 = a. (2.22) 

In the case of illustrations (c), (d), (e), let us assume 
that we deal with the case m = 3 of solid projective geometry 
over ]F2' 

(c) If AI' ...1.2, ... ,...1.7 are the seven distinct lines through a 
point p, then 

...1. 1...1.2" . ...1.7 = 1. (2.23) 

(d) If a I' a 2, a 3 are three distinct planes intersecting in a 
common line, then 

a la 2a 3 = 1. (2.24) 

(e) If aI' a 2, ... ,a7 are the seven distinct planes through a 
point p, then 

(2.25) 

Remark: Illustration (b) is of the case r = - 1, s = 1, 
t = 2. Taking (2.21) and (2.22) together, note that the four 
lines ...1.4, ... ".1.7 of a "quadrilateral" (i.e., no three are concur
rent) satisfy 

A4A5A~7 = 1. (2.26) 

Clearly the seven lines of any plane a can be partitioned into 
a triplet satisfying (2.21) and a quadruplet satisfying (2.26) 
in precisely seven ways (since a contains seven points). 

There are similar partitionings of the seven planes 
through apointp arising from (2.24) and (2.25). [The situ
ation is entirely analogous, for if we had been in the general 
case m > 3, and had considered the planes a l , ••• ,a7 in (2.24), 
(2.25) to lie in a solid 0", then (2.24), (2.25) would hold only 
after 1 had been replaced by 0".] Again there are precisely 
seven such partitionings, corresponding to the seven choices 
of a "common line" through p. 

Corollary to Theorem 2.3: For s < t, Cs ;;2 C,. 
Proof By Theorem 2.3 every t-space r can be expressed 

as a product of s-spaces. 

III. PG(3,2) AND THE SUBGROUP CHAIN 
CO~C1~C2~C3= {1} 

Since we intend to study the Clifford algebra for d = 15 
in some detail, it will prove worthwhile to persist at the Abe
lian level a little longer in order to obtain some detailed 
m = 3 results. By the preceding corollary, the subgroups 
C, = C, (3) of Co = Co(3) form a chain, 

C0 ;;2CI;;2C2;;2C3 = {I}, (3.1) 

where ICol = 214. Now by Lemma 2.2, Corollary, we already 
know t~at the group C2 generated by the planes is isomor
phic to V( 4), and so has order 24 = 16. Consequently, we are 
curious to find out about the intervening subgroup CI gener
ated by the lines ofPG(3,2). 

To this end, it helps to choose a distinguished point VES'0 
and a distinguished plane tJE S2 such that v does not lie on tJ. 
We will refer to vas the vertex and tJ as the base. Now each 
p E tJ defines a line 
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Vp =j(p,v), (3.2) 

and, as p varies over tJ, we obtain the star consisting of the 
seven lines through the vertex, 

star,(v) = {vp: pEtJ}. (3.3) 

(Incidentally, we are frequently rather sloppy in not distin
guishing between v and {v}; certainly we will always prefer 
PEtJ to {P} c tJ.) Since we will be interested in the coset group 
C/C2, it is worth noting the result for p=/=q EtJ, 

VpVq = vp+q(mod C2), (3.4) 

which follows from (2.21). In a similar vein, note also that 
...1.1...1.2 = (AI + A2)tJ holds for AI =/=...1.2 ES I (tJ), so that we have 

...1.1...1.2 = (AI + A2 )(mod C2)· (3.5) 

Here A, + ...1.2 is the third line in tJ which is concurrent with 
the distinct lines A I' ...1.2 of tJ, the addition being that in the 
dual vector space V(3) associated with the PG(2,2) geome
try of the plane tJ. In the next lemma, it will prove convenient 
to allow p,q in (3.4) to range over the extended domain tJ U 
{o}, which we identify with V(3), by defining Vo = 1. Simi
larly, weallowA I,A2 in (3.5) to range over V(3) by identify
ing the identity elements, 0 and 0, of the groups V( 3) and 
CI (2) under the isomorphism of Lemma 2.2, Corollary. 

Lemma 3.1: (i) The disjoint cosets of C2 in CI are given 
by 

{VpAC2; pEV(3), AEV(3)}, 
"'-

(ii) C I /C2= V(3) X V(3), 

(iii) ICII =2'0= 1024. 

Proof Supposep is a line such thatp is neither one of the 
seven lines of star, (v) nor one of the seven lines of S, (tJ). 
(There are 35 - 7 - 7 = 21 such lines.) Set p = pntJ and 
...1.= j(v,p) ntJ ( = projection of p from the vertex onto the 
base). Thenp, A, and vp are coplanar lines concurrent inp. 
Hence by (2.21), 

(3.6) 

Now a general element ¢ECI is, by definition of C t , a product 
of lines. Hence, modulo C2, it follows from (3.6) that tP is a 
product oflines drawn from star I (v) and from SI (tJ). After 
using (3.4) and (3.5), we see that tP, modulo C2, can be 
expressed as a product of at most one line from star I (v) and 
at most one line from SI (tJ). Hence, under the extended in
terpretation of p and A indicated after (3.5), we have 

tP = vpA(mod C2), for some pEV(3), AEV. (3.7) 

[Incidentally, in the casepEtJ, ACtJ, the lines vP ' A in (3.7) 
may now be skew, while in the case of the linep in (3.6) the 
lines v P' A intersected at p = p n tJ.] 

In order to conclude the proof of part (i) we now have 
only to check that the 8 X 8 = 64 cosets exhibited are dis
tinct. Suppose then that the coset vp A I C2 coincided with the 
coset vqAzCz. Setting p + q = r and Al + Az = A, it would 
follow that v, = Aa for some aEC2. Clearly this entails 
v, = 1,...1. = l,a = l,andsovp = Vq andA I = ...1.2 as desired. 

Upon appealing to (3.4), (3.5) again, we have 

(VpAIC2)(VqA2C2) = Vp+q(A I +Az)C2, (3.8) 

whence part (ii) follows. Finally, since 1V(3) X V(3) I 
= 23 X23 = 26

, and since IC2 1 = 24, we have ICII = 210. 

R. Shaw 1975 



                                                                                                                                    

Lemma 3.2: (i) The disjoint cosets of CI in Co are given 
by 

{PCI; pEV(4)}; 

(ii) Co/CI= V(4). 

Proof For pi=qESo(3) we have pq(p + q) = A where 
A = j(p,q). Thus we have 

pq = p + q(mod CI ). (3.9) 

It follows that Co is certainly the union of the listed cosets, 

Co = U pEV(4)PC I • 

But we know ICol = 2 14
, ICII = 210

, and 
whence the cosets in (3.10) must be disjoint. 

Part (ii) now follows from (3.9). 

(3.10) 

1V(4) I = 2\ 

The coset decomposition of Lemma 3.1, namely 

(3.11 ) 

suggests that we introduce two subgroups which stand mid
way between CI and Cz in the chain (3.1), namely 

CZ./i = (SzU{A: AESI(c5)}) (3.12) 

and 

(3.13 ) 

By (3.4) and (3.5), once more we have the coset decomposi
tions 

C2,li = U'(EV(3)ACZ' 

C 2•v = UpEV(3)Vp C Z' 

and from (3.11) we have 

CI = UpEV(3) vp C2./i , 

(3.14 ) 

(3.15 ) 

(3.16) 

CI = U",S(3)AC2•v ' (3.17) 

Remark: Clearly, in contrast to the subgroups Cr , r = 0, 
1, 2, 3, the subgroups C Z./i and C z.v are not n-admissible 
subgroups, but only n/i- or nv-admissible, respectively, 
where n/i arises from those projectivities ofPG(3,2) which 
preserve the distinguished plane 15, and similarly nv arises 
from those projectivities which preserve the distinguished 
point v. 

When, in the next section, we climb up to the non-Abe
lian level, we will chiefly make use of the coset decomposi
tions already arrived at in this section, rather than a knowl
edge of precisely which figures occur in the group CI 
generated by the lines ofPG(3,2). Nevertheless, one is cur
ious to discover these I CII = 1024 figures which are picked 
from amongst the 16 384 figures of Co. Of course CI contains 
1 =0 and the 35 lines ofPG(3,2). Multiplying two distinct 
lines AI".\.z together, there are two possibilities: if AI' Az inter
sect, then AIAz is a two-frame, which accounts for 105 figures 
(as explained in Sec. II A), while if AI' Az are skew, then 
AIAz is a "skew pair," of which there are 280. 

Several possibilities arise when we consider the produce 
AIAzA3 of three lines. If coplanar and concurrent, then as in 
(2.21), AIAzA3 is a plane, which accounts for a further 15 
figures. If coplanar but not concurrent, then AIAzA3 is a sin
gle line [cf. (2.26)], which has already been counted. An
other possibility occurs when AIAz is a two-frame which in
tersects ,13 in a single point, in which case we see that AIAzA3 

is a three-frame, which accounts for a further 168 figures. 
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Another possibility is that AI"'\'z,A3 are concurrent in some 
point p, say, but are not coplanar. Let us term the resulting 
figure ,11,103 a "tripod." It consists of seven points, one of 
which is the privileged "apex" p, and the remaining six 
points lie in pairs along the three "legs" AI' Az, ,13' of the 
tripod. Now we can choose the apexp in 15 ways, and then 
for given p choose the three legs in 7. 6.4/3! = 28 ways. Con
sequently, the group CI contains 15 X 28 = 420 tripods. 

There is no need to look at further possibilities, since 
elementary arithmetic assures us that we have already dis
covered the 1024 (see Lemma 3.1) figures of C I' 

Lemma 3.3: The group Ct = Ct(3) consists of the fol
lowing 1024 figures: 0; 15 planes, 35 lines; 105 two-frames; 
168 three-frames; 280 skew pairs; 420 tripods. 

Corollary: If lines A\> Az, ,13 of PG(3,2) are mutually 
skew, then there exist lines a, v such that the five lines At, Az, 
,13' a, v are mutually skew [and consequently exhaust all the 
15 points ofPG(3,2)]. 

Proof The figure AtAZA3 clearly belongs to Ct and con
sists of 15 - 9 = 6 points. But in the list in Lemma 3.3, the 
only figure of size six is a skew pair. 

Remark: The corollary is a well-known result of 
PG(3,2) geometry. We do not claim that our proof is superi
or to ones based more immediately (see, for example, Ref. 
11, p. 55) upon simple incidence properties ofPG(3,2)! 

Remark: The lines a, v are uniquely determined by the 
three skew linesA t, Az, ,13' The latter also uniquely determine 
three other skew lines f-ll' f-lz, f-l3' namely the three transver
sals of At, Az, ,13' which are thus also skew to a and v. One 
ends up with the result that given any two skew lines a, v, 
their product can be expressed as the product of three skew 
lines in precisely two ways, 

av = AtAZA3 = f-l tPzf-l3' (3.18) 

Remark: Another corollary of Lemma 3.3, in the same 
vein as the above one, is that a "pierced plane" Aa, consisting 
of a line A not lying inside a plane a-which is thus a figure 
(clearly not a plane) of size 15 - 8 = 7-must be a tripod. 
This conclusion is easily checked directly, by expressing a in 
the form AtAZA3 and using (2.23) to reduce AA IAzA3 to the 
product of three lines of a tripod. 

IV. PG(m,2) AND THE GROUP Go 

A. Anticommutativity and incidence properties 

At long last, we return to the non-Abelian group Go 
consisting of the 2d linear operators displayed in (1.3). 
These operators fall into pairs, such as 
{rZr 3 r 5 , - r Zr 3 r 5 }, forming a coset of Zo = {I, - I} in 
Go and thus yielding a figure of Co, such as {SZ,S3,S5} = SZS3S5' 

At times, for the sake of definiteness, we will for each figure 
aECo make some choice r(a), say, of coset representative. 
However, we will always insist that our choice satisfies 
r(0) = + land r(s;) [ = r({s;})] = rio When weiden
tify, as in Sec. II C, S in (1.12) with the points So of 
PG (m,2), we also write r (p) = r p' for pESo. Such a choice 
of r(a)EGo for each aECo corresponds, at least for lal > 1, 
to making a choice of "orientation" for each figure a. Modu
lo even permutations, there are two orderings of the points of 
a (for I a I > I), and a choice of one of these will be termed a 
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choice of orientation. To an oriented figure aECo will corre
spond a unique element r(a)EGo in the obvious manner. 
Thus if a = {p,q,r} is given the orientation provided by the 
orderings pqr, qrp, rpq, then we set 

rea) = + rprqrr = + rqrrrp = + rrrprq. 

(Caution: in the case oflines, a different sign convention was 
adopted in Ref. 7.) 

Of course for some a, {3ECo the orientation assigned to 
a{3 will be such that r(a{3) = - r(a)r(f3) rather than 
+ r(a)r({3). Consequently, from the point of view of the 

Abelian group Co, the assignment a --+ r (a) defines a multi
plier representation of Co, 

r(a)r({3) = c(a,f3)r(a{3), a,{3ECo, (4.1) 

where the multiplier c takes values in {I, - t}. 
Lemma 4.1: If a is an r-space, with r;;.l, then 

r(a)2 = + I. 
Proof For any figure a, we easily check that 

r(a)2= (_1)1/2Ia ICla l +I)1. 

Hence the lemma, since, for an r-space, lal = 2r+ I - 1. 
Two distinct subsets a,{3 of So define a partition of So 

into four subsets, 

So = (an{3) U (an{3C) U (ac n{3) U (ac n{3C). (4.2) 

Whether an individual subset has an even or an odd number 
of elements is of no great relevance, since in the group Co we 
identify a set with its complement. (For, since ISol = d is 
odd, lal is odd whenever laC I is even.) Nevertheless, given 
the pair of subsets a,{3, it makes sense to decide whether one 
bears an even or an odd relation to the other in accordance 
with the following definition: if three of the four subsets in 
(4.2) are even, then we say that a bears an even relation to {3, 
while if three of the subsets in (4.2) are odd, we say that a 
bears an odd relation to {3. (Since ISol is odd, no other possi
bilities arise.) Let us define 

,{3 _ { + 1, if a bears an even relation to {3, 
€( a ) - _ 1, if a bears an odd relation to {3. 

(4.3 ) 

Equivalently we have 

€( a,{3) = ( - 1) lanll I + lal III I . (4.3') 

Now note that if a is an r-space then lal is odd, except in the 
case r = - la/the empty set 0. Consequently, if a is an r
space and {3 is an s-space, and if neither of a or {3 equals 0, 
note that 

,/3 
_ { + 1, if a intersects {3, 

€(a ) - l'f . k {3 - lalssewto. 
(4.4) 

Observe also that the special case of (4.4) when a is a hyper
plane and {3 is a p~nt p ties in with the characters of the 
groups V( m + 1), V( m + 1) considered in Sec. II B, 

€(a,p) = X;. (4.5) 

Lemma 4.2: For any figures a, /3ECo we have 

r(a)r({3) = €(a,f3)r({3)r(a). (4.6) 

In particular, if a is an r-space and {3 is an s-space, and if 
neither a nor {3 is 0, then r(a) commutes with r({3), ex-
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cept in the case when a,{3 are skew, in which case rea) 
anticommutes with r({3). 

Proof The lemma is an elementary consequence of ( 1.1) 
taken in conjunction with (4.3) and (4.4). 

Remark: We already begin to see that the switch from 
the commuting points of Co to the anticommuting 'T
points" of Go will only strengthen the usefulness ofPG (m,2) 
methods. Incidentally note that it follows from Lemma 4.2 
that €(a,{3) has the multiplicative property 

€(a,{3y) = €(a,{3)€(a,y). 

B. Subgroup chains 

From the Corollary to Theorem 2.3 we have the sub
group chain of Abelian groups, 

CO~CI ~ ... ~Cm_1 ~Cm = {t}. (4.7) 

Taking inverse images under the projection 1T: Go--+GoI 
Zo = Co we also have the subgroup chain 

GO~GI~"'~Gm_1 ~Gm =Zo={±I}, (4.8) 

where 

Gr = 1T-
I (Cr) = (± r(a);aESr(m». (4.9) 

Since the chain ( 4. 7) is a normal series for Co, it follows (and 
is otherwise obvious) that the chain (4.8) is a normal series 
for Go, and not merely a subnormal series, in that each sub
group Gr is a normal (invariant) subgroup of Go. 

For each r = O,I, ... ,m, let Zr denote the centralizer in 
Go of the subgroup Gn 

Zr = ZG" (Gr)· 

Theorem 4.3: For each r = 0,1,2, ... ,m, 

Gm_r~Zr' (4.10) 

Proof By Lemmas 2.1 and 4.2, each element of G m _ r 
commutes with every element of Gr. 

Remark: Working at the Abelian level in Sec. III, it 
emerged only belatedly that, at least in the m = 3 case, the 
group CI was a proper subgroup of Co, or equivalently by 
multiplying lines together one never obtains a point. By the 
switch to anticommuting r-points, this result is now (in
deed, for any m) immediately obvious. For if a is a hyper
plane, then r(a) commutes with every 'T-line" rCA), 
AESI, and hence with every element ofGI, yet anticommutes 
with rp for pfia. 

Since Cr = GrlZo we have the isomorphisms 

GJGs=.CJCs, r<,.s. (4.11) 

Consequently we can make good use of any results obtained 
at the Abelian level to gain knowledge of the chain (4.8). In 
the next section, we will do this in some detail for the case 
m = 3. Before so doing, it is worth pointing out that 
Theorem 4.3 strongly suggests that we should expect a cer
tain mod 2 periodicity involving the dimension m a/the pro
jective geometry. For if m = 21 is even, then, by Theorem 4.3, 
the chain 

( 4.12) 

becomes Abelian at the middle term GI . On the other hand, 
if m = 21 + 1 is odd, then the chain 

R. Shaw 1977 



                                                                                                                                    

Go -:J G1 -:J •.• -:J G, -:J G, + 1 -:J .•. -:J G2,-:J G2/ + I (4.13) 

has no middle term, but becomes Abelian at G, + 1 . 
Generalizing from the particular odd case m = 3 stud

ied in Sec. III, let us in the general odd case m = 21 + 1 
distinguish some "vertex" vESo and some "base" hyperplane 
D -:J S 2/' Then we can define two subgroups of Co, 

C,+ 1,8 = (S,+ I u{,B: PES,(D», (4.14) 

(4,15 ) 

which lie partway between C, and C,+ I in the chain (4.7). 
Consequently we have two normal subgroups of Go 

G,+ 1,8 = 1T-
I (C,+ 1,8)' 

G,+ I,v = 1T-
I (C,+ I,v), 

(4.16 ) 

which lie partway between G, and G, + I in the chain (4.13), 
Now I-spaces lying inside the distinguished 2/-space D inter
sect and hence their r -analogs commute amongst them
selves. Similarly for the I-spaces passing through the com
mon vertex v, and of course any I-space intersects every 
(l + 1 )-space. Consequently, by Lemma 4.2, we have ar
rived at the following Lemma. 

Lemma 4.4: Let H denote either of the subgroups of Go 
in (4.16). Then H is an Abelian normal subgroup such that 

( 4.17) 

Remark: In the case of those subgroups in the chains 
( 4.12), (4.13) which are Abelian, we can obviously express 
them in the form, for some subgroup Kr C G" 

Gr = Kr XZo, (4,18) 

where ris >!m (m even) or ris >!(m + 1) (m odd). How
ever-cf. the corresponding discussion in Ref, 7-the choice 
of subgroup Kr C Gr will be far from unique, and no choice 
will be a normal subgroup of Go. Similarly we can find, in a 
not unique way, a subgroup K,+ 1,8 of G,+ 1,8 and a sub
group K, + I,v of G, + I,v such that 

G,+ 1,8 = K,+ I,/) XZo, G,+ I,: = K,+ I,v XZo. (4.19) 

V. PG(3,2) AND CLIFF (0,15) 

A. Dual pairs 

For m = 3 we deal with the chain 

GO-:JGI -:JG2 -:JG3 = Zo, 

and also with 

G1-:JH-:JG2 

(5.1 ) 

(5.2) 

for the two choices (4,16) of H [arising from (3.12), 
(3.13)], 

(i) H = G2,{j' (ii) H = G2,v' (5.3 ) 

From our results in Secs. III and IV we already know a great 
deal about these chains. From Theorem 4.3 we know that 

GI ~Z2' G2~ZI (5.4) 

and from Lemma 4.4 that G 2,/) and G 2,v are both Abelian 
normal subgroups of Go. From Sec. III, taken in conjunction 
with (4.11), we have the detailed coset decompositions 

Go = U pEV(4) rpG1, 

GI = UpEV(3). AEV(3)r(Vp )r(Ii)G2, 
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(5.5) 

(5.6) 

along with ones corresponding to (3.14)-(3.17), and we 
also have the isomorphisms of factor groups 

Go/G I = V(4), 

(5.7) 
A 

G2/G3= V(4). 

The orders of Go, GI , Gz are thus 215,211,25, respectively, 
and the orders of both G 2,/) and G 2,v are 28. 

In this section, we sharpen these results by proving the 
following two theorems. The second theorem can be sum
marized by saying that the subgroups G 3 _ r' G r form a dual 
pair-cf. Howe. 12 

Theorem 5.1: Both G 2,/) and G 2,v are maximal Abelian 
normal subgroups of Go. 

Theorem 5.2: For r = 0,1,2,3, G 3 _ r is the full centra
lizer in Go of Gr. In particular, 

G I = Zz, Gz = ZI' (5.8) 

Proofs: We will start with Theorem 5.2-in the course of 
its proof we will obtain Theorem 5.1. We clearly have 
G3 = Zo and Go = Z3' so let us look at Zz ( = the centralizer 
in Go ofGz). Now an elementgofthe coset rpG1,pESo, can 
not belong to Z2' since such a g anticommutes with r( a) EG2 
for any choice of plane a not passing through p. It follows 
that ZZ~GI' and hence from (5.4) we have Z2 = GI as de
sired. 

Next we look at the centralizer Z 2,/) of G 2./) in Go. Since 
G2./) -:JG2 we must have Z2,/) ~Zz = G1. Now consider an 
element gl of G1 which lies in the coset r(vp )G 2./), 

vpEstarl(v), of G2,/) in GI , Such an elementary gl can not 
belong to Z2,/), since it anticommutes with r(1i)EG 2,/) for 
any choice of the line liESI (D) not passing throughp. It fol
lows that Z2,/) ~ G2,/), and hence, since G 2,/) is Abelian, we 
have Z2,/) = G2,/) , i.e., we have proved Theorem 5.1 for G 2,/)' 
An entirely similar argument proves that G 2,v also is its own 
centralizer in Go. 

Finally we look at the centralizer ZI of GI in Go. Since 
G1-:JG 2,/) wemusthaveZI~Z2,/) = G2,8' Now consider an 
element h ofG2,/) which lies in the coset r(1i)Gz, liESI (D), of 
G2 in G 2./)' Such an element h can not belong to G1, since it 
anticommutes with r( V)EGI for any choice ofline V skew to 
Ii. It follows that ZI ~ G2 and hence from (5.4) we have 
ZI = Gz as desired. So Theorems 5.1 and 5.2 have both been 
proved. 

Remark: The proof in the last paragraph, that ZI ~ G2, 

could be replaced by a slightly shorter one, as follows. Since 
GI contains both G 2,/) and G 2•v , it follows that 

Z\ ~Z2,/) nz2 ,v = Gz,/) nG2,v = G2, (5.9) 

where the last equality is clear from Lemma 3.1 (i). 

B. Orientation conventions 

In a moment, when we come to look at the action of the 
operators r p upon a specific spinor basis, we will need to 
assume that the projective geometry PG(3,2) has been "to
tally oriented." By this we mean that every line and every 
plane has been given an orientation in the sense described in 
Sec. IV A [and that the whole space is oriented by condition 
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(1.2)]. As far as the planes are concerned, this can be done 
in such a way that the set 

K z = {I,r(a); aESz} (5.10) 

forms a group, isomorphic to V( 4), with 

r(a)rC8) = + r(a{3) = + r(a + {3), (5.11 ) 

for distinct planes a, {3, and indeed for general a, {3EKz (for 
recall that r(0) = + I, and see Lemma 2.2 and its corol
lary). One way to achieve (5.10) is to make arbitrary choices 
ofr(aj ) for the four facesa j , i = 1,2,3,4, of the tetrahedron 
of reference (with, say, a4 = {) when we come to choose a 
"base" plane), and then to define r ( a) for the remaining 11 
planes by 

r(a j + aj ) = r(a j ) r(aj ), 

r(a j +aj +ak) = r(aj)r(aj)r(ak ), 

r(a l + a z + a3 + a 4 ) = r(a l )r(aZ)r(a3)r(a4)· 
(5.12) 

Thus the isomorphism Kz=- (1.:Z )4 is realized in terms of the 
choice of the r(a j ) as the generators of the four 1.:z-sub
groups. We then have 

Gz = KzXZo. (5.13) 

However, as discussed previously in connection with (4.18), 
the subgroup K z of Gz is not a normal subgroup of Go. 

We would like to choose our total orientation in such a 
way that as many planes as possible are "well-oriented." By 
a WOP (well-oriented plane) we mean a plane r such that 

rstl(p,r) = +r(r) (5.14+) 

holds at each point pEr, rather than 

(5.14 - ) 

Here we define rsts (a, r), assuming a~, to be the obvious 
r-Ievel version of sts (a,r)-that is rsts (a,r) denotes the 
product of all the r({3) as {3 runs through stars (a,r). (The 
order is not important since, for a¥=0, the r({3) commute 
amongst themselves.) Of course, by Theorem 2.3, at each 
point pEr either (5.14 + ) holds or (5.14 - ) holds. Note 
that if r is a WOP, then for any distinct A., IlESI (r) we will 
have 

r(.1.)r(ll) = + r(.1. +Il)r(r), (5.15 ) 

where A. + Il is the lineofrwhich is concurrent with.1.,Il, the 
addition being that in the dual vector space V( 3) associated 
with the PG(2,2) geometry of the plane r. 

Given a choice of vertex v and base {) we can show (see 
the Appendix) that, consistent with (5.11), we can totally 
orient PG(3,2) in such a way that {) as well as all seven 
planes ofstarz(v) are WOP's. (As discussed in the Appen
dix, the remaining seven planes are then not well-oriented, 
but can be "badly-oriented in a particular way," making 
them into what we will call BOP's.) 

Once each line has been oriented, then each ordered pair 
of distinct points p, qESo defines a sign 
1j(p,q) = -1j(q,p) = ± 1 such that, for Il = j(p,q), 

rprq = 1j(p,q)rp+ qr(Il), p¥=qESo' (5.16) 

We can extend (5.16) to cover the case p = qESo by setting 
1j(p,p) = - 1, pESo, and interpreting Il as 0. [We could 
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further extend (5.16) to all p, qEV(4) by setting 
1j(p,O) = 1j(O,p) = 1j(0,0) = + 1, and again interpretingll 
as 0 in these cases. ] 

C. Clifford theory 

At this stage, we could for the main part proceed direct
ly to Sec. V D and construct explicit spinor bases. However, 
our results there will fall into a clearer pattern if we first of all 
learn what we can from the well-known theory of Clifford 13 
concerning representations subduced in a normal subgroup. 
(Of course we refer here to A. H. Clifford, not to W. K. 
Clifford of Clifford algebras!) Our notation and terminology 
will be close to that used in Ref. 14. Let U denote the defining 
representations of the group Go: U(g) = g. The carrier space 
E of U is a 128-dimensional Euclidean space of spinors. 

Remark: The fact that Go possesses just one faithful irre
ducible representation U, and that the dimension is 128, can 
of course be easily deduced from the properties of Go itself, 
rather than, as in Sec. I, by appeal to general results on Clif
ford algebras. For the conjugacy classes of Go are in fact the 
cosets {r(t/J), - r(t/J)} of Zo, except for Zo itself which 
consists of two classes. So Go possesses 
2 + !(IGol- 2) = 214 + 1 classes, and hence 214 + 1 ine
quivalent irreducible representations. The Abelian group 
Co = GolZo of order 214 accounts for 214 representations, in 
which Zo is not faithfully represented, and so there exists just 
one irreducible representation U of Go which represents Zo 
faithfully. The dimension n of this representation is given by 
214 1z + nZ = IGol = 215, that is, n = 27 = 128. On various 
grounds (or even from our explicit results below in Sec. 
V D) the representation U can be taken to be real. By group 
averaging, it can be taken to be an orthogonal representa
tion, whence the r P' satisfying (r p ) z = - I, will be skew
adjoint, while the r-lines and r-planes will be self-adjoint 
operators. 

We have a choice of normal subgroup of Go. Let us first 
of all apply Clifford's results, using Gz as the normal sub
group. Of the 32 = 25 irreducible representations of 
Gz=- (1.:Z)5, the only ones involved in U are those which rep
resent Zo faithfully. These are the 16 one-dimensional repre
sentations Dp' pEV(4) = {O}USo, given by [see (2.7)
(2.12)] 

(5.17 ) 

forA aEV(4) = {O}USz' [In terms of Gz = KzXZo 
=- V(4) XZo we have Dp =-Xp XE, wher~ E( ± I) = ± 1.] 
Under the usual action of gEGo upon DEGz, namely D-.gD 
where (gD)(n) = D(g-Ing), nEGz, we have from (4.5), 
(4.6), r pDq = Dp + q' and so we see that the 16 representa
tions (5.17) form a single Go-orbit. The decomposition of 
U!Gz into its disjoint primary constituents will be of the 
form 

E = a3 pEV(4) Wp ' (5.18) 

where Wp carries the primary representations Dp a3 ••. a3 Dp 
(v summands) of Gz. The common multiplicity v with 
which the Dp occur [ = dim Wp for eachpEV(4)] is thus 

v = dim E IIV(4) 1= 128/16 = 8. 
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From r pDq = D p + q we see that the r p permute the eight
dimensional subspaces Wp amongst themselves, 

(5.19) 

Note in particular that, if we choose, say, Wo as "base
point," the remaining 15 Wp are given by 

wp=rp(Wo), pESo' (5.20) 

The isotropy group of Dp (= {gEGo: gDp = Dp}) is 
seen from (5.17) to be the centralizer Z2 of G2 in Go. That is, 
by Theorem 5.2, the isotropy group of each Dp is G1• (Ob
serve therefore that we are in a special case of Clifford's re
sults in which the isotropy subgroup is itself a normal sub
group of Go.) Setting T to be the eight-dimensional 
representation of G1 carried by Wo, 

T(h) = U(h) I w.,' hEG1, 

then U is obtained, up to equivalence, as an induced repre
sentation, 

(5.21 ) 

If instead we had chosen to apply Clifford's results for 
the choice G 2,8 of normal subgroup, we would have arrived 
at U as an induced representation from a one-dimensional 
representation of G 2,8' A similar remark applies to the 
choice G 2,v of normal subgroup. We could also have chosen 
the larger group G I' The various results tie in with each other 
via our previous coset decompositions and the well-known 
theorem (see e.g., Ref. 14, p. 536) concerning "inducing in 
stages." 

If we are so minded, it is now a small further step to 
introduce appropriate bases for the 128-dimensiona1 space 
E. Let us start with the eight-dimensional space Wo which 
carries the representation 8Do of G2 , and so satisfies 

r(a)wo = WO' for all woEWo, aES2 • (5.22) 

The irreducible eight-dimensional representation T of G I 
carried by Wo subduces eight one-dimensional representa
tions of the subgroup G 2,8' and similarly also for the sub
group G 2,v' giving rise to two different decompositions of 
Wo, say 

Wo = Ell dEV(3) WO,d' and Wo = Ell AEV(3) W~, (5.23) 

into a sum of eight lines. Here WO,d = r ( v d ) Wo,o carries 
Xd' and W~ = rcA) W o.o carries x", where for dEo and 
AES1 (0), 

Xd(A) =E(d".i) =x"(Vd)' (5.24) 

(Of course we are now in a Clifford situation for the group 
G1, rather than Go, and we are considering two choices of 
normal subgroup of G I' ) 

D. Spinor bases 

Let us recapitulate the last paragraph in perhaps more 
familiar language: since each r-line commutes with all r
planes, the subspace Wo which is pointwise fixed by the r
planes will be invariant under every r-line. However the r
lines do not commute amongst themselves, and we can either 
choose to simultaneously diagonalize the commuting subset 
rSI (0) or the commuting subset r star 1 (v) (to adopt an 
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obvious notation). In the former case, we choose a unit vec
tor eo,o (in fact unique up to a ± sign) such that 

r ( a ) eo,o = eo,o, for all aES2 , 

r(A)eo,o = eo,o, for alUES1 (0), 

and define further vectors eO,d E WO,d by 

(5.25 ) 

eO,d = r(vd )eo,o, dEo, (5.26) 

and thereby obtain a basis {eO,d; dE V( 3)} for Wo which si
multaneously diagonalizes the elements of rSI (0), 

r(A)eO,d = E(d,A)eo,d' AES1(0). (5.27) 

In the latter case, we choose a unit vector j'g such that 

r (a)j'g = j'g, for all aES2, 

r( vd)j'g = j'g, for all dEo, 

and define further vectorsf~EW~ by 

f~ = r(A)j'g, AES1(0), 

(5.28) 

(5.29) 

and thereby obtain a basis (f~; AEV(3)} for Wo, which si
multaneously diagonalizes the elements of r star 1 (v), 

rcvd)f~ = E(p".i)f~, dEo. (5.30) 

Bearing in mind (3.4), (3.5), and adopting the orienta
tion convention of Sec. VB, whereby 0 and also each element 
ofst2 (v) isa WOP, note thatthe action of the rc vc ) upon the 
e-basis for Wo is given by 

(5.31 ) 

and that of the rcA), AES1(0), upon thef-basis for Wo is 
given by 

(5.32) 

By use of (5.19), or no doubt from more elementary 
considerations, we can obtain bases for each subspace Wp ' 

pESo, by taking the image under r p of the above bases for 
WOo We thereby obtain two different bases for E, namely 

{ep,d; pEV(4), dEV(3)} (5.33) 

and 

(f;; pEV(4), AEV(3)}, 

where we have defined 

e p,d = r p eO,d = r p r ( v d ) eo,o 

and 

Both bases are of course orthonormal bases. 

(5.34) 

(5.35) 

(5.36) 

It is now straightforward to compute the effect of the r p 

upon the spinor basis (5.33) in terms of "incidence 
numbers" [and involving also the orientation numbers 
11 (p,q) of (5.16) ]. Of course the action of r p upon the basis 
vector eO,d is by definition ep,d' and so we also have 
r pep,d = - eO,d' Consequently we only have need to further 
compute 

rpeq,d = rprqr(Vd)eO,O' (5.37) 

in the casesp=!=qESo' Now, after using (5.16), the resulting 
r -line r(j(p,q») can be moved through rc v d ), thus contrib
uting the incidence number 
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· {E(j(P,q),Vd), ifdE8, (5.38) 
l(p,q,d) = 1 if d = 0. , 

There are now two cases to consider. In the first case the line 
j(p,q) lies in 8, whence r(j(p,q»)eo,o = eo,o, by (5.25). In 
the second casej(p,q) meets 8 in a point, say 

c = c(p,q,8) =j(p,q) n8. (5.39) 

In this second case, either /-L=j(p,q) equals Vc or else we 
have, cf. (3.6), 

, (5.40) /-L = vc/\,a, 

where AESI (8), a = j(V,/-L)ESt2(V). In this second case we 
thus have, using (5.15) and (5.25) together with the agreed 
orientation convention, 

(5.41 ) 

If we extend the definition of c to be 

{
O, ifj(p,q) C8, (5.42) 

c = j(p,q) n8, otherwise, 

then (5.41) applies to both of the cases. Putting the forego
ing together we have the final result, valid for r/=qESo and 
dEV(3), 

rpeq,d = 'T/(p,q)i(p,q,d)ep+q,c+d' (5.43) 

where i(p,q,d) and c are as defined in (5.38) and (5.42). 
The effect of the r p upon the spinor basis (5.34) can be 

derived by an entirely analogo~s computation. The final re
sult, valid for p#qESo and /-LEV(3), is 

r J~ = 'T/(p,q)k(p,q,p,)f;:-~, (5.44) 

where 

k( ) = {€(j(P,q),/-L), if/-LESI (8), 
p,q,/-L 1, if /-L = 0, (5.45 ) 

and 

,,1,= {O, ifj(p,q~EStl(v), (5.46) 
j(v,j(p,q»)n8, otherwIse. 

[That is, in the last line, A is the projection from v ofj(p,q) 
onto the base 8. ] 

Remark: Reverting to U in (5.21) as an induced repre
sentation, let us spell out more concerning the eight-dimen
sional irreducible representation T of G I carried by the sub
space WOo (Of course, since G I is normal in Go, each of the 
remaining subspaces Wp, pESo, will carry a representation of 
G which is equivalent to a conjugate of T; one sees that all 16 
of those inequivalent irreducible representations of G I which 
represent Zo faithfully are thus involved in U.) On account 
of the defining property (5.22) of Wo note that T (r (a») = [, 
for aEK2, so that Tis in effect a representation of the factor 
group GIl K 2, which is non-Abelian ~nd of order 128. Let us 
definefor dEV(3) = {0}U8 and AEV(3) = {O}USI (8), 

Q(d) = T(r(vd»), R(A) = T(r(A»). (5.47) 

Then the representation Tis determined by the properties of 
Q(d), R(A), 

Q(c)Q(d) = Q(c + d), R (A)R(/-L) = R (A + p,), 
(5.48 ) 

and, for dE8, AESI (8), 

Q(d)R(A) = €(d,A)R(A)Q(d). ( 5.49) 
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Now the group of R-operators is generated by R; = R(A;), 
i = 1,2,3, where AI' AI' ,,1,3 denote the base edges of the tetra
hedron of reference, and the group of Q-operators is genera
ted by Q; = T(r(v; »), i = 1,2,3, where VI' V2' V3 denote the 
edges of the tetrahedron which are concurrent at the vertex 
V. Labelling these in such a way that A; is skew to V;, 

i = 1,2,3, then the six-operators QI' Q2' Q3' R I, R 2, R3 fall 
into three mutually commuting pairs (Qi>R;), i = 1,2,3. 
The operators Q;, R; of the ith pair anticommute and gener
ate a group G(i) ,say, isomorphic to the dihedral group Dg of 
order 8. Since Zo is to be represented faithfully, we require 
the two-dimensional irreducible representation of each of 
the dihedral groups G(i) , and taking the tensor product of 
these two-dimensional representations, we arrive at the re
quired eight-dimensional representation of the generators of 
the group of operators T(h), hEGI. Notice that this last 
group is thus seen to be isomorphic to the central product of 
three copies of the dihedral group Dg• 

VI. CONJECTURES AND SPECULATIONS 

The general results of Sec. IV, along with the further 
m = 3 results in Sec. V A, strongly incline one to believe in 
the following two conjectures. 

Conjecture A: (i) If m = 21 then G, is a maximal Abe
lian normal subgroup of Go. 

(ii) Ifm = 21 + 1 then both G,+ I,ll and G,+ I,v are (for 
any choice of base hyperplane 8 and any choice of vertex v) 

maximal Abelian normal subgroups of Go. 
Conjecture B: For each r = O,I, ... ,m, the subgroups 

G m _ r' G r form a dual pair of subgroups of Go (in the sense 
that either subgroup is the full centralizer in Go of the other 
subgroup). 

Of course Conjecture A (i) is the special case r = I, 
m = 21 of Conjecture B. Certainly, as we have just seen in 
Sec. V, both conjectures are true in the case m = 3, and they 
are easily seen to be true in the case m = 2, d = 7 previously 
studied.7 The author believes that the methods of Sec. V 
could be pushed further to establish A and B in the case 
m = 4, but that different methods may have to be employed 
to establish their truth (or falsity!) for m > 4. 

At any rate, the next case m = 4, d = 31 would certainly 
appear to merit further study, especially as the even cases 
seem to enjoy somewhat more symmetrical properties. In 
the first even case m = 2, all the r-lines commuted amongst 
themselves, and in the next even case m = 4, all the r -planes 
commute, and can thus be simultaneously diagonalized; 
they presumably generate, in fact, a maximal Abelian sub
group of Go. Incidentally recall that, by a standard doubling 
process, d = 31 Clifford algebra is intimately related to 
d = 32 Clifford algebra. In particular, the 496 infinitesimal 
generators of the two fundamental spinor representatons of 
SO(32) can betaken to be the 31 + 465 sets (rp ;rp rq) and 
( - r . r r ) of d = 31 Clifford operators. Is it just con-p' p q 

ceivable that the special PG ( 4,2) properties of d = 31 Clif-
ford algebra tie in, in some way, with the special nature l5 of 
SO(32) in the context of superstring theories? 

Further conjectures can be made concerning the sub
group chains 

CO::JCI::J"'::JCm_I::JCm={I} (6.1) 
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and 

(6.2) 

in the case of general m. From the definitions of the sub
groups Cr and Gr> Cr is clearly an fl-admissible subgroup of 
Co, and Gr is an O-admissible subgroup of Go [see (1.19)]. 
In fact Gr> being normal, is also stable under all inner auto
morphisms of Go. Let the latter taken in conjunction with the 
outer automorphisms belonging to 0 generate a subgroup 
fl * of Aut Go. Then we can say that (6.1) is a fl-series for Co 
and that (6.2) is a fl *-series for Go. If the fl-series (6.1) has 
the property that, for each r = 1,2, ... ,m, Cr is a maximal fl
subgroup of Cr _ I' then we shall term (6.1) to be a princi
pal 16 fl-series. A principal fl*-series is defined analogously. 

Conjecture C: (i) The fl-series (6.1) is a principal fl
series for Co. 

(ii) The fl*-series (6.2) is a principal fl*-series for Go. 
Sticking our neck out still further, we put forward tentative
ly an even stronger conjecture. 

Conjecture D: (i) The group Co possesses the unique 
principal fl-series (6.1). 

(ii) The group Go possesses the unique principal fl*
series (6.2). 

Remark: If C could be established then B would follow. 
To see this, note first of all that the centralizer Zr of the fl*
admissible subgroup Gr is itself fl*-admissible. Secondly 
note that we have the inclusions 

Zm_r~Zm_r_I~Gr+1 (6.3) 

(since Gm_rCGm_r_I' and by Theorem 4.3). Conse
quently, granted C, we see that 

Zm_r=Gr implies Zm_r_1 =Gr+1 (6.4) 

(for Zm _ r- I can not equal Zm _ r = Gr , since an 
(m - r - 1) -space can be skew to an r-space). Now 
Zm _ r = Gr holds for r = 0, and so, granted C, the inductive 
step (6.4) establishes Zm _ r = Gr for each r = 0,1,2, ... ,m. 

Concerning D, at least it can be seen to be true in the 
cases m = 2 and m = 3. 

One can speculate in another direction and enquire 
whether interesting algebras are brought to one's attention 
by thinking in PG (m,2) terms. In the case m = 2, the seven 
operators r p' acting upon an eight-dimensional space, can 
be given an octonionic interpretation in terms of the opera
tors L (e p ) ofleft multiplication by the imaginary octo~onic 
units. In the case m = 3, the operators r p r (,,1,), AE V( 3), 
will be similarly associated with an algebra of dimension 
128. [Another algebra of dimension 128 will be obtained by 
using instead the operators r p r ( v d ), dE V( 3 ).] There 
seems to be a good possibility that these algebras may have 
interesting properties, perhaps generalizing in some sense 
the composition algebra property of the octonions, and may 
have large automorphism groups. Probably even more wor
thy of investigation will be the algebra (of still higher sym
metry?) of dimension 215 which arises out of the case m = 4, 
d= 31. 
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C. Hannabus, and with Eamonn A. O'Brien. This corre
spondence arose in connection with a (in retrospect, rather 
foolish!) speculation of the author's that certain well-known 
exceptional features of dimension 8 might show up even at 
the level of the finite group Go, of order 128, associated with 
Cliff( 0, 7). In particular the author speculated-see the final 
remark of Ref. 7-that Go (in the case m = 2, d = 7) could 
perhaps be exceptional in its possession of a maximal Abe
lian normal subgroup of the kind (1:2 ) q • But in fact, as point
ed out by O'Brien and Slatteryl7 (see also the earlier paper 
by Braden 18 which consists of a thorough account of the 
finite groups associated with real Clifford algebras of arbi
trary signature), dimension d = 7 is far from exceptional in 
this respect. Indeed wherever d = 8k + 7, for k>O, the 
group Go, of order 2d

, is a central product (i.e., a product 
with amalgamation of the center) of dihedral groups of or
der 8, and it always contains a maximal Abelian normal sub
group = (1:2 ) q , with q = ! (d + 1). Of course in the present 
paper, we have, in the case d = 15, arrived at two explicit 
examples of such a maximal subgroup, namely the sub
groups G2Jj and G 2•v of Theorem 5.1. 

APPENDIX: TOTAL ORIENTATIONS OF PG(3,2) 

Recall the definition of a WOP ( = well-oriented plane) 
as defined via (5.14 + ), or equivalently by (5.15). Given a 
single plane y, it is a simple matter to totally orient it in such 
a manner that it becomes a WOP. For example, let UJ = abc 
be any line of y and let v be any point not on UJ. Let 
vp = j(V,p),PEUJ, andlet,up ( = vpUJy) complete the triple of 
lines vp' UJ,,up which pass throughpEUJ. [Incidentally, take 
note that in PG(3,2), in contrast with PG(2,2), the seven 
lines UJ, Va' Vb' Vc' ,ua,,ub',uc of y, together with 1, do not 
form a subgroup of Co. But of course the three nonconcur
rent lines,ua,,ub,,uc do generate a subgroup of order eight, 
whose elements are seen to be 

(AI) 

after recalling that VaVbVc = y, as in (2.21).] Let us now 
choose any orientations for the four lines va,vb,vc,UJ by mak
ing arbitrary choices of coset representatives 
r( Va ),r( Vb ),r( Vc ),r(UJ). We then fix the orientations of 
the plane yand of the remaining three lines by defining their 
coset representatives to be 

(A2) 

and 

r(,up) = r(vp )r(UJ)r(y), p = a,b,c. (A3) 

By our definitions, (A2) and (A3), we have satisfied 
(5.14 + ) at the four points v, a, b, c, and an easy check 
shows that (5.14 + ) is satisfied also at the remaining three 
points of y. Hence we have made y into a WOP. 

When we now consider the entire family of 15 planes in 
PG(3,2) we can not of course totally orient each plane inde
pendently, since each of the 35 lines ofPG(3,2) is common 
to three planes. On the other hand, we have the freedom of 
choice of 24 = 16 total orientations for each plane, subject to 
it remaining a WOP, corresponding to the four arbitrary 
choices of orientations for the lines Va' Vb' Vc' UJ in the pre
ceding paragraph. In the face of such a variety of choices, 
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and the profusion of their mutual interactions, it is quite easy 
to become bewildered! The point of this Appendix is to de
scribe a total orientation for PG(3,2) whose simplicity 
would be hard to better. 

To this end, choose a vertex v and a base 0, and make 0 
into a WOP. For each line A Co let the three planes of 
star2 (A) be 0, a(A), /3(..1), where /3(..1) = oa(A) and 
a (A) = j( v,A). As A varies over the seven lines of 0, we ob
tain seven "a-planes" which pass through v and seven "/3-
planes" which are distinct from 0 and yet do not belong to 
star2 (v). For dEO set Vd =j(v,d). Recall from (2.23) that 
st l (v) = 1. Let us make arbitrary choices of orientation for 
the seven lines v d of st 1 (v) subject only to the demand that 
rst l (v) be + I rather than - I, 

(A4) 

Four lines of the a-plane a(w) have now been given orienta
tions, namely w, Va' Vb' Ve, where a,b,c denote the points of 
the line w C 0, and we can, as in the opening paragraph, make 
a(w), for each wES1(0), into a WOP by means of (A2), 
(A3) [with a(w) instead of y]. In this way, all of the 
3 X 7 = 21 lines not in SI (0) or star l (v) have now also been 
given orientations. So far we have eight WOP's, the seven a
planes together with the base 0. So we need to look at the 
remaining seven planes ofPG(3,2), the seven/3-planes. 

In the plane/3(w), we need to distinguish between the 
points a,b,c of wCo and the remaining four points of /3(w) 
which do not lie in O. Consider, first of all, a point aEW, and 
let the three lines of star Ita,/3( w») be w, ,ua , ,u~. Let j( v,,ua ) 
and j( v,,u~) meet 0 in the lines Aa, A ~, respectively. Since 
a(Aa) and a(A ~ ) are WOP's, we have 

r(,ua) = r(Aa)r(va)r(a(Aa»), 

(AS) 

Now if A, A ',A" are any three concurrent lines of 0 we have, 
as an easy consequence of (A3 ) and (A2) (the latter applied 
three times, witha(A), a(A '), a(A ") insteadofy, andA,A " 
A " instead of w ) , 

r(a(A»)r(a(A '»)r(a(A "») = /. (A6) 

Consequently, upon using (AS) in conjunction with (A6), 
we can evaluate rst l (a,/3(w») and obtain (since Aa, A~, w 
are concurrent lines of 0, and since 0 is a WOP) 

r(w)r(,ua )r(,u~) = r(w)r(Aa )r(A ~ )r(a(w») 

= r(8)r(a(w»). (A7) 

Let us now agree to orient plane /3( w) = 8a (w) by defining 

r(/3(w») = r(8)r(a(w»). (A8) 

Taking (A 7) and (A8) together, we see that the three points 
of a base line ware "good" points for the plane /3(w) in the 
sense that (S.16 +) holds at these points rather than 
(S.16 - ) [with/3(w) replacing yin these equations]. 

Consider now a point qE/3( w) which does not lie on w, 
and so does not lie in 8. Let the joins of q to the points a,b,c of 
w be ,ua, ,ub, ,ue' and let the projections of the latter onto 8 
from v be Aa, Ab, Ae. Since a(Ap ), p = a,b,c, is a WOP we 
have, from (A3), 
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r(,up) = r(Ap)r(Vp)r(a(Ap »), p=a,b,c. (A9) 

Consequently, we can compute 

rstIlq,/3(w»)== r(,ua) r(,ub) r(,uc) (AIO) 

as follows. First of all, note that Aa, Ab, Ae are concurrent 
lines of 8, since they are projections from v of concurrent 
lines of /3(w), and so we can make use of (A6). Secondly 
note that, in contrast to the corresponding computation of 
rst l (a,/3(w») in (A7), our various r-lines do not all com
mute, since Ap is skew to Vr for p=!=r. Consequently, (A9) 
leads to 

r(,ua ) r(,ub ) r(,ue ) 

= (-1)3r(Aa)r(Ab)r(Ae)r(va)r(vb)r(vc) 

= - r(8)r(a(w») 

= - r(/3(w»), (All) 

since 8 and a(w) are WOP's, after using (A8). Thus thefour 
points of /3(w) not lying in the base are "bad" points in the 
sense that (S.16 - ) holds rather than (S.16 + ). Let us call 
a totally oriented plane a BOP ( == badly oriented plane) if it 
possesses a line A consisting of good points but whose com
plement A c consists of bad points. Our foregoing results can 
then be summarized as in the following theorem [the second 
part of the theorem being an immediate consequence of 
(A6) and (A8)]. 

Theorem AI: Relative to any choice of vertex v and of 
base 0, there exists a total orientation for PG( 3,2) such that 
o together with every plane ofstar2 (v) are WOP's and such 
that each of the remaining seven planes /3 is a BOP whose 
good line is/3no. The oriented planes, together with I, form 
a subgroup 

K2 = {I,r(y); yES2 } 

of G2, isomorphic to V( 4), such that G2 = K2 X Zo0 
Remark: For given v and 8 there are 1024 choices of 

total orientation for PG(3,2) which achieve the stated re
sults. For there are 24 way of making 8 a WOP, and there are 
26 ways of orienting the seven lines of star 1 (v) subject to the 
one constraint (A4). The minus sign in (All) comes about 
for all ofthese 210 choices of total orientation. This strongly 
suggests the final conjecture. 

Conjecture E: For any total orientation of PG(3,2) 
there exist at most eight WOP's. 
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The approach in which physical systems are described by the elements of a linear space over a 
finite field, and operators of physical quantities by linear operators in this space, is discussed. 
The mathematical formulation of the correspondence between such a description and the 
conventional one is given for a case when the characteristic of the finite field is sufficiently 
large. The above correspondence is considered in the examples of finite analogs of 
representations of so (2,3), so ( 1,4 ), and osp ( 1,4) algebras. Finite analogs of representations of 
infinite-dimensional algebras are briefly discussed. 

I. INTRODUCTION 

The notion of the field of rational numbers Q is undoubt
edly connected with an everyday experience that any phys
ical quantity can be divided into an arbitrary number of 
equal parts. However, this is not obviously the case on the 
microscopic level. Indeed, if for example, e is the minimal 
electric charge in nature, then the quantity e/n for 
n = 2,3,4, ... has no sense if the division is understood con
ventionally. 

In the Copenhagen formulation of quantum theory, the 
state of a system is fully defined by the vector from a separa
ble Hilbert space, and the main physical quantities are the 
relative probabilities determined by the coefficients of de
composition of this vector relative to some orthogonal basis. 
It is natural that the notion of relative probability is intro
duced by means of conventional division; however, this no
tion is only a formal way of description of an experiment. 
One can notice that all information about probabilities is 
given by a set of integers because we conduct an experiment 
N times and observe that the first possibility is realized in n' 
cases, the second in n" cases, and so on (recall the well
known Kronecker's expression about natural numbers). 
Therefore one could try to describe probabilities by integers 
only and normalize probabilities not on unity but on some 
large number N. Notice also that the notion of probability is 
an idealized one because in reality the number of experi
ments cannot be infinite. 

It is also natural to deal with the field Q if we wish to 
introduce the notion of average value; however, it is pure 
mathematical notion and is not observable. Indeed, if for 
example, some physical quantity can assume the values ° 
and 1 with equal probabilities, then its average value is 1/2 in 
the conventional sense but the measurement of this quantity 
can give only the values either ° or 1. 

Proceeding from what was mentioned above, one may 
believe that future fundamental physics will be based not on 
the field Q and its expansions but on some finite field. In this 
case there is also a hope that the theory will become not only 
discrete but even finite. In most works on this subject (see 
e.g., Refs. 1-7) finite fields were used for the quantization of 
space-time and this seems natural if one constructs the quan
tum theory proceeding from the transition amplitUdes. In 
operator formalism, however, the main object of the theory 

is a representation of the symmetry group or algebra in the 
corresponding Hilbert space and the notion of space-time is 
secondary (in particular the coordinate operator in the non
relativistic case and the Newton-Wigner position operator 
in the relativisitic one can be expressed as the functions of 
representation generators of the corresponding symmetry 
group). Therefore if one proceeds from the operator formal
ism, then the first thing coming to mind is to describe phys
ical systems by the elements of some linear space over a finite 
field, and physical quantities by linear operators in this 
space. 

In mathematics, the representations in the spaces over a 
field with a nonzero characteristic are called modular repre
sentations. An investigation of modular representations of 
Lie algebras and Chevalley groups has been carried out by 
many authors (see, e.g., Refs. 8-38 and references cited 
therein). It is important to note that the general theory is 
constructed in spaces over an algebracially closed (i.e., infi
nite) field. This is due in particular to the fact that in an 
algebraically unclosed field not every linear operator in fi
nite-dimensional space has an eigenvector, since the charac
teristic equation may have no solution in this field. 

Though the complete theory of modular representations 
is not yet constructed, there are many important results. As 
it will be clear from the subsequent exposition, the represen
tations of Lie algebras and superalgebras are of major inter
est to us. Since the paper of Zassenhaus9 it is known that all 
irreducible modular representations are finite-dimensional 
and many papers have dealt with the maximal dimension of 
such representations. For classical Lie algebras this was 
done in Refs. 8-10, 13, 15 and for algebras of the Cartan 
series in Refs. 9, 15, 20, 22-25. The complete classification of 
irreducible representations over an algebraically closed field 
has been made only for A 1 algebras. 10 The important results 
for A2 and B2 algebras are obtained in Refs. 11, 18; for An 
algebras see Refs. 18, 28, 30, and results obtained for some 
other algebras are in Ref. 18. 

In the present paper the general theory of modular rep
resentations is not used and only representations over the 
Galois field containingp2 elements (wherep is a prime num
ber) are considered. In Sec. II the notion of correspondence 
between modular representations and conventional repre
sentations in Hilbert spaces is introduced for the cases when 
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the number p is sufficiently large. In other words, it is a 
question of correct transition from "modular physics" to 
conventional physics in the limit p ..... 00. In Sec. III some 
auxiliary modular representations are discussed and in Secs. 
IV-VI we perform the explicit construction of modular ana
logs of representations describing particles in the de Sitter 
spaces. In Sec. VII we construct the modular analogs of rep
resentations describing particles in the de Sitter superspace, 
and Sec. VIII contains a few remarks on modular analogs of 
representations of infinite-dimensional Lie algebras. 

In the last two years the number of papers in which the 
principal field in string theory is not the field of complex 
numbers C, but the p_adic6.7,3~6 or adelic field,47-49 has es-
sentially increased. The latter choice is motivated in particu
lar by the confidence that there is no reason to prefer any 
special value of p. It is clear that the physics in such versions 
cannot be finite. The authors of these works proceed from 
the transition amplitUdes formulation of quantum theory. 
Note that though this formalism is traditionally regarded as 
more powerful than the operator one; the latter formalism, 
as has been pointed out in recent papers,50.5) has its own 
merits. 

The question of correspondence between modular and 
ordinary representations has been considered in our pre
vious paper52 "on the physical level of rigor" and we exposed 
briefly the results about modular analogs of representations 
ofso(2,3) and so( 1,4) algebras. In the present work we give 
the mathematical formulation of the correspondence and the 
results on modular analogs of all considered representations 
are given with proofs. 

In mathematical literature on modular representations, 
special attention is given to the relationship between modu
lar and ordinary representations of Chevalley groups over a 
field of characteristic p (see Refs. 12, 17-19,21,26,27,29, 
31-34). The correspondence described in our paper differs 
from that considered in the above references. It is clear that if 
we wish to treat the conventional physics as a limit of some 
physics with the parameter p, then we should consider a 
correspondence between two cases where one of them does 
not contain this parameter at all. 

The author hopes that in order to understand this work, 
the reader need not know even the specific facts about the 
ordinary representations of the de Sitter algebras, because 
the ordinary and modular cases are treated on the same ba
sis. Note also that, as it will be clear soon, the physical mean
ing may have only modular analogs of representations de
scribing particles or strings in spaces of the de Sitter but not 
Minkowski type. 

II. CORRESPONDENCE BETWEEN MODULAR AND 
ORDINARY REPRESENTATIONS OF ENVELOPING 
ALGEBRAS 

Let Z be the ring of integers and Fp = Z /pZ be the 
residue field of characteristic p. The elements of Fp will be 
denoted as 0,1, ... , p - 1. As usual, if aEEp then - a means 
the elements bEEp such that a + b = ° in Fp. Therefore, by 
definition, - 1 = P - 1, - 2 = P - 2, etc. 

Consider Fp as the ring relative to the addition, subtrac
tion, and multiplication. Introduce two functions from Fp 
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into Z such that if 
= min{a,p - a} and 

a = O,l, ... ,p - 1 then p(a) 

f(a) = {a, 

- (p - a) , 

It is obvious that 

and 

p(a)E[O,(p - 1)/2] , 

p( - a) = p(a) , 

f( -a) = -f(a), 

If(a)1 =p(a) . 

if a<p - a, 
(1) 

if a>p - a. 

The reflection f is not a homomorphism of rings Fp and 
Z. However, it is in some sense an isomorphism between 
elements zEZ for which Izl is much less than p, and elements 
aEEp for whichp(a) is also much less thanp. This isomor
phism may be understood as follows. Denote 
C(p) = pl/(ln p

)l12 and Uo as the set of aEEp for which 
p(a) < C(p).1t is easy to see that if a1, ... ,anEUO and n), n2 are 
natural numbers such that 

n1«p-1)/2C(p), n2<[ln(P~ 1)]/On p )1/2, 

then 

f(a) ± a2 ± ... ± an) 

=f(a,) ± f(a2) + ... ±f(an), 

f(a)" 'an) 

=f(a,)" 'f(an) . 

Hence if p is sufficiently large then for a sufficiently large 
number of elements from Uo the addition, subtraction, and 
multiplication are performed according to the same rules as 
for elementszEZ for which Izl < C(p), and whenp becomes 
larger, then the larger part of Fp can be put into correspon
dence with the elements of the ring Z. 

Proceeding from the experience, modem physics states 
that the addition, subtraction, and multiplication of integers 
should be performed according to the rules for the ring Z. It 
cannot be excluded, however, that physics in our universe 
should be based on the rules for the ring Fp at some large p, 
and the concrete value of p will be determined from future 
experiments or from a more general physical theory. 

It is necessary to keep in mind that even for elements 
from Uo the results of division in the field Fp, generally 
speaking, differ from that in Q. For example, the element 1/2 
in Fp is equal to the integer (p + 1 )/2. This does not mean, 
however, that physics based on Fp contradicts the experience 
because, as it was explained in Sec. I, the observables in 
quantum physics are defined without division, and division 
can be viewed as a purely mathematical notion. 

Since we wish to have the finite analog of the complex 
version of quantum theory, then it is natural (instead of the 
field C) to deal with the field Fp" consisting of p2 elements. 
The actions in Fp' are the natural generalizations of the ac
tions in Fp if the elements of Fp' are formally represented as 
a + bi (a,bEEp' P = - 1) and the element inverse to a + bi 
can be written as a/(a2 + b 2) - (b /(a2 + b 2) Ii, assuming 
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that here and henceforth the division is understood in the 
sense of F . Therefore we must be sure that if a#O or b #0 
then a2 

/ b 2 # ° mod p. It is known that this condition is 
satisfied if p - 1 is not divided by 4 (in the usual sense). 
Note that in the case of the quaternionic or octonionic ver
sions of quantum theory, the analogous reasonings are not 
valid since, according to the Lagrange theorem, the number 
p can be represented as a sum of the squares off our integers. 

The field F p' can be represented as the residue field 
(Z + iZ)lp(Z + iZ). Let U be the set of elements 
a + biEFp' , for which a,bEUo. Then the function from F~2 
into Z + iZ, defined by the formula f(a + bz) 
=f(a) + feb); (we use the same notation f), is the local 
isomorphism between Fp2 and Z + iZ in the same sense that 
fis the local isomorphism between Fp and Z. 

We will assume that the role of the state space for the 
system under consideration is played by the linear space V 
over Fp 2. Since we wish to have an analog of the Hilbert 
space, we will assume that Vis supplied by the scalar product 
( ... , ... ) such that for x, ,YE V, (x, y)EFp2 and the equalities 

and 

(x,y) = (y,x), 

(ax, y) = a(x, y) , 

(x,ay) = a(x,y) (aEFp2) 

are also understood in the sense of Fp2. One should keep in 
mind that such a scalar product cannot define in Vany posi
tively defined metric, and thus in the modular case there is 
no probabilistic interpretation. We shall see, however, that 
in the cases considered below, the probabilistic interpreta
tion can be restored in the limit p- 00. 

In the spaces considered below, there exists a basis 
{e[,e2, ... ,en} such that (ej,ek ) = ° for i#k and (ej,ej ) #0 
for all i (in general case such a basis does not exist). If 

x = c[e[ + .. , + cnen (Cj EFp2), 

the coefficients c· in this case are uniquely defined by the 
formula C = (e.~x)/(e.,ej)' If {f[, ... ,jn} is another basis, 

J J J • h 
then the elements {fj} are in 1 ~ 1 correspondence WIt 
{e), but it may occur that for some i (fj,fj) = ° (see Sec. 
IV). 

As usual, if L [ and L2 are linear operators in V such that 

(L[x,y) = (x,L2y) Vx,,YEV, 

they are said to be conjugated: L2 = L r. It is easy to see that 
L r* = L[ and thusL f = L[. If L = L * then the operator L 
is said to be Hermitian. 

If (e,e) #0, Le = ae, aEFp2, and L * = L, then it is ob
vious that aEFp. At the same time, if e#Obut (e,e) = ° the~ 
the element a may be imaginary, i.e., be of the form a = bz, 
bEFp (see Sec. IV). Further, if 

Le[ = aiel' Le2 = a2e2, 

(e[,e[) #0, (e2,e2) #0, 

a[#a2' 

then as in the usual case, one has that (e[,e2 ) = 0. At the 
same time, the situation when 

(e[,e[) = (e2,e2) = 0, (e[,e2) #0, 
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a[ = b[;, a2 = b2i (b[,b2EFp) 

is also possible (see Sec. IV). Thus in the modular case the 
eigenvalues of a Hermitian operator are not necessarily real 
and the eigenvectors corresponding to the different eigenval
ues are not necessarily orthogonal. 

We now discuss the question about the conditions under 
which the descriptions of state vectors on the language of 
Hilbert spaces and on the language of linear spaces over F p' 
may lead to the close physical results. In the cases considered 
below, all spaces Vover Fp2 are finite-dimensional and sep
arable Hilbert spaces H are infinite-dimensional. Let 
{e[,e2, ... } be a basis in Hand {e l ,e2, ... ,eN} be a basis in V, 
where N = N(p) and N(p) - 00 if p- 00. If one proceeds 
from the approach of conventional quantum theory, then for 
the description of an experiment it is sufficient to deal with a 
set dense in H. As such a set one can take the set of vectors of 
the form cle[ + ... + cNeN where Nis individual for every 
vector, cj = aj + hi, and aj,hjEQ. Take into account now 
that the Hilbert spaces in quantum theory are projective 
ones (this is because relative but not absolute probabilities 
have the physical meaning). Therefore one can assume that 
aj>hjEZ (compare with that noted in the Introduction). 
Suppose further that there exists such natural Nl = N[ (p) 
that 

N[(p) <,N(p) , N[(p)-oo 

if p- 00 and 

(ej,ed EU , f( (ej,ek ») = (ej,ek ) 

fori,k<,N[ (we use the same notation for the scalar products 
in H and V). If one deals only with the vectors from H satis
fyingtheconditionscj=Ofori>N[, lajl, Ibjl<C(p) for 
i<,N[, and only with the vectors from V of the form 
c[e[ + CN, eN, where 

cj = aj + bi, aj,bjEUO' 

then it is clear that there exists 1 ~ 1 correspondence be
tween such vectors, if p is so large that for the description of 
experiments at the existing energies it is sufficient to confine 
ourselves by the elements of the basis in H with the numbers 
<,N[ and by the vectors with aj,hjEf( Uo) for all i<,N[, then 
it is clear that there is no difference between the description 
of physical systems on the language of projective Hilbert 
spaces and the projective spaces over Fp 2. 

In quantum theory, one usually considers the Lie alge
bras or superalgebras over the field of real numbers Rand 
their representations in some Hilbert space H. Hence it is 
natural to consider the Lie algebras or superalgebras over Fp 
and their representations in spaces V over Fp2 as modular 
analog of the above representations. Let A be a finite-dimen
sional Lie algebra or superalgebra over R with a basis 
{h[, .. .,i'n} and structure constants c~f3' A basis is supposed 
to be chosen in such a way that c~f3EZ for all l<,a,{3,r<,n 
(the Chevalley basis [2). If p is such that all c~f3 belong to 
f( Uo), then the Lie algebra or superalgebra A over Fp with a 
basis {h[,h 2, ... ,hn } and structure constants c~J! suc~ that 
f( c~f3) = c~f3 is the natural modu.!ar analog of A. Let Band 
B be the enveloping algebras for A and A, respectively, and 
let r(lJ) and T(B) be the representations of jj and B in H 
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and V, respectively. We wish to introduce the notion of cor
respondence between these representations. 

We will deal only with the elements u from B that are 

sums or differences of the elements dh 2' ... h?, where 
j" ... JI are some '_numbers from the set {1,2, ... ,n}, nh are 
natural numbers, deZ, and Id 1< C(p). Analogously, in the 
B algebra we will deal only with the elements u that are sums 

or differences of the elements dh 2 ... h? with dEUo' It is 
evident that there exists the natural 1 ~ 1 correspondence 
between elements u and u. Define the notion of the order of 

element u as follows. The order of element dh j~j, ... h? is 
nj, + ... + nh if d = 1 and nj, + ... + nh + 1 if d =1= 1 and 
the order of the sum or difference of such elements is equal to 
the sum of the orders. The order of the element u from B is 
defined analogously. It is clear that the order of the element 
depends on the form in which it is written. Therefore define 
the minimal order of the element as the minimal value of all 
its orders. Now the notion of the correspondence between 
the representations r(B) and T(B) can be defined as fol
lows. 

Definition 1: Let N, = N, (p) and N2 = N2 (p) be such 
natural numbers that 

(ej,ek )EU, I( (ej,ed) = (ej.ek) 

for all j,k<,N" and for all elements u from Band u from B 
with the minimal orders <,N2 the equality 

1(ej,T(u)ek ») = (ej,r(u)ek) 

holds if u and u are in correspondence with each other. If 
N, (p) ..... 00, N2 (p) ..... 00 when p ..... 00, then the representa
tions T(B) and r(B) are said to be in correspondence with 
each other. 

We treat Definition I as the formalization of correspon
dence between state spaces of physical systems and operators 
of physical quantities for conventional and modular cases. 
The described correspondence shows in what sense the con
ventional physics can be treated as the limit of finite physics 
ifp ..... 00. 

The notion of correspondence between ordinary and 
modular representations in the sense of Definition 1 can be 
used also in a case when H is the Hilbert space with indefinite 
metric. When H is finite-dimensional, the notion of corre
spondence can be simplified, assuming that the dimensions 
of H and V are equal and the equalities 

I(ej,ek ») = (ej,e k ), 

1(ej,T(u)ek ») = (ej,r(u)ek) 

hold for all j,k [i.e., there is no need to introduce the number 
N, = N, (p)]. Finally, if the Lie algebra or superalgebraA is 
infinite-dimensional, then the notion of correspondence can 
be generalized as follows. Let {h"h2, .. .} be a basis inA and A 
be the Lie algebra or superalgebra over Fp with a basis 
{h"h2, ... ,hN ,}, whereN' = N'(p) andN'(p) ..... 00 ifp ..... 00. 

Let further N3 = N3 (p) be a natural number such that 
N3(p) <,N' (p), N3(p) ..... 00 ifp ..... 00 and if 1 <,a,{J,y<,N3 then 
C~f3E UO and I( c~(3) = c~f3' In this case A is treated as the 
modular analog of A. Let the elements u and u of the enve
loping algebras Band B be constructed as above, using only 
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the elements hj,hj with j<,N3(p). Then the correspondence 
can be defined by the repetition of Definition 1. 

III. MODULAR ANALOGS OF REPRESENTATIONS OF 
ALGEBRAS SU(2) AND SP(2) 

In quantum physics the angular momentum operator 
L = {L"L2,L3} can have only the values multiple to fz/2. 
Therefore iffz/2 (and not fz as usual) is taken as the unit of 
measurement of angular momentum, then the commutation 
relations for the angular momentum operators can be writ
ten as 

[L3,L+] = 2L+, [L3,L_] = - 2L_, [L+,L_] = L3 , 

(2) 

where 

L, =L+ +L_, L2 = -i(L+ -L_), 

Furthermore, if L3 = L t, L"'- = L+, then (2) is the real
ization of the su(2) algebra by the Hermitian operators. As
sume now that these relations are realized in a space of mo
dular representation. 

Algebra (2) possesses the Casimir operator of the sec
ond order, 

(3) 

It is known that in the ordinary case all other Casimir opera
tors are the functions of K, but in the modular case this is not 
so (see, e.g., Ref. 53). 

Consider only the representations containing vector eo 
such that 

L+eo = 0, L3eO = seo , (eo,eo) =1=0 . 

Then (see Sec. II) sEFp • Denote 

en = (L_)neo , n=0,1,2, .... 

Then it follows from (2) and (3) that 

L3en = (s - 2n)en , Ken = s(s + 2)en for all n, 

Hence it follows from (3) that 

L+L_en =(n+l)(s-n)en , (4) 

and since L ~ = L _ it follows from (4) that 

(en+"en+,) = (n+ l)(s-n)(en,en). (5) 

It is clear from (5) that (en,en ) =1=0 for n = O,I, ... ,s if 
s = O,I, ... ,p - 1 and as it is easy to see, the vectors en are 
mutually orthogonal. 

As in the ordinary case, the considered representation is 
irreducible if L_es = O. Therefore, as in the ordinary case, 
the dimension of the irreducible representation (IR) is equal 
to s + 1, However, in contrast to the ordinary case, the di
mension ofIR cannot be more than p. There exists the gen
eral statement '3 that the maximal dimension of IR of classi
cal Lie algebra of dimension n and rank ris equal top(n - r)/2. 

To ensure the correspondence with ordinary representa
tions of the su(2) algebra (see Sec. II), it is necessary to 
require I(s), I( (eo,eo») > O. Iffor example (eo,eo) = 1, then 
the correspondence with the conventional case in the sense 
of Definition 1 can be surely guaranteed if 

s< Onp) '/4/2, N2(p) = [lnp/ln lnp] , 

Felix Lev 1988 



                                                                                                                                    

It is easy to see also that if s is close to p, then the considered 
representations are the modular analogs of representations 
of the su (2) algebra with negative spin (infinite-dimensional 
representations in the Hilbert space with indefinite metric). 

If, instead of (2), one deals with a more usual algebra in 
which the right-hand sides in (2) are divided by 2, then the 
correspondence with the ordinary case in the sense of Defini
tion 1 cannot be achieved. In particular, in the representa
tion with dimension 2, the vectors eo and el are the eigenvec
tors of the L3 operator with large eigenvalues (p + 1)/2 and 
(p - 1 )/2. This is due to the fact that 1/2 in the usual case 
does not coincide with 1/2 in Fp. 

We consider now the modular analogs of representa
tionsofthe sp(2) algebra. Leta', a", h be such operators that 

[h,a'] = - 2a', [h,a"] = 2a", [a',a"] = h, (6) 

andh * = h, (a')* = a". The Casimir operator of the second 
order now has the form 

K=h 2-2h-4a"a'=h 2+2h-4a'a". (7) 

We will consider representations with the vector eo, such 
that 

a'eo = 0, heo = qoeo, (eo,eo) #0. 

Then (see Sec. II) qoEFp and thus qo = O,I, ... ,p - 1. Denote 
en = (a,,)neo' Then it follows from (6) and (7) that 

hen = (qo + 2n)en, Ken = qo(qo - 2)en 
for all n, and instead of (4), (5) we have 

a'a"en = (n + l)(qo + n)en , (8) 

(en+l,en+l ) = (n+ l)(qo + n)(en,en) . (9) 

The set {eO,el, ... ,eN } will be a basis ofIR if a" ej #0 for j < N 
and a" eN = O. This condition must be compatible with 
a' a" eN = O. Therefore, as it follows from (8), N is defined by 
the condition qo + N = 0 in Fp if qo # 0, and the case qo = 0 
corresponds to zero representation. 

We see that if qo> 0, then in the modular case 
N = p - qo and the dimension of IR is equal to p - qo + 1, 
in contrast to the ordinary case where IR is realized in the 
Hilbert space and n = 0,1, ... ,00. It follows from (9) that 
(en,en) #0 for all n and it is easy to see from (8) that the 
vectors en are mutually orthogonal. The correspondence 
with the representations in Hilbert space in the sense of De
finition 1 can be surely guaranteed if (eo,eo) = 1, 
qo< Onp) 1/4/2, since, as it is easy to see, for the roles of 
NI(p) and N 2 (p) one can choose the values [Onp)1/4/2] 
and [On p) 1/2/2], respectively. 

In the ordinary case, if qo is a positive integer, the finite
dimensional IR of sp (2) algebra can be obtained if one re
quires that a" eo = 0 instead of a' eo = O. This IR is realized in 
the space with indefinite metric and has the dimension 
qo + 1. An analogous result exists of course in the modular 
case, but here IR with the maximal weight has simultaneous
ly the minimal weight (and vice versa) for all qoEFp. 

IV. MODULAR ANALOGS OF REPRESENTATIONS OF 
THE SP(4) ALGEBRA 

In quantum theory, the Hilbert space of states of a phys
ical system is a tensor product or a direct sum of tensor 
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products of Hilbert spaces, which are the state spaces for the 
fundamental objects-elementary particles or strings. 
Therefore in Secs. IV-VI we consider the modular analogs of 
IR's of so(2,3) and soC 1,4) algebras describing elementary 
particles in the de Sitter spaces. It is well known that so (2,3 ) 
and sp ( 4) algebras are isomorphic. The representation of 
the latter algebra can be realized by means of the operators 
{hj,aj,aj',b'b ",L_,L+} (j = 1,2) with the commutation 
relations 

[a;,b'] = [a;,b'] = [a;',b"] = [a;,b"] 

= [a;,L_] = [a7,L+] 

= [a; ,L+] = [a;,L_] = 0 , 

[hj,b'] = -b', [hj,b"] =b", [hl,L±] = ±L± ' 

[ h2,L ± ] = + L ±' [b ',b "] = hi + h2 , 

[L+,L_] = hi - h2 , (10) 

[a;,b"] = [b',an =L_, [a;,b"] = [b',a;'] =L+, 

[a;,L+] = [a;,L_] =b', 

[a;,L+] = [a;',L_] = -b", 

[b',L_] =2a;, [b',L+] =2a;, 

[b",L_] = -2a;, [b",L+] = -2a;', 

where it is assumed additionally that the sets (aj,aj',hj ) 
(j = 1,2) are independent algebras (6) and L *- = L +' 
(b')*=b". 

Ifwe denote L3 = hi - h2 then the set (L_,L+,L3) re
alizes the representation of the su (2) algebra and if we intro
duce the operators 

L12 = L3, L 23 = L+ + L_, L31 = - i(L+ - L_), 

L05=hl+h2' L 35 =b'+b", L30= -i(b"-b'), 

LIO = i(a;' - a; + a; - a; ) , 

L I5 = a; + a; - ai' - a; , 

L 20 = a;' + a; + a; + a; , 

L 25 = i(a;' + a; - a; - a;) , 

(11) 

and denoteL,..y = - L y,.. (/-l,v = 0,1,2,3,5), then the opera
tors L,..y, as it follows from (10), satisfy the relations 

[L,..y,Lpu ] 

= - 2i(g,..pLyu + gYUL,..p - g,..uLyP - gvpL,..u) , 
(12) 

where g,..y is the diagonal tensor with the components 

goo = -gll= -g22= -g33=g55=1. 

Therefore the L,..v operators realize the representation of the 
so(2,3) algebra by the Hermitian operators and the multi
plier 2 on the right-hand part of (12) is present due to the 
choice of units of measurement, as it has been pointed out in 
Sec. III. The fact that the formulas (10)-( 12) do not con
tain the division is crucial for the establishing of correspon
dence with ordinary representations of the sp( 4) and 
so(2,3) algebras. 

The modular representations of algebra (10) have been 
investigated for the first time by Braden, II however his re
sults do not cover the case of modular analogs of represent a-
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tions in Hilbert space, describing elementary particles (see 
the end of Sec. V). Nevertheless, in analogy with Braden's 
work11 and with papers54.55 in which the ordinary represen
tations of the so(2,3) algebra in Hilbert space have been 
constructed, we will use the basis in which hj,Kj (j = 1,2) 
operators are diagonal and Kj is the operator (7) for algebra 
(aj ,aj' ,hj ). In analogy with Braden's work II we introduce 
further the operators, 

1 ++ = b "(h l - I)(h2 - 1) - ai'L_(h2 - 1) 

-a;L+(hl-I) +ai'a;b', 

1+- =L+(hl-I) -ai'b', 

1 - + = L _ (h2 - 1) - a; b' , 

1--=b', 

(13) 

and consider their action only on the space of "minimal" 
sp(2) Xsp(2) vectors, i.e., such vectors x, so that ajx = 0 
for j = 1,2 (Braden 11 works in the space of "maximal" vec
tors such that aj'x = 0 for j = 1,2, while the approach of 
Refs. 54, 55 is not quite convenient for us because it uses 
irrational numbers explicitly.) 

It is easy to see that if x is a minimal vector such that 
hjx = qjx, then 1 + + x is the minimal eigenv~ctor of the op
erators hj with the values qj + 1 (j = 1,2), A + - x with the 
values 1;1 + 1,1;2 - 1,1 - +x with the values 1;1 - 1,1;2 + 1, 
and 1 - - x with the values qj - 1. 

The algebra sp ( 4) possesses the Casimir operators of 
the second and the fourth orders 12 and 14 and in the modular 
case there exist additional independent invariants. We need 
only the action of 12 on the space of minimal vectors, 

12 = (h i + h ~) - 2(h) - 2h2) + 2(L_L+ - b "b ') . 

(14) 

It follows from (10) and (14) that 

[1--,1+-] 

= [1 - - ,A - +] = [1 + + ,A + -] 

= [1++,1-+] =0, 

[1 --,1 ++] 

= (hi + h2 - 2) [!Chi + h2)2 - 2(h l + h2) -! 12 ] , 

[1+-,1-+] 

(IS) 

In analogy with the construction of ordinary represen
tations with positive energy54.55 we require the existence of 
the vector eo satisfying the conditions 

(eo,eo) #0, 

ajeo = b 'eo = L+eo = 0, 

hjeo = qjeO (j = 1,2) . 

Then (see Sec. II) qjEFp. As it follows from (14) the invar
iant 12 assumes in the representation space the numerical 
value 

(16) 

and as it follows from (15), the basis in the space of minimal 
vectors can be chosen in the form enk = (1 + + )n(1 - + )keo 
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." 

(n,k = 0,1,00')' Then it follows from (IS) and (16) that 

1 --1 ++enk 

= (n+ I)(ql +q2+n-2)(ql +n) 

X (q2 + n - 1 )enk , 

(en + I,k,en + I,k) 

= (ql + n - k - 1 )(q2 + n + k - 1 )(ql + n) 

(17) 

X (q2 + n - I)(n + I)(ql + q2 + n - 2) (enk,enk ) , 

(18) 

= (k + 1 )(ql - q2 - k)(ql - k - 2) 

X (q2 + k - 1 )enk , 

(en,k + I ,en,k + I ) 

= q2 + n + k - 1 (ql _ k _ 2)(q2 + k _ 1) 
ql +n -k-2 

(19) 

X (k + 1 )(ql - q2 - k)(enk,enk ) . (20) 

The full basis of the representation space can be chosen in the 
form (ai')n, (a;)n'enk where, as it follows from the results of 
Sec. III, 

n l = O,I,oo.,NI(n,k), 

n2 = 0,I,2,00.,N2(n,k), 

NI(n,k) =p - ql - n + k, 

N2(n,k) = p - q2 - n - k. 

As it follows from (11), in the ordinary case, IR with 
given ql,q2 describes the particle with the spin s and the de 
Sitter mass m = ql + q2' It is known that for IR's with posi
tive energy, the following classification exists: IR's with 
m - s> 2 (massive particles54,55), IR's with m - s = 2 
(massless particles54-56 ), and two Dirac singletons57 with 
m = 1, s = 0 and m = 2, s = 1. 

The modular analog of singletons can be investigated 
very simply. Indeed, it follows from (17)-(20) that in the 
modular, as well as in the ordinary case, nand k assume the 
values 

n = 0,1, k = 0 for m = 1, s = 0 

and 

n = 0, k = 0,1 for m = 2, s = 1. 

Thence it follows from the results of Sec. III that in the mo
dular case the space of IR has the dimension 

D = (p2 + 1 )/2 if m = 1, s = 0 

and 

D = (p2 - 1) /2 if m = 2, s = 1. 

We shall not attempt to classify all modular IR's of alge
bra (10) and confine ourselves to representations which may 
correspond to real particles. Therefore, considering modular 
analogs of massive and massless cases we suppose that if m 
and s are represented as O,I,oo.,p - 1, then m + s <p what 
surely takes place for real particles. 

We consider first the modular analog of the massive 
case, when m - s = 3,4'00' . Then it follows from (19) and 
(20) that k can assume only the values O,I,oo.,s, as well as in 
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the ordinary case. At the same time it follows from (17), 
(18) that in contrast to the ordinary case (where 
n = 0,1, ... ,00), in the modular one n = O,l, ... ,Nwhere 

{
p+2-m, 

N-
- (p - m -s)/2, 

for even m - s, 
for odd m -so 

(21) 

Hence the space of minimal vectors has the dimension 
(s + 1) (N + 1) and IR turns out to be finite-dimensional 
(and even finite since the field Fp' is finite). If D(m,s) is the 
dimension of IR with the given m and s, then it can be easily 
shown by the direct calculation that 

D(m,s) 

= j(s + l)(p + 3 - m) [p2 - ~p(m - s) 

+1(m-3)2-1(s+ 1)2], foreven m-s, 

D(m,s) 

= (p + 2 - m - s)/24)(s + 1) [(p - m)2 

+ (p - m)(s + 1) - s], for odd m - s. (22) 

The actions here must be understood of course in the usual 
sense but not in the sense of Fp. 

The matrix elements of every representation operator 
can be determined in massive and singleton cases by means 
of ( 10), (15), (17), (19), and the definition of eo, but in the 
massless case this is not so, since there exist minimal vectors 
with the eigenvalues of operators h I and h2 equal to unity: if 
s#O then 

(h2 - 1 leo = 0, (hi - 1 )eo#O, 

(h2 - 1 )eos #0, (hi - 1 )eos = 0 

and if s = 0 then 

(hi - 1)eo = (h2 - 1 leo = O. 

Therefore instead of ( 13) we introduce the operators 

A++=A++-------
(hi - l)(h2 - 1) 

=b"-a"L __ 1_ -a"L __ _ 
I - hi _ 1 2 + h2 - 1 

+a"a"b' 1 
I 2 (h I - 1 )(h2 - 1) , 

A +- =A +- __ I_=L+ _a;'b, __ I_, 
hi - 1 hi - 1 

A -+ =A -+ __ I_=L __ a;b, __ I_, 
h2 - 1 h2 - 1 

A--=A--=b', 

and assume additionally that if m - s = 2, s#O, then 

A ++eo=(b"-a;'L_(h l -1)-I)eo, 

A -+eo=L_eo, 

A ++eos = (b" - a;L+ (h2 - 1)-I)eos' 

A +-eos = L+eos , 

and if m - s = 2, s = 0 then 

A +-eo = A -+eo = 0, A ++eo = b "eo, 

where 

enk = (A ++)n(A -+)keo. 
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(23) 

(24) 

So defined A operators as well as A operators transform the 
minimal vectors into minimal ones and instead of ( 17 )-( 20) 
we have 

A --A ++enk =ankenk,A +-A -+enk 

= bnkenk , 

(en + I,ken + I,k) = ank (enk,enk ), 

(en,k+ I ,en,k+ I) = bnk (enk,enk ), 

(n + 1 )(ql + q2 + n - 2)(ql + n)(q2 + n - 1) 

(ql + n - k - 1 )(q2 + n + k - 1) 

(k + 1 )(ql - q2 - k)(ql - k - 2)(q2 + k - 1) 

(ql + n - k - 2)(q2 + n + k - 1) 

and as it follows from (24), in the massless case, 

bOk = (k + 1) (s - k), aOk = O(k #0) , 

aoo = ql ifs#O, aoo = 2 ifs = O. 

(25) 

(26) 

As it follows from (25) and (26), the numbers (n,k) in the 
massless case assume only the values (O,k) for k = O,I, ... ,s 
and (n,O) for n = 1,2, ... ,p - 1 - s. Therefore it is easy to 
calculate that in the massless case, 

D(m,s) 

=p3 +p2(s+1) _p(~+~ _ .l)+S(S2- 1). 
3 2 2 6 6 

(27) 

Thus we have constructed modular analogs of all IR's of 
the sp( 4) algebra with positive energy. The proof of irredu
cibility in the modular case is rather simple. Indeed, vector eo 
is a cyclic one by construction. Let x be an arbitrary vector 
from Vand 

x = I c(nl,n2,n,k)(ai')n'(a;>n'enk , 
n l ,n2 ,n,k 

c(n l,n2,n,k) #0. 

Let NI and N2 be the maximal values of n I and n2 in this 
decomposition. Then y = (a; )N'(a; )N,X is a linear combi
nation of nonzero minimal vectors. Acting on y by the pow
ers of operators A - - and A + - we can obviously obtain a 
nonzero vector proportional to eo. Therefore every vector 
from V is a cyclic one and the representation is irreducible. 

It is easy to see that different elements ofthe constructed 
basis are mutually orthogonal; they are such that (e,e) #0 
and all eigenvalues of the operators hj , K j (j = 1,2) belong 
to Fp. Therefore as it follows from (11), the eigenvalues of 
the z component ofthe orbital angular momentum LI2 and 
the de Sitter analog of the energy Los also belong to Fp. How
ever, generally speaking, this is not the case for other Hermi
tian operators. Consider for simplicity a massive case when 
s = 0, m is even, and we take the operator L35 which is the de 
Sitter analog of the z component of the momentum operator. 
Consider the subspace generated by the vectors 

XI = (a;')p-m/2-l eo, X 2 = (a;')p-m/2- lb "eo, 
(28) 

X3 = (21m) (a;')P- m12a;eo. 

It is easy to establish the following relations: 
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b "XI =X2, b "X2 = 2X3, b "X3 = 0, 

b'XI = 0, b'X2 = - 2XI, b'X3 = -X2 . 
(29) 

Therefore the considered subspace is invariant relative to the 
action of L35 = b ' + b ('. Solving the characteristic equation 
for the L35 operator in this subspace, we can see that there 
exist three eigenvectors 

~=~+~ ~=~-~-~ ~=~+~-~ 

such that 

L 35""1 = 0, L 35""2 = 2i""2' L 35""3 = - 2i""3' 

It is easy to calculate further that 

(XI,XI) = (X3,x3) = C, (X2,x2) = - 2c 

where 

(p - m/2 - I)! . 
C = (eo,eo) m Fp. 

(m12 - I)! 

Thence from the orthogonality of vectors X I,x2' and X3, it 
follows that 

(""1'''''2) = (""1'''''3) = (""2'''''2) = (""3'''''3) = 0, 

(""1'''''1) = 2c, (""2'''''3) = 4c. 

The above example corroborates what has been said in 
Sec. II about eigenvectors and eigenvalues of Hermitian op
erators in the modular case. The "anomalies" of such a type 
may occur obviously in the region far from the existing ener
gies where the residue modulo p plays an essential role. 

V. CORRESPONDENCE BETWEEN 
REPRESENTATIONS OF THE sp(4) ALGEBRA OVER 
THE FIELDS F". and C 

It is clear that the above correspondence in the sense of 
Definition 1 may be achieved only if m and s are much less 
than p (the estimate will be given below) and we assume that 
this is the case. Consider first the case of massive particles 
and even m - s. Then it is clear that ql and q2 [more exactly 
!(ql) and !(q2) 1 are much less thanp. Therefore there ex
ists the correspondence between operators h I and h2 in the 
sense of Sec. II. Furthermore, since formulas (10), (13), 

( 18) do not contain the division and in (20) division is per
formed as usual [since if n = 0 then the denominator is can
celled by the multiplier (q I - k - 2) in the numerator and if 
n#O then 

(] -+enk,A -+enk ) 

= (A- -+A- ++- ,A- -+A- ++- ) en_I,k en-I,k 
= (] ++] -+e ,A- ++] -+e ) n-I,k n-I,k 
- (A- ++- ,A- ++- )] - en_I,k+ I en_I,k+ I , 

then there is correspondence between the representation 
spaces (in the sense of Sec. II) if a basis is constructed by 
means of] operators. It is clear from the results of Sec. III 
that the correspondence between operators aj, aj', hj 

(j = 1,2) also exists in the considered case. However, it is 
easy to see that the matrix elements of operators b " b ", L _, 
L+ in the basis {(ann, (a2') n'enk } contain the division non
trivially and thus there is no correspondence in the sense of 
Sec. II. Therefore, as it follows from (11), the correspon
dence does exist between operators L1J.V if fl, v# 3 and does 
not exist between operators L3J.l . 

Since the physical quantities corresponding to the oper
ators which are nondiagonal in the chosen orthogonal basis 
are not observable, then the absence of the correspondence 
between nondiagonal operators is possibly not essential from 
the physical point of view. Nevertheless the following prob
lem arises. Is it possible to choose a basis in such a way that 
the correspondence takes place in the sense of Definition I? 

Consider the set of vectors 

In l,n2,n,k) = (ann'(ann'(b ,,)n(L_)keo, 

where n l,n2,n,k run over the same values as above. Our near
est aim is to show that these elements form the basis. 

It follows from (15) and (23) that 

A +-(A ++)1 = (A ++)IA +- h2 - 2 , 
h2 + 1- 2 

A - + (A + + ) I = (A + + ) IA - + hi - 2 
hi + /- 2 

Thence and from (23), (25), it follows that 

(30) 

ql- k-2 " 
en + I,k = b "enk - a l en k + I 

(ql + n - k - 2) (ql + n - k - 1) , 

(qz+k-2)k(s+l-k)" ____ -:--_an_-_I_,k __ --:-__ "" (31) 
----.:~~--~..:..-...:.---'---a2 enk _ 1 - a l a2 en_lk' 
(q2+n+k-2)(q2+n+k-l) , (ql+n-k-l)(q2+n+k-l) , 

It can be shown now that 

(32) 
n 

where Ci,i2UEFp are some coefficients and ~~ means the sum 
over such ii' i2, i, / thati l + i2 + i = n, i < n. Indeed ifn = 0 
the formula (32) is valid since eOk = (L_)keoandifn#Othe 
validity of (32) can be established by induction with the help 
of formula (31). 

It follows from (32) that 
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- (a")n'(a")n,~, c·· . Iii i/) 1 2 ~ '1'2,1 12 . (33) 
n 

Thence if n = 0 then the restrictions on n l,n2 are the same as 
above and if 

n l = NI(n,k) + 1 

or 
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then the vector In l ,n2,n,k ) can be expressed through vectors 
Inl + i l ,n2 + i2,i,/) with i < n, since for such n l or n2, 

Thence the restrictions on n l and n2 remain valid ifO<n<N, 
where N is the maximal value of n (in the massless case N 
depends on k if s;fO). Finally, it follows from the same for
mula (33) that vector In l ,n2,N + l,k) can be expressed 
through Inl + i l ,n2 + i2,i,1) with i<Nbecause eN + I,k = 0., 

Since D(m,s) elements (ai') n, (a;) n'enk form a basis and can 
be expressed through D(m,s) elements In l ,n2,n,k) accord
ing to (33), then, according to the Steinitz theorem (see, 
e.g., § 20 in Ref. 58), the elements In l ,n2,n,k) also form a 
basis. 

The direct calculation by means offormulas (10) shows 
that if 

n<NI, nl<NI(n,k), n2<N2(n,k), 

then 

L+ In l ,n2,n,k) = k(s + I - k) In l ,n2,n,k - 1) + n2ln l ,n2 - I,n + l,k) + 2nlnl + l,n2,n - l,k), 

L_lnl,n2,n,k) = In pn2,n,k + I) + nlln l - l,n2,n + l,k) + 2nln l ,n2 + l,n - l,k), 

ai In l ,n2,n,k) = n l (ql + n - k + n l - 1) Inl - l,n2,n,k) + n(n - 1) In l,n2 + l,n - 2,k) + nln l ,n2,n - l,k + 1), 

a; In l ,n2,n,k) = n2(q2 + n + k + n2 - 1) In l,n2 - l,n,k ) + nk(s + 1 - k) In l ,n2,n - l,k - 1) 

+ n(n - 1) Inl + l,n2,n - 2,k ), 

b 'In l ,n2,n,k) = n ln21n l - l,n2 - l,n,k) + n(ql + q2 + n + 2nl + 2n2 - 1) In l ,n2,n - l,k) 
(34) 

+ nlk(s + 1 - k) Inl - l,n2,n,k - 1) + n2ln l ,n2 - l,n,k + 1), 

h l ln l ,n2,n,k) = (ql + n - k + 2n l ) In l ,n2,n,k), 

h2In l ,n2,n,k) = (q2 + n + k + 2n2) In l ,n2,n,k), 

ai'ln l ,n2,n,k) = Inl + l,n2,n,k), a;ln l ,n2,n,k) = In l,n2 + l,n,k), b" In l ,n2,n,k) = In l ,n2,n + l,k). 

Let us agree that if one of the numbers n l,n2,n exceeds 
the maximal allowed one by 1 then In l ,n2,n,k) means the 
vector which is expressed through the basis elements by 
means of formula (33) with (ai,)n'(a;)n'enk = 0 and the 
coefficients Ci ,i,i1 which in principle can be found from (32). 
Under such an agreement, the formulas (34) define formally 
the matrix elements of representation operators in the basis 
In l ,n2,n,k) for all n<N, 

nl<NI(n,k), n2<N2(n,k). 

These formulas make it possible to calculate matrix elements 
of representation operators of the enveloping algebra and 
scalar products of the basis elements In l ,n2,n,k). 

In a case of representation in the Hilbert space, 
In l,n2,n,k ) can be also chosen as the basis elements but now, 
in the massive case, for example, n l ,n2,n = 0,1,2, ... ,00. The 
matrix elements of the representation operators in this basis 
have been calculated in Ref. 59 and it is clear that the result 
can be formally represented in the form (34). Therefore it is 
easy to see that the correspondence in the sense of Definition 
1 can be only in the massive case if m - s is even and in the 
massless case if m = 2, s = 0 (the latter case sometimes is 
also classified as the massive one). If for example 

(eo,eo) = 1, ql,q2,n l ,n2,n < ~(lnp) 1/10, 

N 2(p) = [(lnp) 1/2/4], 

then the above mentioned correspondence is surely satisfied. 
At the end of this section we briefly discuss the question 

about modular analogs of ordinary finite-dimensional repre
sentations of the sp ( 4) algebra. They can be obtained if one 
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requires the existence of the vector eo (instead of eo) such 
that 

aj'eo = b "eo = L+eo = 0, hjeo = qio, 

qjare positive integers and ql>q2' Then it can be shown that 
the representation contains only the maximal sp(2) Xsp(2) 
vectors with the eigenvalues of hi and h2 operators equal to 
ql - n - k and q2 - n + k, respectively, where 

k=O,I, ... , ql-q2' 

n = 0,1, ... ,q2' 

Thence proceeding from that mentioned at the end of Sec. 
III it is easy to calculate directly that, instead of (22), the 
dimension of IR is given by 

D(qpq2) 

= i(ql - q2 + 1) (q2 + 1 )(ql + 2)(ql + q2 + 3) . 

(22') 

This formula was obtained for the first time by Antoine and 
Speiser,60 proceeding from the well-known Weyl formula for 
the dimensions of ordinary IR's. The analogous result has a 
place in the modular case as well. Namely, Braden ll has 
investigated the case when 

and has shown that the formula (22') defines the dimension 
of the modular IR when ql + q2 <p - 2. 

It is easy to see that in the modular case, the representa
tion with 
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aj'eo = b "eo = L+eo = 0, hio = qio 

is equivalent to the representation with 

ajeo = b 'eo = L+eo = 0, 

hjeo = qjeO if ql=P-q2' Q2=P-ql' 

Since the modular analog of representations describing ele
mentary particles corresponds to the case when q I and q2 are 
much less than p (see above), then Braden's analysis does 
not cover this case. In principle, the information about mo
dular characters and dimensions of modular IR's for the 
wide class of Lie algebras and Chevalley groups (including 
the algebra of B2 type) can be obtained proceeding from the 
general approach developed by Jantzen. 18 However, it is 
clear that in order to establish the correspondence in the 
sense of Definition 1, one needs to have explicit formulas for 
matrix elements in each specific case. 

VI. MODULAR ANALOGS OF REPRESENTATIONS OF 
SO(1,4) ALGEBRA 

A representation of the so(1,4) algebra can be defined 
by means of (12), but now ,u,v,p,u=0,1,2,3,4 and 
g44 = - 1. Let J' and J" be vector operators forming two 
independent su(2) algebras (i.e., [J',J"] =0) and let Rij 
(iJ = 1,2) be the operators which satisfy the commutation 
relations 

Ji,R lj = R lj , [Ji,R2j ] = - R2j , 

[J;',R jl ] = Rj(, [J;',R,-z] = - Ra, 

[J'+,R lj ] = [J'~,Rjl] = [J'_,R 2j ] = [J'~,Ra] =0, 

[J'+ ,R2j ] =R lj , [J'~ ,R,-z] =R jl , 

[J'_ ,RIj] =R2j , [J'~ ,Rj(] =Ra, 

[R II ,R 12 ] = 2J'+, [R II ,R2I ] = 2J'~, 
[R II ,R22 ] = - (Ji + J;'),. 

[R 12,R2I ] = Ji - J;', [R 12,R22 ] = - 2J'~, 

[R 2I ,R22 ] = - 2J'_, 

(35) 

and hermiticity relations R fl = R22, R f2 = - Rzi ' Then 
LJLv operators are expressed through J',J" ,Rij as follows: 

L = J' + J", B = J" - J', 

LOI = i(R II - RZ2 )' L02 = RII + Rzz, 

L03 = - i(R 12 + R21 ), L04 = RI2 - Rw 

where 

L = (L23,L31 ,L12 ), B = (LI4,Lz4,L34)' 

(36) 

For a construction of IR's we will use the method of 
su(2) Xsu(2) shift operators developed by Hughes61 and 
first applied by him for the investigation of ordinary IR's of 
the group SO(5). We use the basis in which the operators 
J i ,J;"K ',K " are diagonal where K ' and K " are the Casimir 
operators (3) for the algebras J' and J", respectively. 

Let x be a maximal su(2) Xsu(2) vector, i.e., 
J'+ x = J '~ x = O. The following operators act on the set of 
maximal vectors invariantly: 

1 ++ = R II , 1 +- = R 12 (J;' + 1) - J'~ R II , 

1 -+ =Rzl(Ji + 1) -J'_ R II , 

1 -- = - R 22 (Ji + I)(J;' + 1) +J'~ R21 (Ji + 1) 

+ J'_ R 12 (J;' + 1) - J '_ J'~ R II' (37) 

The direct calculation by means of (35) shows that 

[1 ++,1 +-] = [1 ++,1 +-] = [1 --,A +-] 

=[1--,1-+]=0. (38) 

We consider only the modular analog of massive repre
sentations, i.e., representations with the vector eo such that 
(eo,eo) #0, J'eo = O. Since J" eo = Leo, we require also that 
L+eo = 0, L3eO = seo. These relations show that J' may be 
treated as the de Sitter analog of the conventional momen
tum and the subspace generated by the vectors 
(L_)k eo(k = O,l...,s), as the set of rest states (for a more 
detailed discussion see Ref. 62). It follows from (35) that 
1 --eo =1 -+eo = O. 

Let 1z = - ~LJLvL JLV (the summation over ,u,v) be the 
Casimir operator of the second order. In a case of induced 
representations in the Hilbert space, 12 = m2 

+ 9 - s(s + 2), where m is the de Sitter mass. However, in 
the soC 1,4) case, the mass cannot be defined as the lowest 
value of the energy, and the parameter m has no clear alge
braic sense. Therefore in the modular case, we simply intro
duce the element WEEp such that 1z = w + 9 - s(s + 2). 
Then the calculation analogous to that carried out in Sec. IV 
gives 

1 - -1 + + enk = (n + 1)( n + s + 2) [w + (2n + s + 3) 2] -- 4 enk , 

1994 

...:.(.:..:..k--=.+_I--=.)...:.;(s=------.:.:.k.:...) [w + 1 + (2k - s)(2k + 2 - s) ]enk , 
4 

(
_ _ ) _ (k+ l)(s-k)[w+ 1 + (2k-s)(2k+2-s)](s-k+n+ 1)( __ 
en,k+l,en,k+1 - 4( k 2 enk,enk ), 

s- +n+ ) 
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(39) 
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where 

enk = (1 ++)n(1 +-)keo. 

Thence it follows that k = O,I, ... ,s as well in the ordinary 
case, but in the modular case n = 0,1 , ... ,N, where N depends 
on whether the condition w + (2n + s + 3) 2 = 0, mod p 
can be satisfied for some n. If this condition cannot be satis
fied (for example, if w = m 2

, mEFp) then N = p - s - 2. 
However, it may be that there exists such N that 

l(w)+(2n+s+3)2<p for n=O,1...,N-l, 

and 

I(w) + (2N + s + 3)2 = p. 

The orthogonal basis in the representation space can be 
chosen in the form (J'~ ) n' (J"_ ) n" e nk, where 

k = O,I, ... ,s, n = O,I, ... ,N, 

n' = O,I, ... ,n + k, n" = O,I, ... ,s - k + n. 

The irreducibility can be proved in the analogy with Sec. IV 
and the dimension of IR is obviously equal to 

S N 

D(w,s) = I I (k+n+ l)(s-k+n+ 1) 
K=On=O 

= (N + l)(s + 1) [j (N 2 + ~ N + 3) 

+ ~ seN + j s + V ] . (40) 

It is clear from (39) that if/(w) and/(s) are positive 
and much less than p, and if one works with the operators 

A + + = 41 + + (J; + 2)( J ~ + 2), 

A +- = 2A +-(J~ + 2), 

instead of 1 + + , 1 + - , then the correspondence in the sense 
of Sec. II can be achieved between the representation spaces 
and the operators J',J". However, in contrast to the so(2,3) 
case, we do not succeed in finding a basis in which the corre
spondence between representations takes place in the sense 
of Definition 1. In our opinion this is due to the following 
circumstance, In the so ( 2,3) case, particles are described by 
the IR of the discrete series. We require that eo are the eigen
vectors of the operators of the Cartan subalgebra, and are 
killed by the operators which are negative relative to this 
subalgebra (such a representation is said to be a Verma mod
ule), In this case, the representation is fully defined and, in 
particular, the action of 12 is also defined. In the soC 1,4) 
case, however, particles are described by the IR of the princi
pal series. From three conditions J' eo = 0, only two of them 
are obviously independent and the extra independent condi
tion is that eo is the eigenvector of 12 (such a representation is 
not a Verma module). Since 12 is quadratic in the representa
tion operators of the soC 1,4) algebra, then we cannot con
struct a basis analogous to that from Sec. V. 

VII. MODULAR ANALOGS OF REPRESENTATIONS OF 
THE OSP(1,4) SUPERALGEBRA 

The superalgebra osp (1,4) is a generalization of the 
sp( 4) algebra. A representation of osp( 1,4) can be realized 
by the operators dj,d j( j = 1,2) such that if a,/3,y are some 
of these operators, then 
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[a,{p,y}) = (a,{3)y + (a,y){3, (41) 

where the form (a,{3) is skew symmetric, 
(d"df) = (d2,d~) = 1, and other independent values are 
equal to zero. For the representation operators of the sp(4) 
algebra we have 

hj = {dj,dj}, aj = dj, aj' = dj2, 

b'={d"d2}, b"={df,d~}, 

L+ = {df,d2 }, L_ = {d"dt}. 

We introduce the operators 

(42) 

Aj-=dj, A/=dj-aj'dj (hj -1)-', (43) 

Consider the action of these operators only on the set of 
minimal sp(2) Xsp(2) vectors (see Sec. IV). Then A j- de
creases the eigenvalue of hj by unity, A / increases this value 
by unity and the operators (43) transform the minimal vec
tors into minimal ones. 

Introduce now the notations 

A,i+ =A++, A,i- =A+-, 

A '2 + = A -+, A i"2 - = A --

and assume that A 7/ = A j/ where € and €' assume the values 
+ or -. Then the direct calculation by means of (41), 
(42), and (23) gives 

(Aj)2=0, Aj-A/ =hj-hj(hj-1)-IA/Aj-, 

A it = {A 7,A f}, 
A j- A / E = A ij+ EA j- + A j - (h j - 1) -IA / A;; E, 

A/Aij-E=A;;EA j+ -Aj+ (h j -1)- IA/ EA
j
-, 

[ A 7,A ij€] = ° (i, j = 1,2, i =/= j) ( 44 ) 

[these relations are valid also for osp (1 ,2n) if 
i,j = 1,2, ... ,n). 

We consider only modular analogs of representations of 
the osp( 1,4) superalgebra with positive energy. All such 
representations have been found in Refs. 63 and 64. In analo
gy with these papers we require the existence of the vector eo 
such that 

Then In particular A j - eo = A 21 + eo = 0. Denote 
m = q 1 + q2, S = q 1 - Q2' 

According to Refs, 63-65 all representations with posi
tive energy are classified as follows: the representation com
bining both Dirac singletons, representations combining two 
massless particles (m,s) and (m + 1, s + 1) if m - s = 2, 
s=/=O, and representations combining only massive particles. 
Note at once that the modular analog of the Dirac supermul
tiplet can be investigated without any problems. As in the 
ordinary case, IR under consideration has the property 
[a,{3] = ~<a,{3) and the basis in the representation space 
can be chosen in the form (d f) n, (d n n'eo but in the modular 
case, n l,n2 = 0,1 , ... ,p - 1 and the dimension ofIR is equal to 
p2. Note that (see Sec. IV) the number of bosonic states 
(with the even spin) is not equal to the number offermionic 
ones (with the odd spin), 
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To investigate the general case, consider the vectors 

eo,e l = A teo, e2 = A 2+ - (s + 1) -IA 12 + A 1+ eo, 

e3 = (A t A 2+ - [(q2 - 1 )/(ql - 1)]A 2+ A t )eo' 
(45) 

It follows from the definition of eo and (44) that these 
vectors are killed by the operators A 21 +, A 12 - , and fur
thermore the following relations take place: 

Aj-eo=O (j= 1,2), A teo=el, 

A 2+ eo = e2 + (s + 1) -IA 12 + e l, 

A I-e l = qleo, A 2-el =A tel = 0, 

At el = [(ql - 1 )/(m - 2)] (A Ii + eo - e3 ), 

A 1- e2 = - [(q2 - 1 )/(s + 1)]A 12 + eo, 

A 2- e2 = [S(q2 - l)/(s + 1) ] eo, 

A t e2 = [sl(m - 2) (s + 1)] [(ql - 1 )e3 

+ (q2 - I)A ++eo], 

Ate2 = -[ql-1I(s+l)(m-2)]A-+(A++eo -e3 ), 

A l-e3 = [(m -1)/(ql -1)](qle2 

+ [(q2 -1)/(s+ I)]A -+el ), 

A 2-e3 = - [(m-l)(q2- 1)/(ql-l)]el, 

A l+e3 = - [(q2 -1)/(ql -1)]A ++el, 

Ate3 =A ++(e2 + (s+ 1)- IA -+el ), 

(el,e l ) = ql(eo,eo), 

(e2,e2) = [S(q2 - 1)/(s + 1) ](eo,eo), 

(e3,e3 ) = [ql (q2 - l)(m - l)(m - 2)/(ql - 1)2](eo,eo)· 
(46) 

Thence it follows that if (m,s) is a massive representation of 
the sp ( 4) algebra, then the representation space of the 
osp( 1,4) superalgebra can be decomposed into the direct 
sum of the representation spaces corresponding to (m,s), 
(m + l,s - 1), (m + l,s + 1), (m + 2,s) if s#O and to 
(m,Q), (m + 1,1), (m + 2,0) if s = 0. Now let (m,s) be a 
massless representation with s# 0. Then e I generates the rep
resentation (m + l,s + 1). Take into account that accord
ing to the results of Sec. IV, 

A - + A + + ej = A + + A - + ej = ° (j = 0,1 ). 

Therefore as it follows from (46), the representation space 
of the osp ( 1,4) superalgebra can be decomposed into the 
direct sum of representation spaces corresponding to (m,s) 
and (m + 1,s + 1). 

Thus we have shown that in the modular case there take 
place the same decompositions into IR's of the sp( 4) algebra 
as in the ordinary case.63

-65 We now discuss the question 
about the correspondence of representations under consider
ation in the sense of Definition 1. In the case of the Dirac 
supermultiplet, the correspondence obviously does not take 
place (however it does take place ifthe unit of measurements 
of angular momentum is iii 4 instead oUil2). As it follows 
from the results of Sec. V, the hope of correspondence may 
be only in the massive case for even m - s. However, decom
position into the IR's of the sp (4) algebra is not convenient, 
since the formulas (46) contain the division nontrivially, 
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and in analogy with the ordinary case63
,64 we can choose 

instead the basis of the form 

(a;,)n'(a;>n'(b")n(3*(L_)keo' (47) 

where k = O,I, ... ,s, and (3 * is one of the operators 
I,d f,d !, [d f,d n. In the modular case the existence of 
such a basis is not obvious, since n pn2,n assume only a finite 
number of values. Proceeding from the results of Sec. IV, it 
can be shown that for even m - s the maximal value of n is 
equal top + 2 - m - n«(3*) where 

n(1) = 0, n(df) = n(d!) = 1, n([ df,d!]) = 2, 

the maximal value of n I is equal to p + 1 
- ql - n + k - n l«(3*) where 

n l (1) = nl(d!) = 0, 

nl(df) = n l ([ df,d!]) = 1, 

and the maximal value of n2 is equal to p + 1 
- q2 - n - k - n2«(3 *) where 

n2(1) = n2(df) = 0, 

n2 (d !) = n2 ([ d f,d n ) = 1. 

The basis (47) is analogous to the basis from Sec. V; how
ever, such a choice of basis does not ensure the correspon
dence in the sense of Definition 1. This is obvious from the 
relation 

dfd!eo=~(b" + [df,d!])eo· 

Thus there is no correspondence in the sense of Sec. II be
tween supersymmetry operators. Otherwise speaking, deal
ing with matrix elements of super symmetry operators in the 
modular case, one cannot be confined to the elements Fp 
from Uo even at low energies. Is it not the reason due to 
which the supersymmetry is not yet discovered experimen
tally? 

VIII. A FEW REMARKS ON MODULAR ANALOGS OF 
REPRESENTATIONS OF INFINITE-DIMENSIONAL 
ALGEBRAS 

In the ordinary case, the representation of the Kac
Moody algebra associated with some Lie algebra A is defined 
by means of operators T~ (j = 1,2, ... ,dim A, nEZ) such that 
T~* = Tj _ nand 

[Tjn,T~, ] 

=ifjk'T~'+n" + Knl)ik8n +n"o, (48) 

wherepk' are the structure constants of A, the summation 
over the repeated indices (here and henceforth) is meant, 
and K is a central element having a numerical value in any 
IR. The modular analog of the above representation can be 
evidently defined by the same formulas, but now n, n',jjkl, 
KEFp. 

In the ordinary case it is well known that if the operators 
Ln are defined by the formula 

L n =s-lim-
1
- £ ff{T~+n,Tj_n'}' (49) 

2(3 n'~-N 

where s-lim means the strong limit andff means the normal 
ordering (such that 
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and 

{ . k} . k JV Tin Tn' = T~Tn" 
in all other cases), and then if 

fij"fijl = C8kl, {3 = K + ~ C, 

these operators form the representation of the Virasoro alge
bra, 

= (n - n')Ln + n' + 1;{3 n(n
2 

- 1 )8n+ n',O dim A. 
(50) 

As the modular analog of such a construction, it is natural to 
define Ln in the form 

1 {' '} Ln =- L JV Tin+n,Ti_n' , 
2{3 n'eFp 

(51) 

where it is meant that in the definition of normal ordering, 
the elements 1,2, ... , (p - 1 )/2 from Fp are considered as 
positive and the elements (p + 1 )/2, ... , p - 1 as negative. 
Then it is easy to calculate that if {3 = K, then 

[Ln,Ln,] = (n - n')Ln+ n, -in8n+n'.0 dimA. (52) 

In the ordinary case, the correspondence between the 
representations of Kac-Moody and Virasoro algebras is 
used for the description of strings not only in a flat space, but 
also in the de Sitter space,66 and the central element of the 
Virasoro algebra is connected with the critical dimension of 
the space-time. Therefore one can come to a conclusion that 
the critical dimension strongly depends on whether the 
physics is based on the field Cor Fp2, or, otherwise speaking, 
on whether the number p is finite or infinite. 

It is known that many infinite-dimensional Lie algebras 
1 have (finite-dimensional) modular analogs. In the case of 
simple finite-dimensional restricted Lie algebras over an al
gebraically closed field, the problem of classification has 
been investigated in Refs. 67-69, and Ref. 70 contains the 
complete solution of this problem if p > 7. The representa
tion theory of such algebras contains yet only partial results 
and most of the papers apparently deal with the determina
tion of maximal dimensions ofIR's (see Sec. I). 

IX. DISCUSSION AND CONCLUSIONS 

In the present work we have given the mathematical 
formulation of the correspondence between the description 
of physical systems on the language of spaces and operators 
over the field F p' and on the conventional language of projec
tive Hilbert spaces. This correspondence explains in what 
sense the conventional physics can be treated as the limit of 
"modular" physics when p-+ 00. Among considered con
crete cases, the clearest correspondence seems to be between 
modular representations of the so(2,3) algebra and its repre
sentations in a Hilbert space. Indeed if in the case of the basis 
considered in Sec. V one formally goes to the limit p -+ 00 and 
introduces the rational and irrational numbers, then one ob
tains an ordinary representation of the so (2,3) algebra in a 
Hilbert space. Then by means of the standard contraction' 
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procedure, one can (if it is desirable) obtain the convention
al representation of the Poincare algebra, integrate it to a 
global representation of the Poincare group, etc. Otherwise 
speaking, if the radius ofthe de Sitter space is denoted by R, 
then the transition from the modular representation of the de 
Sitter algebra to a conventional representation of the Poin
care algebra can be performed in the succession p -+ 00 , 

R -+ 00, but not vice versa. In particular, it is stated a priori in 
the considered approach that the cosmological constance 
differs from zero. 

The modular analog of the representations of the de Sit
ter algebras looks like natural way of quantization of such 
quantities as energy, mass, and momentum, since even for 
the elementary particles these quantities in the de Sitter units 
are very large and the requirement that they assume only 
integer values does not obviously contradict an experiment 
(in conventional units the quantum of the above quantities is 
the value of the order fzl R). At the same time, if one pro
ceeds from the Planck system of units, then the modular 
analogs of representations describing particles and strings is 
unphysical, since masses and energies of elementary parti
cles in these units are much less than one. 

Proceeding from the modular analogs of representa
tions describing elementary particles, it is possible to con
struct, in principle, modular analogs of operators in the Fock 
representation for any quantum field theory in the de Sitter 
space. The case when the theory contains only fermions is of 
particular interest, since due to the fermionic commutation 
relations, the number of particles in the modular version of a 
theory will be finite (of the order p3) and all of the theory 
will be also discrete and finite. 

We have pointed out that in the modular case, the 
probabilistic interpretation can be restored only in the limit 
p-+ 00. However, if one proceeds from the point of view that 
modular representations are the basis of a more fundamental 
physics, then they must have a physical interpretation for 
the finite values of p, and this interpretation is more funda
mental than the conventional interpretation of quantum the
ory. Without such an interpretation it is unclear, in particu
lar, in which experiment the number p can be defined (if it 
exists). 

The very possibility of constructing the physics without 
actual infinity seems to be very attractive, and therefore the 
investigation of representations in spaces over Fp2 and other 
finite fields is of indubitable interest. 
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Using a set offunctions with linear span that is dense in L 2(R 2N), a simple proof is 
constructed of the result (discovered and proved by Varilly and Gracia-Bondia recently [J. 
Math. Phys. 28, 2390 (1987)]) that the Wigner transformation is of order 24 and that its sixth 
power is the inverse Fourier transform (or Fourier cotransform). 

I. INTRODUCTION 

In a recent paper, Varilly and Gracia-Bondia l have es
tablished the unexpected result that the Wigner transforma
tion W from L 2(R 2N) onto itself, given by 

( W/)(x,y) 

= (217') 1I2Nl 1(2- 1/2 (x + y),t) 
RN 

Xexp(2- l/2i(x - y) Tt )dt, (1) 

is of order 24 and that its sixth power is the inverse Fourier 
transform (or Fourier contransform) where the Fourier 
transform F on L 2(R 2N) is defined by 

(FI)(u) = (217') -Nl I(v)exp( - iuTv)dv. (2) 
R2N 

In the above two equations and in the sequel, we shall 
generally follow the notation and the conventions intro
duced in Ref. 1. In particular u, v, z, and 'T/ are 2N X 1 column 
vectors whereas x, y, t, a, and /3 are N X 1 column vectors. 
We shall also, whenever necessary, partition z and 'T/ as 
z = (xly), 'T/ (al/3). Also u,v,zER 2N , 'T/EC2N

, and t, ap
pearing as an integration variable, ERN. 

In this paper, we use a set off unctions that resemble the 
functions used in the coherent state presentation and whose 
linear span is dense in L 2 (R 2N ) and show that this set is not 
only invariant under the Wigner transformation but that this 
transformation is represented on this set by a very simple 
2N X 2N complex matrix of order 24. Again the inverse 
Fourier transform is represented on this set by 11 2N, which is 
also the sixth power of the matrix representing the Wigner 
transformation. Two other operators R and <I> associated 
with the Wigner transformation also have a very simple 
2N X 2N matrix representation on the set of functions we 

I 

use. These operators were introduced in Ref. 1 and were 
defined on L 2(R 2N) by 

(RI)(x,y) =/(2- 1/2 (x + y),2- 1/2 (X - y») (3) 

and 

(<I>/)(x,y) 

and 

= (217') - 1I2N l I (x,t) exp(iyTt)dt. 
RN 

Obviously 

R 2 = Id, 

W=R<I>. 

II. PROOF OF THE MAIN RESULTS 

(4) 

(5) 

(6) 

For'T/EC2N andzER 2N, where'T/andzare2N X 1 column 
vectors, we define2 

I", (z) exp( - !ZTZ + 2'T/TZ - 'T/T'T/) (7) 

exp( - !(xTx + yTy ) + 2(aTx + /3 Ty) 

- (aTa + /3T/3»). (8) 

The set S, defined by 

S = {I", (z): 'T/E(?N} , (9) 

is such that its linear span is dense in L 2(R 2N) because this 
set contains all the translates of a single Gaussian, a set 
whose span is well known to be dense in L 2(R 2N). We now 
compute the Wigner transform ( WI", ) of I",. Indeed, using 
the definition in Eqs. ( 1 ) and (8) and noting that the phase
space variable z and the variable 'T/ are partitioned as (xly) 
and (al/3), we have 

(WI",)(x,y) = (217') -1I2N iN exp[ - ~ ((X ;yr (X ;Y) + t Tt) 

+ 2( a TX 
;y +/3 Tt ) (aTa +/3

T
/3) + ie ~yrt] dt. (10) 

Integrating and then simplifying, we arrive at 

[ IT (a + i/3)T (a - i/3)T (a :2i/3)T(a :2i/3) + (a P\2i/3)T(a ~2i/3)]. (WI",) (x,y) exp -"2 (x X+yTy) + 2 T x+ 2 T y V,l. V,l. V,l. V,l. 

(11 ) 
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On comparing the above result with Eq. (8), we immediate
ly find 

(WI,])(x,y) =IA'] (x,y), (12) 

where A is the 2N X 2N complex matrix 

1 (IN iIN) 
A= {i IN -iI

n 
• 

(13) 

In the above, IN is the N X N identity matrix. 
Again starting from Eqs. (2) and (7) we can similarly 

show that the Fourier transform (FI,] ) (z) of I,] (z) is given 
by 

FI'] (z) = exp( - !zTZ + 2( - iT]} TZ - ( - iT]) T( - h]}), 

(14) 

which, on comparing with Eq. (7), results in 

(FI,])(z) =I-i'] (z). 

Similarly 

(F-1I,] )(z) =/;'] (z), 

(15) 

(16) 

where the inverse Fourier transform F -I is defined on 
L2(R2N) by 

(F-1/)(u) = (21T) -Ni l(v)exp(iuTv)dv. (17) 
R2N 

From Eq. (16), it is obvious that in the space of 1/'S, 
which index the elements 01 the set S, the inverse Fourier 
transform F - 1 is represented by the complex 2N X 2N ma
trix 

(18) 

where IN and ON are the N X N identity and zero matrices, 
respectively. 

To prove the main result of our paper, we now just have 
to find the various powers of the matrix A, which can be done 
trivially. In particular we find that 

A 6 =i(I
N 

ON 
ON) 
IN 

(19) 

and 

A24=(IN ON) 
ON I ' N 

(20) 

2000 J. Math. Phys., Vol. 30, No.9, September 1989 

which proves that the Wigner transformation is of order 24 
and that its sixth power is the inverse Fourier transform. 
Note that for this purpose we have to extend Wand F from 
the set S first by linearity to the linear span of S and then by 
continuity to the whole of L 2 (R 2N ). This last step is possible 
because the linear span of S is dense in L 2 (R 2N ) . 

III. THE OPERATORS RAND cI> 

For the operators R and <I> defined in Eqs. (3) and (4) 

above, using the technique in Sec. II, we have 

(RI,])(z) =IB'](Z) (21) 

and 

(22) 

where the 2N X 2N matrices Band C are given by 

1 (IN B-
{i IN 

(23) 

and 

(24) 

The property W = R<I> given in Eq. (6) above is represented 
by 

A=BC, (25) 

in terms of the matrices A, B, and C. 
Note that the matrices A, B, and C are all unitary with 

determinant equal to ( - i) N, ( - 1) N, and (i) N, respec
tively. (Thus, in general, these are not unimodular.) 
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2The function I." (z) can be expressed as a product of generating functions 
for Hm (x)e- (I12)m' as follows from 

f a: Hm(x)e~(1/2)x1=e~(l/2)x~+ax-a2. 
m=O m. 

In the above, Hm (x) is the Hermite polynomial of degree m. 
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A multi variable biorthogonal generalization of the Wilson polynomials is presented. These are 
four distinct families, which in a special case occur in two complex conjugate pairs, that satisfy 
four biorthogonality relations among them. An interesting limit case is the multivariable 
continuous dual Hahn polynomials. 

I. INTRODUCTION 

Wilson 1 and Askey and Wilson2 introduce a family of 
hypergeometric orthogonal polynomials in a single variable 
that include as special or limiting cases all the classical or
thogonal polynomials and many related families. Their dis
crete analog, also known as Racah polynomials, provide an 
explicit representation for the 6j symbols of angular momen
tum theory. Further interesting properties and applications 
are discussed by various authors. Dunkl3 finds that the Wil
son polynomials are connection coefficients between differ-I 

ent bases for the solution space of a linear difference equa
tion. Letessier and Valent4 show that they can be interpreted 
as transition probabilities for a birth and death process. 
Miller uses local symmetry techniques to obtain an elegant 
orthogonality proof and an elementary evaluation of the 
norm. Rao et al.6 deduce a three term recurrence relation 
while Montaldi and ZucchelW present still another ortho
gonality proof. 

These important polynomials can be expressed as the 
following hypergeometric series: 

( 
- n,n + a + b + c + d - l,a - iX,a + ix ) 

Pn(x)=(a+b)n(a+c)n(a+d)n4F3 b d ;1 , 
a+ ,a + c,a + (1.1 ) 

where a, b, c, and dare complex parameters, n is anon-negative integer, and (a + b)n =T(n + a + b)/r(a + b) denotes the 
usual Pochhammer symbol. These are polynomials of degree n in x2 or of degree 2n in x (the latter interpretation extends to 
the multivariable case). One can show, by iterating a transformation satisfied by the 4F3 hypergeometric function, 1 that P n (x) 

is symmetric under the interchange of all four parameters a, b, c, and d, which is a continuous analog of the symmetries of the 
6j symbols. When the real parts of a, b, c, and d are positive the Wilson polynomials satisfy a continuous orthogonality relation 
on the real line 

J: 00 dx Pn (x)P m (x)w(x) = 8nm hn, 

where the weight function w(x) is given by 

w(x) = rca + ix)r(a - ix)r(b + ix)r(b - ix)r(c + ix)r(c - ix)r(d + ix)r(d - ix) 
r(2ix)r( - 2ix) , 

and the normalization constant hn is 

( 1.2) 

(1.3 ) 

h
n 

= 41Tn!(n + a + b + c + d _ 1)n r(n + a + b)r(n + a + c)r(n + a + d)r(n + b + c)r(n + b + d)r(n + c + d) . 
r(2n + a + b + c + d) 

(1.4) 

If the parameters a, b, c, and d are real or if they occur in complex conjugate pairs, or a combination of both (with positive real 
parts), then the polynomials Pn (x) are real and the weight function can be expressed as a modulus squared: 

w(x) = 1 rca + ix)r(b + ix)r(c + ix)r(d + be) 12 (1.5) 
r(2ix) , 

which is real and positive. 
Two interesting limit cases are the continuous Hahn and continuous dual Hahn polynomials. The continuous Hahn 

family is obtained by setting 
I 1· b b ' 1· I 1· d d ' 1· I 1 a = a + 2'0), = - 2'W, C = C + 2'W, = - 2'W, X = X - zW, ( 1.6) 

dividing (1.1) by n!wn, and then taking the limit W-+ 00. The resulting polynomials are (dropping the primes) 

in ( - n,n + a + b + c + d - l,a + ix ) 
H n(x)=-(a+b)n(a+d)n3F2 b d ;1, 

n! a+ ,a + 
( 1.7) 
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and from (1.2 )-( 1.4) one deduces the orthogonality relation 

J: "" dx Hn (x)Hm (x)r(a + ix)r(b - ix)r(c + ix)r(d - ix) 

= onm 21T(n + a + b + c + d _ 1)n r(n + a + b)r(n + a + d)r(n + b + c)r(n + c + d) . 
n!r(2n+a+b+c+d) 

The continuous dual Hahn polynomials Dn (x) result upon dividing (1.1) by d n and taking the limit d-+ 00, 

( 
- n,a + iX,a - ix ) 

Dn(x)=(a+b)n(a+C)n3F2 b ;1, 
a+ ,a+c 

and these satisfy the orthogonality relation 

f"" dx Dn (x)D
m 

(x) rCa + ix)r(a - ix)r(b + ix)r(b - ix)r(c + ix)r(c - ix) 
- "" r(2ix)r( - 2ix) 

= Onm 41Tn!r (n + a + b)r(n + a + c)r(n + b + c), 

as follows from (1.2)-( 1.4). 

(1.8 ) 

( 1.9) 

( 1.10) 

In Sec. II we introduce the multivariable Wilson polynomials and their associated weight function and calculate a 
multiple Mellin-Barnes-type integral that is the norm of the weight function. In Sec. III we deduce the biorthogonality 
relations satisfied by these multi variable polynomials and in Sec. IV we consider two limits, the multi variable continuous 
Hahn and continuous dual Hahn polynomials, as well as a few special cases. 

II. MULTIVARIABLE WILSON POLYNOMIALS 

(2.1 ) 

(2.2) 

(2.3) 

(2.4 ) 

(2.6) 
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The overbars in (2.2) and (2.4) denote distinct families of polynomials and should not be confused with complex conjugation. 
Members of a given family are labeled by the set of p non-negative integers n I>n2 , ... n p and the degree of a polynomial is given by 
2N, where N is the sum of these integers as defined in (2.6). These polynomials are associated with the following multi variable 
weight function: 

w (X I,X2, ... ,xp I abl,ab2, ... ,abP I C,d) 
I' 2'"'' P 

= [lIP r(a ix )r(b _ ix )] r(A - iX)r(B + iX)r(c + iX)r(c - iX)r(d + iX)r(d - iX) (2.7) 
k = I k + k k k r (2iX) r ( - 2iX) , 

where the 2p + 2 complex parameters al,a2, ... ,ap' b l ,b2, ... ,bp, c, and d a~ assumed to h~ve positive definite real parts but are 
otherwise arbitrary. When no ambiguity arises we simply write Pn (x), Pn (x), Qn (x), Qn (x), and w(x) for the polynomials 
and weight function, respectively. 

In the special case p = 1 all four families (2.1 )-(2.4) reduce to the familiar single-variable Wilson polynomials ( 1.1 ). For 
Pn (x) this is obvious upon comparing (2.1) and (1.1). The remaining three families (for a single variable) are equivalent to 
( 1.1) through a transformation formula satisfied by the 4F3 hypergeometric series of unit argument. I Also the weight function 
(2.7) for p = 1 obviously reduces to (1.3). 

In general the four families Pn (x), Pn (x), Qn (x), and On (x) are distinct. However, the barred and unbarred pairs are 
related through the following transformations: 

_ (X I,X2, ... ,xp I al ,a2, .. ·,ap I ) _ ( - XI' - x2, .. ·, - xp I bl ,b2, .. ·,bp I ) 
P c,d -P c,d 

n l ,n2 , ... ,np bl ,b2, ... ,bp n l ,n2, ... ,np a l ,a2, .. ·,ap 

(2.8) 

(
XI,X2, ... Xp I b f,b !, ... ,b; I ) 

=Q* c*d* * * * ' , nl ,n2, .. ·,np al ,a2 , ... ,ap 
(2.9) 

where the asterisk denotes complex conjugation. Notice also that the weight function is invariant under these transforma
tions. Furthermore, all four families and the weight function are symmetric under the interchange of c and d. These results are 
apparent from (2.1)-( 2.4) and (2.7), and we are assuming the variables x I'X2, ... ,x p are real. From the second relation in each 
of (2.8) and (2.9) we see that, in the special case ak = b t, k = 1,2, ... ,p and c = d * or c and d real, the barred families are 
simply the complex conjugates of the unbarred families: 

Pn (x) = P~(x), On (x) = Q~(x). (2.10) 

Also, in this special case, the weight function is real and positive: 

w(x) = 1 [IT r(ak + iXk )] rCA - iX) r(c ~ iX)r(d + iX) 12 
k= I r(2iX) 

(2.11 ) 

(recall we are assuming X I ,X2, ... ,xp are real). 
Returning to general parameter values (with real parts greater than zero) we introduce the following alternate represen

tations of Qn (x) and On (x) (L=~~ = Ilk): 

Qn(x) = [IT r(nk +ak +bk )] (C+d)N(B+c)N L [IT (nk)] (C+iX)L 
k=1 r(ak+bk ) {I.} k=1 Ik (C+d)L 

(C - iXh . . . (B + iX: - n l + II,b l - ix l ; ... ; - np + Ip,bp - iXp) 
X ( - 1)L FL2: ... :2 , 

(B + C) L 1.1, ... ,1 L + B + c:a l + bl; ... ;lzp + bp 
(2.12) 

On (X) = [IT r(nk + ak + bk )] (C + d)N(A + d)N L [ IT (nk)] (d - iX)L 
k=1 r(ak+bk ) {I.} k=1 Ik (c+dh 

(d + iXh .. . (A - iX: - n l + II,a l + ix l ; ... ; - np + Ip,ap + iXp) 
X ( - l)L FL2: .. ·:2 , 

(A + d) L 1.1, .... 1 L + A + d:a l + bl; ... ;ap + bp 
(2.13 ) 

which are used in Sec. III to determine biorthogonality relations. To demonstrate the equivalence of (2.12) and (2.3) we 
begin with the following multiple summation theorem9

: 

r(y)r(y- a -,81 -,82 - ... -,8 ) 
F<t' (a,,81J32''''',8p;y; 1,1, ... ,l) = p , (2.14) 

r(y- a)r(y-,81 -,82 - ... -,8p) 

2003 J. Math. Phys., Vol. 30, No.9, September 1989 M. V. Tratnik 2003 



                                                                                                                                    

where F}fl is the p-variable Lauricella hypergeometric series, a special case of (2.5), 

F (Pl /l /l /l" -Fu; ... ;1 (a:/l I;/l2; ... ;/lp; ) 
D (a, I' 2,···, P,y,ZI,Z2""'Zp) = 1,0; ... ;0 • _ . _. . _ . ZI,Z2""'Zp . y. , , ... , , 

(2.15 ) 

Settinga=J+B+iX,/lk = -nk +jk +lk,andy= -N+J-c+iX+ 1 in (2.14) gives the identity (R=~f=lrk) 

r(N + B + c) = I [ IT (nk - jk - h)] r(J + R + B + iX) r(N - J - R + c - iX) (2.16) 
r(J+L+B+c) h} k=1 rk r(J+B+iX) r(L+c-iX) , 

where we have also used the reflection formula lO 

r(z)r(1 - z) = 1T/sin{1Tz). (2.17) 

Substituting (2.16) into (2.12) and bringing the {/k} sum on the inside yields 

x = '" [lIP Ck) r(nk + ak + bk ) rUk + bk - iXk )] _ 1 J 
Qn () £.. . ru b r(b .) ( ) 

{M k= 1 k k + ak + d k - lXk 

X I [IT (nk - jk)] r(J + R + B + iX) r(N - J - R + c - iX) 
h} k= 1 rk r(B + iX) r(c - iX) 

XI [IT (nk-jk-rk)] r(N+c+d) r(L+c+iX) (_I)L. (2.18) 
{Ik} k=1 lk r(L+c+d) r(c+iX) 

Then the {/ k} sum is performed by setting a = c + iX, /l k = - n k + j k + r k, and y = c + din (2.14) and using the reflection 
formula (2.17) again. In this manner one finds 

I [IT (nk-jk-rk)] r(N+c+d) r(L+c+iX) (_I)L= r(N+c+d) r(N-J-R+d-iX). 
{Ik} k=1 lk r(L+c+d) r(c+iX) r(N-J-R+c+d) r(d-iX) 

(2.19) 

Substituting this into (2.18) and reversing the {rk} sum, rk -.nk - jk - rk, gives the following expression: 

x = '" [lIP Ck) r(nk + ak + bk ) rUk + bk - iXk )] _ 1 J 
Qn () £.. . ru b r(b .) ( ) {;.} k= 1 k k + ak + k) k - lXk 

X I [IT (nk - jk)] r(N - R + B + iX) r(R + c - iX) r(R + d - iX) r(N + c + d) 
h} k=1 rk r(B+iX) r(c-iX) r(d-iX) r(R+c+d) 

(2.20) 

Then interchanging the order of the {h} and {rk } sums yields 

Q (x) = I [IT (nk)] r(N - R + B + iX) r(R + c - iX) r(R + d - iX) r(N + c + d) 
n h} k=1 rk r(B+iX) r(c-iX) r(d-iX) r(R+c+d) 

[ II
p '" (nk - rk) r(nk + ak + bk ) rUk + bk - ixk ) j ] X£... (_1)k . 

k=1 jk lk rUk +ak +bk ) r(bk -ixk ) 
(2.21 ) 

Noweachjk sum is performed by using the Chu-Vandermonde theorem 1 I: 

F ( _ n a'/l'l) = r(n + /l - a)r(/l) . 
2 1 " , r(n+/l)r(/l-a) 

(2.22) 

This leads to 

'" [lIP (nk) r(nk + ak + bk ) r(nk - rk + ak + iXk )] 
Qn(x) = £.. 

h} k=1 rk r(nk -rk +ak +bk ) r(ak +iXk) 

X r(N + c + d) r(N - R + B + iX) r(R + c - iX) r(R + d - iX) 
r(R + c + d) r(B + iX) r(c - iX) r(d - iX) 

(2.23) 

and upon reversing the summations, rk -.nk - rk, we obtain representation (2.3). The equivalence of (2.13) and (2.4) then 
follows by either of transformations (2.9) and interchanging c and d. 

Next we derive the following multiple Mellin-Barnes-type integral: 

J"" dx ... J"" dx [lIP r(a ix )r(b -ix )]r(A-iX)r(B+iX)r(c+iX)r(C-iX)r(d+iX)r(d-iX) 
P 1 k+ k k k r(2'X)r(-2'X) 

_"" _"" k=1 I I 

=2(21T)p[IT r(ak+b
k

)] r(A+c)r(A+d)r(B+c)r(B+d)r(c+d), (2.24) 
k = 1 r(A + B + c + d) 
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which is the norm of the weight function. The integration contours are the real axes and recall that the complex parameters 
al>a2, ... ,ap' bl ,b2, ... ,bp' C and d are assumed to have positive definite real parts. 

We begin with a change of variables from XI ,X2, ••• ,xp to X,x2""'Xp in which case the multiple integral becomes 

f: '" dX f: 00 dxp" J: '" dX2 r{al + iX - iX~ )r(bl - iX + iX~) LIt r(ak + iXk )r(bk - iXk )] 

X rCA - iX)r(B + iX)r{c + iX)r(c iX)r{d + iX)r{d - iX) (2.25) 
r(2iX)r( - 2iX) 

where we have introduced the following shorthand notation: 
I I I 

Xj:: I Xk, Aj I ak' BJ:: I bk· 
k=j k=j k=j 

The X2 integration can now be performed by using the integral formula l2 

foo dx r{a + ix)r{P + ix)r{r - ix)r(8 _ ix) = (217") r{a + r)r(a + 8)r{P + r)r{P + 8) , 
-00 r(a+P+r+8) 

Re(a),Re(p),Re(r),Re(8) >0, 

which gives 

f: 00 dX2 r(al + iX iX~ )r{bl - iX + iX~ )r{a2 + ix2)r{b2 ix2) 

= (217") r{al + bl )r(a2 + b2 ) r{a) + a2 + iX - iX) )r(bl + b2 - iX + iX). 
r(al + a2 + b l + b2 ) 

From (2.27), (2.28), and induction one can show that 

f: 00 dxl " J: 00 dX2 r{al + iX - iXnr(b1 - iX + iXn [Jt r(ak + iXk )r(bk 

I-I [III ] r(Ai +iX-iX)+I)r{B{ iX+iX)+) = (217") r{ak + bk ) I I ' 
k = I r{A I + B I ) 

and if we set 1= pin (2.29) and substitute in (2.25) we find the mUltiple integral becomes 

(217")P-1 LUI r{ak + bk )] [r{A + B)] -I f: 00 dXr(A + iX)r{A - iX) 

X r{B + iX)r(B iX)r(c + iX)r{c iX)r(d + iX)r(d - iX) 
r(2iX)r( - 2iX) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

This is now simply proportional to the norm of the single-variable Wilson weight function given by (1.2)-( 1.4) with 
n m = O. Using this result in (2.30) then gives the right-hand side of (2.24). 

The multi variable norm is thus evaluated from a knowledge of the single-variable result, which in tum relies on the 
following nontrivial SF4 ( 1) summation theorem II: 

F( 2a,a+ l,a+p,a+r,a+8 '1) r(a-p+ 1)r(a r+ 1)r{a-8+ 1)r( -a-P-r 8+ 1) 

5 4 a,a-p+ l,a-r+ l,a-8+ l' r(2a+ 1)r{ P-r+ 1)r{ -P-8+ 1)r( -r-8+ 1) 

Re(a + P + r + 8) < 1. (2.31 ) 

Thus the multiple Mellin-Barnes integral (2.24) is also as
sociated with this same single-variable summation theorem. 
This is in complete analogy with the multivariable Appell 
weight function 

W(X I,X2,· .. ,xp ) 

=xr'xi""x;P(1 XI -X2- ... -xp)"P+', (2.32) 

whose norm can be related, in an analogous manner, to that 
of the single-variable Jacobi weight w(x) xa'(1 _ x)a,. 
The multivariable extensions of orthogonal polynomials dis
cussed in this paper are, roughly speaking, along the same 
lines as the Appell, Lauricella, and Kampe de Feriet multi
variable generalizations of hypergeometric functions. 8,9 
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There are other quite different and important multivar
iable extensions of hypergeometric series. Holman, Bieden
ham, and Louck 13 define a generalization which they call 
well-poised in SU(n), n>2, which are closely related to Ra
cah and Wigner coefficients for SU(n). Holman14 defines a 
general hypergeometric series in U(n) and proves exten
sions of several classical summation theorems including a 
terminating form of the SF4 ( 1 ) sum (2.31 ). Milne defines q
analogs of hyper geometric series well-poised in SU(n) (see 
Ref. 15) as well as in U(n) (see Ref. 16) and proves a num
ber of important properties for them. 17-

2o These include a 
U(n) generalization l7 of the q-binomial theorem, a SU(n) 
(see Ref. 18) extension of the q-analog of the SF4 ( 1 ) summa-
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tion theorem (2.31), and also two U(n) (see Ref. 16) gener
alizations of the q-analog of (2.31). Further summation 
theorems and transformations of this kind are discussed by 
Gustafson,21 who also introduces22 a multivariable orthogo
nal (as opposed to biorthogonal) generalization of the Ra
cab polynomials. 

lated: the Kampe de Feriet series (2.5) in the first case and 
the U(n) series in Gustafson's case. 

III. BIORTHOGONALITY 

The discrete counterparts to the polynomials presented 
in this paper will be discussed in a future publication. These 
are associated with a different weight function than Gustaf
son's polynomials and are biorthogonal as opposed to or
thogonal. The difference in these two families is a reflection 
of the different hypergeometric series to which they are rei 

In this section we deduce the four biorthogonality rela
tions satisfied by the multivariable Wilson polynomials. We 
begin by demonstrating that the inner product of P n (x) with 
Pm (x) vanishes if N #M. 

Using representations (2.1) and (2.2) and the integral 
formula (2.24), one can easily deduce 

f""" dXp .. J:"" dxIPn(x)Pm(x)w(x) 

_ .- _ " " [lIP (nk)(mk) rUk + lk + ak + bk) ] 
=Pn Pm -/3nm LL . I I 

{;k}{Ik} k= 1 ik k rUk + ak + bk)r( k + ak + bk) 

X r(N +J +A +B+c+ d -1)r(M +L +A +B+c+ d -1) (_1)J+L, 
r(J + L + A + B + c + d) 

where /3 nm is some constant. If we assume N> M then we can write 

r(N + J + A + B + c + d - 1) 

r(J +L +A +B+c+ d) 

where 5r are some constants independent of J. Substituting this into (3.1) gives 

Pn·Pm =/3nm L reM +L +A +B+c + d - 1)( _1)L 
{lk} 

(3.1 ) 

(3.2) 

X [IT (mk) 1 ] L N-±-I 5Jr[ IT (n.k) rUk + lk + ak + bk)] (-1)J, (3.3) 
k=1 lk rUk+ak+bk) {;k} r=O k=1 Jk rUk+ak+bk) 

and if we then introduce a set of real variables ZI,zz, ... ,zp this can be written as 

Pn ·Pm =/3nm L reM +L +A +B+ c+d-1)( - I)L 
{Ik} 

(3.4) 

(3.5 ) 

Then the inner product becomes 

Pn·Pm =/3nm L reM +L +A +B+ c+d - 1)( _1)L [IT (~k) ___ I ___ (~)lk Z~+ak+bk-I] 
{Ik} k=1 k rUk +ak +bk) aZk zk=1 

(3.6) 

Clearly if any factor of (1 - Zk) survives the differentiations it will vanish upon setting Zk = 1. The total degree of these 
factors is N while the highest-order derivative acting on them is of order N - 1. Thus at least one factor of (1 - Zk ), for some 
k, will survive in every term after the differentiations and then will vanish upon setting Zk = 1. This demonstrates that Pn .p m 

vanishes for N>M, but then expression (3.1) is symmetric in nk and m k so the same argument follows for M>N, and thus 
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(3.7) 

which, however, says nothing of polynomials of the same degree (N = M). 
Next we demonstrate the analogous result for the other two families Qn (x) and Qm (x). Using representations (2.12) and 

(2.13) and the integral formula (2.24), we obtain 

Qn 'Qm = 5nm ~~}~{tJJJl (7k

k 
)(mk r~ ik )C: )ek I~ jk) 

rUk + jk + ak + bk ) ] r(M + c + d) nN + c + d) 
XrUk +ak +bk)r(jk +ak +bk ) r(R+c+d) nL+c+d) 

X r(l +L +A + c)r(J +R +B+ d)nL +R +c+ d) (_l)l+R+J+L, 

r(l +R +J +L +A +B+c+ d) 
where 5nm is some constant (l=~~= 1 ik ). Ifwe substitute the identity 

1 

r(l +R +J +L +A +B+ c+ d) 

(3.8) 

1 [ P (nk - jk - Ik)] r(l + N - J - T + A + c) r(J + R + T + B + d) 
= r(N + 1+ R + A + B + c + d) ~ JI tk r(l + L + A + c) r(J + R + B + d) 

(3.9) 

(T=~~= 1 tk ), which is deduced from (2.14), and then interchange the order of the {Ik} and {tk} sums, (3.8) becomes 

Qn 'Qm = 5nm I I I I I [IT (~k)(mk - ik)C. k)(nk - jk)(nk - jk - tk) 
{ikHrk}{;.}{tkH tk} k = 1 lk rk k tk Ik 

rUk + jk + ak + bk ) ] r(M + c + d) r(N + c + d) 
XrUk+ak+bk)r(jk+ak+bk) nR+c+d) nL+c+d) 

xr(l + N -J - T+A + c)r(J + R + T+B + d)r(L + R + c + d) (_l)l+R+J+L. (3.10) 

nN + 1+ R + A + B + c + d) 
The {I k} sum is now performed by using (2.14) giving 

Qn 'Qm = 5nm I I I I [IT (~k)(mk - ik)C.k)(nk - jk) 
{ikHrk}{;.}{ tk} k = 1 lk rk k tk 

rUk+jk+ak+bk) ] R! r(M+c+d) 
XrUk +ak +bk)r(jk +ak +bk ) (R -N+J+ T)! nN-J- T+c+d) 

xr(l+N-J-T+A+c)r(J+R+T+B+d) (_l)l+R+T, (3.11) 

nN + 1+ R + A + B + c + d) 
where 5nm has been redefined. We reverse the {tk} sums, tk -+nk - jk - tk, and then interchange the order ofthe {jk} and 
{tk } summations to obtain 

rUk + jk + ak + bk ) ] R! r(M + c + d) 
XrUk +ak +bk)r(jk +ak +bk ) (R - T)! nT+c+d) 

xr(l+ T+A +c)r(N+R - T+B+d) (_l)N+l+R+J+T. 

r(N + 1+ R + A + B + c + d) 

Then the Uk} sums are performed by the Chu-Vandermonde theorem (2.22), yielding 

(3.12) 

(3.13) 

Now the {ik} sum is brought on the inside, the indices are redefined ik -+ik + nk - tk, and the sum is performed by using 
(2.14) again, resulting in 
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(m k - r k )! ] 

(m k - nk - rk + tk )! 

(3.14) 

where S nm has been redefined again. Finally we interchange the remaining two sums and use (2.14) once more to obtain 

. - _ ~ [lIP (nk) nak + bk ) mk!] 1 r(M + c + d) 1 ( 1) T 

Q,. Qm - Snm ~ t r( b) ( )' (M N) r(T+ c + d) r( - T) - , 
{tk} k= I k nk - tk + ak + k m k - nk + tk . -

where we are assuming N #M. Clearly every term in this sum vanishes and thus 

fO 00 dxp" J: 00 dX I Q,. (x)Qm (x)w(x) = 0, if N #M, 

in analogy with (3.7). 

(3.15) 

(3.16 ) 

Next we show that the two families P,. (x) and Qn (x) are biorthogonalin all the indices n l ,n2 , ... ,np ' From (2.1), (2.12), 
and the multiple integral formula (2.24), we deduce 

P,. 'Qm = 2(21T)P LUI r(nk + ak + bk )nmk + ak + bk ) ]r(N + A + d)r(M + B + c)r(M + c + d) 

L [p (nk)(mk)(mk - ik) rUk + jk + ak + bk ) ] 
X {f.}{;k}~ JI Vk ik lk rUk + ak + bk )rUk + ak + bk ) 

X r(N +A + c) r(N +J +A +B+c+ d -1) r(J +L +A + c)r(l +B+d) (_1)IH+L. (3.17) 
nJ+A+c) r(N+A+B+c+d-1) r(l+J+L+A+B+c+d) 

Using (2.14) to sum the {lk} summations one finds 

P,. 'Qm = 2(21T)P LUI r(nk + ak + bk )r(mk + ak + bk ) ]r(N + A + c)nN + A + d)r(M + B + c)r(M + B + d) 

XL L [fI Ck)(mk) rUk + jk + ak + bk ) ] 
Uk}{;k} k=1 'k ik rUk +ak +bk)rUk +ak +bk ) 

xnN+J+A +B+c+d-1) nM+c+d) (_1)IH. 
nN + A + B + c + d - 1) nM + J + A + B + c + d) 

(3.18) 

Then the Chu-Vandermonde theorem (2.22) is applied to the {ik} sums, resulting in 

P,. 'Qm = 2(21T)P [kUI nnk + ak + bk ) ]nN +A + c)r(N +A + d)nM +B + c)r(M +B + d) 

xL[fI(nk) jk! ]nN+J+A+B+C+d-l) r(M+c+d) (_l)J-M. 
Uk} k=IVk (jk-mk)! nN+A+B+c+d-l) r(M+J+A+B+c+d) 

(3.19) 

Finally, we redefine the summation indices, j k -+ j k + m k' and apply (2.14) once more to obtain 

(3.20) 

which is clearly zero unless nk = mk for every k; that is, 

(3.21 ) 

where the normalization constant is given by 

h,. =2(21TV[ IT nnk +ak +bk)nk!] r(N+A+c)r(N+A+d)r(N+B+c)nN+B+d)nN+c+d) . 
k=1 (2N+A +B+c+d-l)r(N+A +B+c+d-l) 

(3.22) 

Applying either of the transformations in (2.8) and (2.9) to (3.21) then gives 
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L'''"" dxp" J: "" dXI Pn (x)Qm (x)w(x) = hn }JI Dnkmk , 

where hn is again given by (3.22). 
The four biorthogonality relations are schematically depicted below 

Pn (x)<:>Qn (x) 

t t 
Pn (x)<:>Qn (x) 

(3.23 ) 

(3.24) 

where the horizontal arrows denote biorthogonality in all the indices n l,n 2, ••• ,np while the vertical arrows denote biorthogona
lity only for polynomials of different degrees N -=/=M. 

IV. SPECIAL AND LIMIT CASES 

Analogous to the single-variable case there exists a limit to the multivariable continuous Hahn polynomials. These are 
obtained by setting 

p 

ak=a,,+!iwk' bk=b,,-!iwk, c=c'+!iW, d=d'-!iW, xk=X,,-!Wk' W= L Wk, 
k=1 

(4.1 ) 

dividing each polynomial family by W N, dividing the weight function by r(A + c)r(B + d), and then taking the limit 
W -+ 00, in which manner one finds 

lim W-NPn(x) = lim W-NPn(x) = [IT nkl]Hn(X'), 
W-oo W-oo k= 1 

lim W - N Qn (x) = lim W - NQn (x) = [ IT nkl]lin (x'), 
w_"" w_"" k= I 

(4.2) 

lim w(x) = [IT r(a" +ix")r(b,, -iX,,)]r(C'+iX')r(d'-iX'), 
w_"" rCA + c)r(B + d) k= I 

In particular, both Pn (x) and Pn (x) reduce to the same family of multi variable Hahn polynomials Hn (x'). Similarly both 
Qn (x) and Qn (x) reduce to the same family ofbiorthogonal counterparts lin (x'). Then from (3.24) we deduce that each of 
the families Hn (x') and lim (x') are orthogonal with themselves only for different degrees N -=/=M, and biorthogonal to each 
other in all the indices nl ,n2, ••• ,np' Also in the special case of (2.10) we find that both families are real. These polynomials and 
their discrete analogs have already been discussed in detail. 23.24 

Another interesting limit case, not yet known, is the multi variable continuous dual Hahn polynomials. These result upon 
dividing the polynomial families by d N

, dividing the weight function by r 2 (d), and then taking the limit d-+ 00. In this 
manner one finds 

lim d -NPn(X) = lim d -NQn(x) =Dn(x), 
d_ 00 d_ 00 

lim d - NPn (x) = lim d - NQn (x) = 15n (x), (4.3) 
d-oo d-oo 

lim w(x) = [lIP r(a + ix )r(b _ ix )] rCA - iX)r(B + iX)r(c + iX)r(c - iX) 
d_"" r2(d) k= I k k k k r(2iX)r( _ 2iX) , 

where now the two families Pn (x) and Qn (x) both reduce to the same continuous dual Hahn polynomials Dn (x), whereas 
Pn (x) and Qn (x) both reduce to the same biorthogonal counterparts 15n (x). These are given by 

_ [ p r(nk + ak + bk )] 1:2; .. ;2 (A - iX: - nl,a l + ix l ;···; - np,ap + iXp) 
Dn(x)- II (A+C)NFt:I; ... ;1 , 

k= t r(a k + bk ) A + c:a t + bt; ... ;ap + bp 
(4.4 ) 

- [ p r(nk + ak + bk )] t:2; ... ;2(B + iX: - nl,bl - LxI;"'; - np,bp - iXp) 
Dn(x) = II (B+C)NFI.I, .. ;I , 

k= I r(ak + bk ) B + c:a l + bl; ... ;ap + bp 
(4.5) 

and the four biorthogonalities satisfied by the Wilson polynomials, in this limit, imply the single relation 

f "" f"" - p 
_ "" dxp'" _ "" dXI Dn (x)Dm (x)w(x) = hn JI Dnkmk , (4.6) 

where hn is now given by 

hn = 2(21T)pLUI r(nk + ak + bdnk!]r(N +A + c)r(N + B + c). (4.7) 

In the special case, ak = b t, k = 1,2, ... ,p, c = c·, the weight function is real and positive and the barred polynomials are 
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simply complex conjugates of the unbarred polynomials, Dn (x) = D ~(x); thus in this special case (4.6) describes a conven
tional orthogonality relation. 

Returning to the multivariable Wilson polynomials we consider a few specific cases of the parameters for which the 
weight function takes on interesting forms. Ifak =bk = Ik + 1, c= Ip+I + 1, d= Ip+2 + 1, where '1,l2"",lp' Ip+I,lp+2 
(L=~i ~ I'k)' are non-negative integers, then, using known properties of the gamma function, \0 we can write, apart from a 
multiplicative constant, 

[ 
p Xk lk { xi}] cosh(1TX) [L+P-I{ X2}][ Ip+1 { x 2 

}][ Ip+2 { X2}] 
w(x) = II . II 1 + -:z X4. 2 II 1 + --;z II 1 + -'2 - II 1 + -'2 - , 

k~1 smh(1Txk ) jk~1 h smh (1TX) j~1 J jp+I~1 Jp+1 jp+2~1 Jp+2 
(4.8) 

which in the simplest case, II = 12 = ... = lp = lp + I = lp + 2 = 0, just becomes 

w(x) = [IT Xk ]X4COS~(1TX) [Pif{1 + X22}]. 
k ~ I sinh ( 1TX k ) sinh (1T X) j ~ I j 

(4.9) 

If, on the other hand, ak = bk = lk + ~, C = lp + I +~, d = Ip + 2 + ~, then, apart from a multiplicative constant, 

w(x) = [ IT sech( 1TXk )IT {I + . ~! 2} ]X2 sech( 1TX) 
k~1 1k~1 Uk 2) 

(4.10) 

x[L+(IIf-1I2{1+ .X2 2}]llfil {1+ . X
2 2}]llfi2 {1+ . X

2 2}]' 
j~1 Ci-!) ~+I~I CiP+1 -!) ~+2~1 CiP+2-!) 

( 4.11) 

for p odd, which in the simplest case, respectively, reduce to 

w(x) = [IT SeCh(1TXk )]X2seCh(1TX)[(
IIIi- I

{1 + X.2
2
}], 

k~1 J~I J 
(4.12 ) 

w(x) = LUI sech(1Txk ) ]XSinh(1TX)SeCh2(1TX) [(\/2;b~ 112 { 1 + (j ~2!)2} l 

v. DISCUSSION 

That these polynomials do not form a complete set is 
obvious since they are of even degree, but a given family is 
not complete even for even degree polynomials. One easily 
finds by considering a few simple cases that Pn (x) and 
P n (x) cannot be expanded in terms of one another, and simi-
1arly for Qn (x) and On (x), which if possible would have 
implied further orthogonalities. It appears the only pairs 
that can be expanded in terms of each other are Pn (x) and 
On (x) for one, and Pn (x) and Qn (x) for the other, which is 
consistent with the known biorthogonalities. The expansion 
coefficients are themselves related to a family of discrete 
biorthogonal polynomials, which we will consider in a future 
publication in the more general context discussed below. 

There are severalextensions of these multivariable Wil
son polynomials currently being investigated. Relaxing the 
restriction that the real parts of the parameters are greater 
than zero leads to biorthogonalities that are partly contin
uous and partly discrete or completely discrete; the latter 
case being the multi variable biorthogonal Racah polynomi
als. It also appears that these polynomials have a natural q
extension as in the single variable case.25

,26 
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By using a general additive decomposition for the product of two 03 functions, a simple and 
unified derivation of the modular equations of degree 3, 5, and 7 is given. 

I. INTRODUCTION 

Some years ago, Boon et al. I showed that the description 
of harmonic oscillator states on rational von Neumann lat
tices in the kq representation leads to the following additive 
decomposition of 03 (nx I n7) : 

n-I ( NTI 7) n03(nxln7) = L 03 X + - - . 
r=O n n 

(1.1 ) 

Corresponding results for the other 0 functions were given 
later,2 together with a simple direct proof based on the defin
ition of such functions as infinite series; furthermore, it was 
pointed out that similar additive decompositions may be 
found for powers of 0 functions. For instance, one has 

2n03(017)03(nxln27) = L O~ - + - - . 

00 

G(q) = II (1 - q2n). 
n=l 

From Eqs. (1. 8) and (1.10), we have 

03(0,q) = G(q)(2q I/4k - 1/2k'-1/2)1/3; 

similarly, from (1.7) and (1.11), 

04(0,q) = G(q)(2q I/4k -1/2k') 1/3. 

Furthermore, from (1.12) and (1. 9) , 

G(q2) = G(q)(~q-1/2kk '-1/ 2) 1/6, 

so that, if we replace q by q2, Eq. (1.13) becomes 

03(0,q2) = G(q)(!q- 1/2kk,-1/2)1/6 

X (2q1/2k 2- l/2k; - 1/2) 1/3 

(1.12) 

(1.13) 

(1.14 ) 

(1.15) 

(1.16) 2n - I ( X rtT I 7) 
r=O 2 2n 2 

( 1.2) 
and, by inserting (1.13), (1.14), and (1.16) into (1.3), Eq. 
( 1.4) follows at once. Conversely since3 

In particular, for n = 1 and x = 0, this identity becomes 

20~ (0,q2) = O~ (O,q) + O~ (O,q) (1.3) 

(as usual, q = ei 
1TT ). It is interesting to observe that ( 1. 3) is 

nothing but a relation between moduli of Jacobian elliptic 
functions, namely, 

~k2k; = k2k'1/2(1 + k')-3, (1.4) 

where 

k 1/2 = 02(0,q) , 

03(0,q) 

k ~/2 = 02(0,q2), 
03 (0,q2) 

k ,1/2 = 04(0,q) , 

03(0,q) 

k ;1/2 = fJ4(0,q2) . 
03 (0,q2) 

To see this, we recall thae 

ft (1_q2n-I)6=2q I/4k- 1/2k', 
n=l 

ft (1 + q2n - 1)6 = 2q I /4(kk') -112, 
n=1 

00 

03(0,q) = G(q) II (1 + q2n-I)2, 
n=l 

00 

fJ4(0,q) = G(q) II (1- q2n-I)2, 
n=l 

(1.5 ) 

( 1.6) 

( 1.7) 

(1.8 ) 

( 1.9) 

( 1.10) 

( 1.11) 

ft (1 +qn)6=.!...q-1/4kI/2k,-I, 
n= I 2 

or, with q replaced by q2, 

Jl (1 +q2n)6=+q-1/2k~/2k;-I, 

we have, by comparing (1.18) with (1. 9), 

k l/2k' -I = .!...kk ,-1/2 
2 2 2 ' 

whence (recall that k 2 + k'2 = k ~ + k;2 = 1) 

(1.17) 

(1.18) 

(1.19) 

k2 = [(1 - k ' ) / k ] 2, k; = 2k - 2 k ' I 12(1 - k ' ) . 

( 1.20) 

From this, we recover Eq. (1.4) and hence, by performing 
the above calculations in the reverse order, Eq. (1.3). 

The aim of this paper is to provide a simple proof of the 
formulas4 

(kk3) 1/2 + (k'k i) 1/2 = 1, 

k 1/2 - k ~/2 = 22/3 (kks) 1/12( k' k 5) 1/3, 

(kk7)1/4+ (k'k;)lf4= 1, 

where 

k 1/2 = O2 (O,qV), k' 112 = fJ4 (O,qV) 
v 03 (O,qV) v 03(0,qV) . 

( 1.21) 

( 1.22) 

(1.23 ) 

(1.24 ) 
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The only tool needed in our derivation is the following addi
tive decomposition for the product of two ()3 functions: 

()3 (xlrr)()3 (ylsr) 
r+5-1 

= L eil251fr+ 2ilY()3(X + y + IS17'ri (r + s)r) 
1=0 

X ()3(ry - sx + Irs17'rlrs(r + s)r) 

rand s being positive integers. 

(1.25 ) 

This equation is a simple consequence of the (fairly ob
vious) series rearrangement propertyS 

00 k-l 00 

L en = L L cm + kn + I ' ( 1.26) 
n=-oo /=On=-oo 

where k is a positive integer and m an arbitrary integer; in
deed, one has 

()3 (xlrr)()3 (ylsr) 

00 

= L exp(im271Tr + in2s17'r + 2imx + 2iny) 
m,n= - 00 

r+s-l 00 

= L L 
1=0 m,n= - 00 

xexp{im271Tr + i[m + (r + s)n + I ]2s17'r 

+ 2imx + 2i[m + (r + s)n + I ]y}, 

i.e., with m -+ m - sn: 

r+s-l 

()3(xlrr)()3(ylsr) = L exp(iFs17'r + 2ily) 
1=0 

00 

X L exp{;17'r[ (r + s)m2 + 2/sm 
m,n = - 00 

+ rs(r + s)n2 + 2rsln] 

+ 2i[m(x + y) + n(ry - sx) n, 
which is just (1.25). 

We are now ready to prove Eqs. (1.21 )-( 1.23). 

II. PROOF OF (1.21) 

In the general formula (1.25), we put r = 3, s = 1, 
x = 917'r/2, andy = 317'r/2. By using3 

00 00 

()3(X + 17'r/2Ir) = q-1/4e -iX()2(xlr), 

()3(X + 17'rlr) = q-1e - 2iX()3(xlr), 

it is easily seen that 

()3(317'1"/2Ir ) = q-9/4()2(0Ir), 

()3(917'r/213r) = q-27 /4()2(013r), 

()3(617'r+ 117'r14r) = q- (3/+ 9l ()2 (/17'rI4r) , 

(2.1 ) 

(2.2) 

so that, in the present case, Eq. (1.25) takes the form 
3 

()2(0Ir)()2(013r) = L e
il21fT

()2(/17'rI4r)()3(3/17'rI12r) 
1=0 

(2.3 ) 

or als06 

()2 (Olr) ()2 (013r) 

= ~ ± eil '1fT[()3 (/17'r Ir) _ ()4 (/17'r Ir)] 
4 1=0 2 2 

.[ ()3 CI;r 13r) + ()4 CI;r 13r)] . (2.4) 

Ifwe write explicitly on the rhs, considerable simplifications 
occur as a result of the quasidoubly periodic character of the 
() functions. A straightforward calculation gives 

()2 (01 r) ()2 (013r) 

= ~ [()3(0Ir)()3(013r) - ()4(0Ir)()4(013r) 
2 

+ ()2(0Ir)()2(013r)], 

whence 

()2(0Ir)()2(013r) + ()4(0Ir)()4(013r) 

= ()3(0Ir)()3(013r), 

i.e., by recalling (1.5) and (1.24) with v = 3, 

(2.5) 

(kk3)1/2+ (k'k 3)112= 1. (2.6) 

Q.E.D. 
As an interesting application, let us consider the double 

series7 

S(a)= L (_I)(m+l)(n+ll e -a(m'+n'+ mnl= L (_1)(n+lle -a[3m'+(n+ml'J+ e -a 
m,n= - 00 m,n= - 00 

00 00 

X L exp(-a[3m(m+1)+(n+m)(n+m+1)])= - L (_1)(n- mle -a(3m'+n'l+e- a 
m,n= - 00 m,n = - 00 

00 

X L exp( - a[3m(m + 1) + n(n + 1)]) = - ()4(0,q)()4(0,q3) + ()2(0,q)()2(0,q3), q = e- a. (2.7) 
m,n= - 00 

For a = 17'/../3, we haveS land thus (kk3) 1/2 = (k'k 3) 1/2 =!, i.e., 

S(17'/../3) = 0. 

2013 

k = (../3 + 1)/2{2 = k 3' k' = (../3 - 1)/2{2 = k3 
(2.8) 

J. Math. Phys., Vol. 30, No.9, September 1989 

(2.9) 

The same conclusion can be reached by using Jacobi's imagi
nary transformation. 

E. Montaldi and G. Zucchelli 2013 



                                                                                                                                    

III. PROOF OF (1.22) 

In the general formula (1.25), we put r = 5, s = 1, 
x = 0, andy = 1rr/2. By using (2.1) and (2.2), we first have 

q- 1/402 (01 r) 03 (015r) 

= 202 (1T; 16r) O2 (5;r 130r) 

+ 203 (~r 16r )03 (5;r 130r) 

+ 2q203 (3;r 16r) 03 C 5;r 13OT)' (3.1) 

On the other hand, if we put r = 5, s = 1, x = 51Tr/2, and 
y=O, we get 

q- 1/402 (015r)03 (Olr) 

= 202 (1T; 16r) 03 (5;r 130r) 

+ 203 (~r 16r )02 (5;r 130r) 

the complete elliptic integrals ofthe first kind, having modu
lus k and ks' respectively. 

As an example, let us take q = e- 1T ; then, as it is well 
known, k = k' = 2- 1/2 and (1.22) gives 

ks = 23/2(5 1/4 + 1)-4[(51/2 _1)/2]8, 

k; = 2-S/2(5 1/4 + 1)4[(5 112 _1)/2]4. 
(3.9) 

It may be observed that other choices for r, s, x, and yin Eq. 
( 1.25) are of course possible; for instance, by repeating the 
above calculations with r = 5, s = 1, x = 1T/2, andy = 0 and 
r = 5, s = 1, x = 0, andy = 1T/2, respectively, we get 

k ;112 _ k 11/2 = 22/\k'k; ) 1/12(kks) 1/3. (3.10) 

A further relation is obtained from (3.6) with the replace
ment q-+ - q. The result is 

q-1/4[02(0Ir)04(015r) + 04(0Ir)02(015r)] 
00 

= 2 II (1 - in)( 1 + q2n - 1)( 1 _ qlOn) 
n=1 

(3.11) 

whence, by using once more the familiar formulas for the 
+ 2q203 (3;r 16r) 03 (15;r 130r)' (3.2) infinite products, 

From (3.1) and (3.2), it follows that 

q-1/4[02(0Ir)03(015r) - 03(0Ir)02(015r)] 

=2 [03(1T; 16r)-02(1T; 16r)] 

• [ 03 (5;r 130r) - O2 e;r 130r)] 

or als06 

q-1/4 [02 (01 r) 03 (015'1") - 03 (0Ir)02 (015r» 

(3.3 ) 

(kk;)1/2+ (k'ks)1/2=22/3(kk'ksk;)1/12. (3.12) 

A final remark is in order. Let us put 

21/4ql/24u = IT (1 + in-I) = [2qI/4(kk')-I/2P/6, 
n=1 

(3.13 ) 

21/4~/24V= IT (1 +qS(2n-I» = [2~/4(ksk;)-1/2r/6, 
n=l 

(3.14 ) 

i.e., 

= 2 [ 04 (:; 13;)04 ( 5;r 11~r) l (3.4) u=(2kk,)-1/12, v=(2ksk;)-II12. (3.15) 

Now, by recalling thatl 
00 

04(X,q) = G(q) II (1 - 2in - I cos 2x + q4n - 2), 
n=1 

(3.5) 

a straightforward calculation gives 

04 (1Tr 1
3r

) = IT (1 _ qn), 
4 2 n= I 

04 (51Tr 1 151T) = IT (1 _ qsn) 
4 2 n= I 

and (3.4) becomes 

q-1/4[02(0Ir)03(015r) - 03(0Ir)02(015r)] 
00 

= 2 II (1 - qn) (1 _ qsn). (3.6) 
n=l 

This is indeed equivalent to (1.22), because3 

IT 0- qn) = (41T- 3q- 1/4k 1/2k '2K3) 116, (3.7) 
n=l 

00 II (1_qSn) = (41T-3q-S/4kV2k;2K~)1I6, (3.8) 
n=l 

where K= (1T/2)O~(Olr) and Ks= (1T/2)0~(015r) are 

2014 J. Math. Phys., Vol. 30, No.9, September 1989 

Now, from (1.22) and (3.10), we have 

(kk;) 1/2 _ (kk') 1/2 _ (ksk;) 1/2 + (k 'ks) 1/2 

= 24/3 (kk 'k5k; )5/ 12 

or also, by recalling (3.12) and (3.15), 

(U/V)3 + (V/U)3 = 2(U2V2 _ l/u2v2). (3.16) 

This is the modular equation of the fifth degree quoted by 
Ramanujan9 in his celebrated paper "Modular equations 
and approximations to 1T," which has received renewed at
tention in recent evaluations of 1T, with a surprisingly high 
number of decimal figures. 10 

IV. PROOF OF (1.23) 

In the general formula (1.25) we put r = 7, s = 1, and 
x =y= 0; then 

03 (01 r) 03 (017r) 
7 

= L eil21TT03(/1Trl 8r)/93(711Trl 56r). (4.1 ) 
1=0 

Similarly, with r = 7, s = 1, and x = y = 1T/2, 

E. Montaldi and G. Zucchelli 2014 



                                                                                                                                    

3 

= 2 L e4i121TT83 (2hT1"1 81") 83 (14hT1" 1 561"), (4.3) 
1=0 

From (4.1) and (4.2), we get 

83(011")83(0171") + 84 (011")84 (0171") 
3 

= 2 L e4i121TT83(2hT1"181")83(14hT1"1561"), (4.3) 
1=0 

which can be simplified in the usual manner, leading to 

83(011")83(0171") + 84 (011")84 (0171") 
4 

= L 81(0121")81(01141"). 
1=2 

This can be rewritten as 

83(011")83(0171") [1 + (k'k;) 1/2] 

= 83(0121")83(01141") 

0[1 + (k2kI4)1/2+ (k~k;4)1/2]. 

Now,from 

IT (l_qn)6=41T- 3q-I/4k l / 2k,2K 3, 
n=l 

we have, with q-.q2, 

00 n (1 - q2n)6 = 41T- 3q-I/2q12k ~2K~. 
n=l 

On the other hand, 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

IT (1- q2n)6 = 21T-3q-I/2kk'K 3 (4.8) 
n=1 

and so, by comparison with (4.7) [also recall (1.20) ] 

K 2 =[(1+k')/2]K, i.e., (4.9) 

83(0121") = [(1 + k ')/2] 1/283(011"). 

Therefore Eq. (4.5) becomes 

1 + (k'k;)1/2 

=![(1 +k')(1 +k~)]1/2 

+![(1-k')(1-k;)r/2 + (k'k;)1/4, 

which, by a straightforward manipulation, leads to (1.23). 
As an example, let us take q = e - 1T; then, 

k=k'=2- 1/2,and 

kV4+k;1I4=21/B, k~ +k;2= 1 (k;>k7). 
(4.10) 

It is convenient to put t = (2k7k;) 1/4 and S = t + 1/t, i.e., 

t = !(s ± ~). As one easily shows, S satisfies the 
equation 
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whose acceptable root (in order to have a real t) is 

s= (..fi + 1) 2/-/2. 
From this, it follows that 

t = A [(1 + ..fi)/-/2 ± 71/4 P, 
Now, if we write 

(4.11 ) 

k ~/4 = !021/B(1 - ~1 - a), k ;114 = !021/B(1 + ~1 - a), 

(4.12) 

so that t = (2k7k; ) 1/4 = 2 -3/2a , we must choose the lower 
sign in (4.11), in order to have a < 1. Thus the modulus 
associated to q = e -71T is 

k7 = 2-712 ( 1 - ~1 - a)4 

and the complementary modulus is 

k; = 2- 712 (1 + ~1 - a)4, 

a being given by 

a= [(~ _71/4) r-

(4.13) 

(4.14) 

(4.15 ) 

In conclusion, although the results (1.21)-( 1.23) are well 
known in the literature, we believe that their derivation by 
means of the (very general) additive decomposition for the 
product 83 (xlrT)83 (yIS1"), Eq. (1.25), is of some intrinsic 
interest. It should also be possible to obtain, along similar 
lines, formulas for k2r + I' r>4. 

1M. Boon, J. Zak, and I. J. Zucker, J. Math. Phys. 24, 316 (1983). 
2M. Boon, M. L. Glasser, J. Zak, and I. J. Zucker, J. Phys. A: Math. Gen. 
15,3439 (1982). 

3E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge V.P., 
Cambridge, 1958), Chaps. XXI and XXII. 

·See, for instance, A. Cayley, Elliptic Functions (Dover, New York, 1961 ), 
Chap. VIII. 

5See, in this context, H. M. Srivastava and H. L. Manocha, A Treatise on 
Generating Functions (Horwood, Chichester, 1984), Chap. 2. 

6Recall that 83 /.(xlr) = 83 (2xI4r) ± 82 (2xI4r). 
7This series was brought to our attention by R. Ferrari, who met it in the 
study of two-dimensional electrons in a strong magnetic field. He also 
guessed, by using the computer, that S( 1r/,J3) = o. 

"Recall the well-known Legendre's result concerning the modulus 
k=sin(1r/12). 

9S. Ramanujan, Collected Papers (Cambridge V.P., London, 1927). 
JOJ. M. Borwein and P. B. Borwein, Sci. Am. 258(2), 66 (1988). 
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A Mellin transform technique for the heat kernel expansion 
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It is shown, for a wide class of operators, that the solution to the associated heat equation may 
be obtained as a series. This is accomplished using the inverse Mellin transform of the kernel of 
the sth power of the operator, together with the analytic properties of the kernel in the complex 
splane. 

I. INTRODUCTION 

A renewed interest in the study of the solutions of the 
heat equation associated to elliptic operators, in the form of 
an asymptotic expansion, was observed over these last few 
years in several situations. Examples of such situations are 
found in the regularization of operator determinants asso
ciated with Grassmann variables in the path integral ap
proach to quantum field theory, in the calculation of non
Abelian anomalies, 1.2 or in studies offield theories in curved 
spaces. 3 For instance, in two-dimensional QCD I

,4 we may 
write the generating functional, after integration over the 
fermionic fields, as 

Z= I 9'A(X)detpexp [ - ~ I d2XGtLvaGtLva] (1) 

(apart from gauge fixing terms), where A(x) is the gauge 
field, GtLva is the gauge field strength tensor. and 
D = i(J + A (x»). The determinant of P appearing in (1) 
comes from the integration over the fermionic fields; it is a 
divergent quantity and must be regularized. One of the most 
popular ways is the proper-time regularization method.5 

The regularized determinant is given in terms of the proper
time regularization parameter €, through the diagonal part 
of a function I F(€,x,y), which obeys the "heat equation," 
associated to the operator P 2 [see Eq. (2) ]. The regularized 
determinant detP(€) (€--+O) must be known and then the 
behavior of F( €,x,y), as € --+ 0, must be found. 

Beyond the particular example we have just given, we 
are led, in general, to the study of the solutions of the heat 
equation, 

d - F(t,x,y) = HF(t,x,y) , 
dt 

(2) 

where t is a ("time") parameter and x and y are points of a 
D-dimensional compact manifold without boundary; the op
erator H acts on the x variable. In the case of QCD2, t is the 
proper-time regularization parameter € and H is the opera
tor P 2. For more generality, H may be taken as an order m 
pseudodifferential operator. 6 Particularly important is the 
asymptotic behavior of the diagonal part of F( t,x,y) as t --+ O. 

This is usually done by means of the de Witt anzatz,3 

00 

F(t,x,y) = Fo(t,x.y) L t 'a, (x,y), 
,~o 

where Fo is the solution of the "free heat equation." 
In this paper we propose a new simple Mellin transform 

method to obtain an asymptotic expansion to the solution of 

the heat equation F(t;x,y) , the so-called heat kernel. This is 
done using the rigorous results of Seeley 7 on the analytic 
structure of the kernel K(s;x,y) associated to the sth power 
of the operator H of [Eq. (2)], H s, in the complex s plane. 
Our expansion may be seen as an alternative to the de Witt 
anzatz in the case where the residues of the diagonal part of 
K(s;x,y) can be calculated. We remark that Mellin trans
form methods for obtaining asymptotic behaviors have been 
used in other contexts. Indeed, one of us used such methods 
to demonstrate theorems on the asymptotic behavior of 
Feynman amplitudes. 8 

To proceed, we note that it may be shown that the 
Green's function of HS,Z(s,x,y), is related to the Seeley's 
kernel of HSby Z(s,x,y) = K( - s,x,y), and to the solution 
of the heat equation (2) by a Mellin transform. So 

K(s,x,y) = dt t - s-IF(t,x,y). 1 loo 
r( - s) 0 

(3) 

Conversely, the inverse Mellin transform gives 

I+ 00 dIms 
F(t,x,y) = -.- t S r( - s)K(s,x,y), 

- 00 2l1T 
(4a) 

provided K(s,x,y) can be extended to the whole complex s 
plane. The s integration in (4) goes parallel to the imaginary 
axis and Re(s) must belong to the analyticity domain of 
K(s,x,y,). One of Seeley's results7 is that within the approxi
mation made to construct the power operator H s, it has a 
continuous kernel for Re(s) < - D 1m. The diagonal ele
ments K(s,x,y) extend to meromorphic functions of s, hav
ing as only singularities simple poles located at s = U 
- D)/m,j = 0,1,2,00'; their residues can, in principle, be cal-

culated7 from the symbol (generalization of the characteris
tic polynomial) of H s, using the formula 

ResK(s= U -D) 1m) 

- 1m II A (j-D)/m 

- im(21T)D+ I 
lsi ~ I.r 

xb _ m-j (A,s)dA ds. (4b) 

where r is a curve coming from 00. going along the ray of 
minimal growth to a small circle around the origin, then 
going back to infinity. The quantities b(A,S) _ m _ j are ob
tained from the coefficients of the symbol. Here lsi = 1 
means that the set of variables {5} is constrained to be at the 
surface of the D-dimensional unit sphere. The off-diagonal 
elements K (s,x,y) x # y extend to entire functions of s. 
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FIG. 1. Poles ofr( - s)K(s,x,x) for a general pseudoditferential operator 
H; K is the approximate kernel of H' as given by Ref. 6. 

For the diagonal elements, the general analytic struc
ture of the integrand in (4a) is displayed in Fig. 1. The in
verse Mellin transform (4a) is unambiguously defined if we 
take the integration along a line Co in the "initial" analyticity 
domain of K(s,x,y), Re(s) < - Dim. Then we may obtain 
an expansion in t by displacing the integration contour to the 
right, picking up successively the contributions from the 
poles. Then if the kernel K has a good behavior at infinite s, 
together with the vanishing7 of the residues of K at positive 
integer s, we are left with the remaining contributions from 
the residues at the poles. Thus the diagonal elements of the 
solution of the heat equation (2) are expressible as the fol
lowing series: 

00 ,(-I)' 
F(t,x,x) = - I t --K(l;x,x) 

'=0 l! 

- ItU-D)/mr[(D-j)/m]Rj(x), (5) 
j 

where the sum overj = 0,1,2, ... , excludes the terms such that 
(j - D)/m = 0,1,2, ... , andRj are the residues ofK(s,x,x) at 
s = (j - D)/m. 

This is the result we would like to present here. In the 
following section we illustrate our method with two simple 
examples. 

II. THE LAPLACIAN IN A RIEMANNIAN METRIC 

We consider the operator H = - V2 + P, where V2 is 
the Laplacian in a Riemannian manifold and P the projec
tion on the constants. In this case, K(s;x,x) has poles at the 
values s = j - D 12, j = 0,1,2, ... , and if the dimension D is 
even, these poles are in finite number,7 located at s = j 
- D 12,j = O,I, ... ,D 12 - I. The residue at s = - P 12 can 

be calculated in geodesic coordinates using formula (4b), 
and we can obtain the leading term to the expansion (5) in 
differential form [We remember the definition of Seeley's 
kernel, as such, that if H acts on a manifold M, then 
Hj(x) = fM dyK(s,x,y)/(y).]: 

t - DIZ reD 12)[ (21T) - D /2] IS D- Ildv, 

where IS D - II is the surface area of the unit sphere in RD, 
and dv the volume element in the manifold. 
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III. THE EUCLIDEAN LAPLACIAN 

Of course we do not know the exact kernel in the general 
case, but we indeed know it in at least a particular one, and it 
may be instructive to see what happens in this case. Let us 
takeH to be the Euclidean Laplacian operator, H = a2, inD 
dimensions. The Green's function of H \ for real integer 
positive k, is given in Ref. 9. Starting from this we perform 
the extension from positive integers k to complex s values, 
obtaining the exact kernel of H S as a meromorphic function 
of s, for any dimensionality D, 

KL (s,x,y) 

ei1T(D/2)r(D 12 + s) (P + I'O) - D12 - S = ( - 1) - S -----..:.-:...---.:.----:--=----.:.....:...-...:.......--
4 -T( - S)~/2 ' 

Re(s) <DI2, (6) 

where P is the quadratic form - ~f= I (Xi - Yi)2 
== - (X - y)2. We note that the original restriction9 

( - D I 
2) < k < 0 for integer k implies, after performing the analytic 
continuation, the "initial" domain of analyticity ( - D I 
2) < Re(s) < 0 for K(s,x,y). In this domain the inverse Mel
lin transform (6) is unambiguously defined. Then starting 
from an integral along a line Co parallel to the imaginary axis 
in the region ( - D /2) < Re(s) <0 (Fig. 2) we sum up the 
contributions from the poles, obtaining the result 

F(x,y,t) = (_I)D(41Tt) DI2 exp[ - (x-yf/4t], (7) 

which is the well-known solution to the free heat equation. 
In the case of the Laplacian L, the analytic structure in s 

of the exact kernelKL (s,x,y) of L s, multiplied by r( - s), is 
shown in Fig. 2. It is rather different from that correspond
ing to the kernel of the power H S of any pseudodifferential 
operator H, as obtained from Ref. 7 (Fig. I). This is simply 
due to the fact that RD does not belong to the class of spaces 
treated by Seeley in his work. 

IV. CONCLUSION 

The expansion (5) for the heat kernel, which is the re
sult we would like to present here, looks rather different 
from the de Witt's anzatz currently used. It could give new 
results when applied to more realistic examples. However, it 
is not our purpose in this short note to make physical appli
cations. These will be the subject of a forthcoming paper. 
Our work must be understood as a new method to obtain an 

o 1 2 ••• j j.I ••• 

FIG. 2. Poles ofr( - s)K(s,x,y) in the case where His the Laplacian. Note 
that K(s,x,y) is the exact kernel of H'. 
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asymptotic expansion to the heat kernel, which could lead to 
new results in physical situations. 
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In a previous publication [Phys. Rev. D 36, 1135 (1987)] it was shown how the stochastic 
process associated with the solution of the Schrodinger or diffusion equation can be derived by 
an infinity of "Gaussian tricks." In this article the method is extended to differential operators 
of the form (p - eA IC)2, ac2(x)a, and ll. = (l/.[g)ap (.[ggP"a,,). In this formulation the 
relation between operator ordering ambiguities and time labeling in the functional integral is 
immediate. In particular, it is clear where the choice between Ito and Stratonovich integrals 
enters. 

I. INTRODUCTION 

In a previous publication 1 we gave a new derivation of 
the path integral using the Trotter formula and the explicit 
introduction of a stochastic variable at each time step by 
means of the "Gaussian trick" or the "uncompleting of the 
square." In this paper we extend the method to situations 
where the Lagrangian contains sensitive terms and where 
problems of operator ordering may arise. In particular, we 
will show where the choice between the Ito and Stratonovich 
stochastic integrals enters. 

The operators that we consider are 

Ll = +(! - i; A r -v, (1) 

with Vand A potentials 

1 a ( )2 a L 2 =--c(x) -, 
2 ax ax 

(2) 

with c(x) a function, and 

L3 = ll. = _1 ~(.[ggP" ~), 
.[g axp ax" 

(3) 

with gp" (x) a Riemannian metric, using the usual notation, 
e.g., g = det gp,,' For simplicity we work with the heat equa
tion at lat = LJ and evaluate exp(tL;), i = 1,2,3. 

We recall the method of Ref. 1 for the case L 1 with 
A = 0 (which we call Lo). By the Trotter formula, 

el~, = !~~ [exp( ~ (::2)€ )exP( - €V) r. (4) 

with € = tin. We also define €'=,[E and use the notation 
a = a I ax. The essential step is to write 

e(E!2)il' = (21T) -3/2 J: 00 d 3y e - y'/2 + Y'E'il 

= (eE'G'il), (5) 

so that exp (!€ a 2) is the expectation of a vector valued Gaus
sian random variable of mean zero, variance 1. A variable 
Gk , k = 1, ... ,n, is defined for each term in the product (4) 
and the operators exp(€'Gk ·a) commuted past the factors 
exp( - €V) by means of the general formula 

e""l<v) =t(u + v)e"a. (6) 

The result is 

el~, = l~m (exp [ - €.I v(. + €' IG;)] 
n 00 J=l 1=) 

xexp(tl €'Gj·a )), (7) 

with the dot in the argument of V referring to the argument 
of the function on which elL" acts. In the continuum limit, 
(7) becomes 

el~, = E [exp(L dsV(' + b(t) - b(S»)) 

X exp(b(t) .a)], (8) 

the expectation being over Wiener measure. Here b(t) is 
Brownian motion and is the limit of €'~;= 1 Gj , so that 
(b) =0 and (ba (s)b(3(s'» =8a(38(s-s'). As we ex
plained in Ref. 1 (and in more detail in Ref. 2), Eq. (8) is the 
usual path integral representation for the propagator (the 
Feynman-Kac formula), although the form in which it is 
written is not that most commonly used in the physics litera
ture. 

II. VECTOR POTENTIAL 

We now apply the same method to L I' that is to say, deal 
with the presence of the vector potential A(x). We will drop 
the V(x) from LI since it is handled exactly as for Lo. The 
first step is not to apply the Trotter formula, 3 but merely to 
write 

(9) 

with a = ieAI c. The Gaussian trick is applied to each term in 
the product to yield 

elL, = (IJexP [ €'Gk ' (a - a)]). (10) 

The expectation in (10) is over all random variables Gk , 

k = 1, ... ,n. At this point the usual Trotter formula approach 
would be to separate the terms in the argument of the expo
nent (giving terms of the form eE'GaeE'GQ), but this does not 
work here because the error is of order €,2 and 
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E' = Ii = O( 11m). Terms of order E,2 = O( lin) must be 
kept. Recall 

~ + B = ~eBe - (1I2)[A,B lecubic tenns 

= e + (1I2)[A,B l~~ecubic terms, (11) 

We apply formula (11) to (10), keeping O( E,2) but drop
ping O( E,3), The k th term is 

exp( E'Gk ·a )exp( - E'Gk 'a) 

(12) 

Because only O(E) terms need be retained we can consider 
the expectation of the last exponential in the product (12) 
independently of the expectation of the product of the first 
two exponentials in (12). By independence, 
(GkaGkP > = oa(3 (the Greek indices refer to the vector com
ponents) and the argument of the last exponent can simply 
be replaced by !Ea·a. Following the steps used for Lo we 
obtain 

elL, = !~~ (exp [ - ktl E'Gk .a(- + E'itk G i )] 

xexp [ ~ Ektl (a'a)(- + E'itk G i )] 

xexpCtlE'Gk·a )). (13) 

Details of the passage to the continuum limit are now impor
tant and we define 

k 

bk = E' I Gk , Go==O, 
j=O 

(ab)k = bk - bk _ 1 = E'Gk, (14) 

leading to 

elL, = !~~ (exp [ - ktl (abh 'a(" + bn - bk_ d] 
xexp[~± (a'a)(" +bn -bk-d] 

2 k= I 

Xexp(bn .a»). (15) 

A continuum limit can now be written, but it is clear from 
( 15) that a particular form of the stochastic integral has 
been chosen, to wit the argument of a involves bk _ I' while 
the abk in the stochastic integral involves both bk _ I and the 
later variable bk • By using the other of the two expressions in 
Eq. (11) we could get the other choice of order with an 
opposite sign for the divergence term a· a. These alternatives 
provide the representation of the propagator using an Ito, 
retarded, prescription or its opposite, a fully advanced pre
scription. (In a gauge in which a'a = 0 the choice would be 
irrelevant. ) 

We next see in what way the Stratonovich stochastic 
integral is naturally generated. In this form there will be no 
a'a term, so that for quantum mechanical applications it is 
generally preferred.4 

Let n be even and consider two successive terms in the 
product (10). For each term we use (11) to split off the 
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gradient; in the first term we split off the gradient to the left, 
in the second it is split off to the right. Thus 

exp[ E'G2k ' (a - a) ]exp[ E'G2k _ 1 ·(a - a)] 

= exp( E'G2k ·a)exp( - E'G2k 'a) 

xexp( + (E/2) [Glk 'a, G2k ·a]) 

xexp( - (El2) [G2k _ 1 ·a,G2k _ 1 ·a]) 

Xexp( - E'Glk _ 1 ·a)exp( E'G2k _ 1 ·a). (16) 

Again, because we need retain only O(E), we can consider 
expectations of the intermediate terms (involving the com
mutators) separately. But these terms are now seen to cancel 
each other because G2k _ I and G2k are identically distribut
ed, Therefore by splitting successive terms in opposite order 
in the product (10), the commutators disappear - at the 
expense of extra bookkeeping for the variables G k' The pro
pagator becomes 

elL, = lim (exp( E'G2v ·a )exp( - E'(G2v + G2v _ I) 'a)'" 
n- 00 

Xexp(E'(G3 + Gz ) 'a)exp( - E'(G1 + G 1 ) 'a) 

Xexp(E'(G I + Go) ,a), (17) 

where we have used v = n/2. We now perform the usual 
permuting to bring all translation operators to the right. The 
result is 

elL, = !~~ ( exp [ - E' kt I (G2k + G2k - I ) 

.a(- + E'ltk (G2I + I + G2I »)] 

xexP(E'kto (G2k + 1 +G2d·a)), (18) 

with G2v + I == O. At this point, comparison with (13) shows 
the essential difference between the present method (which 
will lead to the Stratonovitch integral) and the former' (Ito) 
one. In (13) the increment multiplying a is Gk and it is also 
in the argument of a.5 In (18) the increment is Glk 

+ G2k _ I' while the argument of a contains G2k but not 
G2k _ I' This last observation is the essential feature of our 
demonstration and is the way the "midpoint" rule enters the 
path integral. 

The calculation proceeds by defining b k = E' l: J = 0 Gj 

with k = 1, ... ,n and bo==O. Equation (18) becomes 

elL, = !~~ (exp [ - ktl (b2k - b1k - 2 ) 

'a(' + bn - blk _ l ) ]exp(bn .a»). (18a) 

Again taking s = kE, in continuous time notation the expres
sion (18a) becomes 

elL, = !~~ (exp [ - I(b(s) - b(s - 2E») 

'a(' + b(t) - b(s - E»)]eXP(b(t) .a)). (18b) 

The sum in (18a) or (18b) is a particular prescription for 
the integral S db· a, and as such is a variant of the Ito integral 
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[in Eq. (13)] encountered previously. It is in fact the Stra
tonovich integral and from (18b) it is clear that for a given 
time interval dt = 2E between s - 2E and s, the time argu
ment f@r b ( . ) in a is s - E, that is, at the midpoint. In proba
bilistic notation (18b) can be written as 

e'L, =E [exp( - Sa' db'a(' + b(t) - b(S»)) 

Xexp(b(t) .(})], (19) 

with the understanding that b(s), within the argument of a, 
is evaluated at the midpoint. That is, the integral is the limit 
of a sum of terms, 

[b(s + E) - b(s)] 'a(' + b(t) - b(s + !E»). 

III. SPATIAL DEPENDENCE IN THE COEFFICIENT OF 
THE SECOND DERIVATIVE 

The operator L2 = !ae2 a calls for a different strategy. It 
is clearly one of the quantizations of the classical Lagrangian 
!e(x) 2X2 and it is self-adjoint with respect to the measure dx. 
Other operator choices are possible, for example, !e a 2e or 
! (e ae a + ae ae) and will arise from other orderings. In 
fact, our scheme will not produce L2 exactly but an expres
sion differing from it by a potential term-something easily 
corrected. 

As usual we write 

(20) 

with E = t In. Now consider the operator 

F(A) = _I_I"" dy e"ya~-y'I2C>etya=J dy tjJ(y). 
fi1i - "" e 

(21) 

Clearly F is self-adjoint and F(O) = 1. Here F is an even 
function of A: For A-+ - A, let y-+ - y. We have in mind 
that A 2 will essentially be E so we want to expand Fin powers 
of A up to and including A 2. Consider 

aF = af dy ytjJ + adjoint. (22) 
aA 

At A = 0 this is zero, as expected. Next, consider 

:~~ = a 2J dy y2tjJ + a J dy rtjJa + adjoint. (23) 

At A = 0 this gives 

a 2 ~ I = a 2e2 + ae2 a + adjoint = 4 ae2 a + (e2)", 
aA A=O 

(24) 

where (e2
)" is second derivative of e2

• Thus 

F(A) = 1 + (A 2/2)(4 ae a + (e)") + O(A 4). (25) 

Comparing to exp(E ae2 a 12) = 1 + (EI2)ae2 a + O(c) 
we let A = ,J€12 = E'/2. It follows that to order E 

e( 1I2)Eac> a = F( ,J€12)e - E(C»"/8 

= _I_I"" e(E'/2)ya~ 
fi1i - "" e 

X e - y'I2C> e(r( l2)yae - E(C»"/8. (26) 
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The operator F(E') is in a sense (exp(E'Ga» but the 
random variable G, implicitly defined, has a position depen
dent variance e(x)2. Thus when taking the expectation of a 
function of a = a I ax-which does not commute with 
e(x)-more explicit specification of the meaning of the ex
pectation must be given. Therefore we will continue to write 
the explicit integral form of F rather than employ bracket 
notation. 

Remark: We can interpret the expression (26) in a rath
er different way. The x-dependent Gaussian factor e-y'I2C> 

plays two roles: first, it is a weight on the infinitesimal part of 
the path between time t and t + E'. Secondly, it is also an 
operator acting on functions of x (by ordinary multiplica
tion). This points to a more general kind of path integral 
where the weights over the paths would themselves be opera
tors. In fact this is the situation that was met in the path 
integral representation for the Dirac equation. 1 In the for
mula (26) and, more generally, in path integral representa
tions of elliptic or parabolic scalar equations, the situation is 
easier for the following reasons: the various path weights at 
each time are commutative, because they are Gaussian 
weights with value in the operator algebra of multiplication 
by scalar functions. Finally, this leads, after reordering, to an 
ordinary measure on the path space and to stochastic differ
ential equations. On the other hand, this is no longer true for 
the Dirac equation or even for matrix valued elliptic systems. 
This is also what happens in quantum field theory. 

Continuing our development, the propagator is then 
written 

n 1 J (1 ) 1 [-.vi] e'L, = II -- dYk exp -E'Yka --exp ---2 
k=lfi1i 2 e(') 2e(') 

(27) 

with time ordering and limit understood. By the usual steps 
(27) becomes 

e'L, = IT _I_JdYk 1 exp( _ ± __ (..:l_b_)i_) 
k=lfi1i e('+1/k) k=12e2('+7/k) 

xexp( - ; (e2)"(. + l1k»)exP(bn a), 

where we have defined 

11k = bn - bk + !(..:lb)k' 
k 

bk =E'LYj' and (..:lb)k=E'Yk' 
j= 1 

(28) 

(29) 

and the !..:lbk can be dropped from the argument of (e2
)" 

since this is an ordinary potential-like term. The continuum 
limit of (28) is 

e'L, = E [exp( - + Sa' ds (e2)"(. + b(t) 

- b(S»))exp(b(t)a)]. 

In this expectation the weight assigned to paths is position 
dependent. In calculating that weight, the function e is eval
uated at the midpoint position as in the Stratonovich sto
chastic integral. 
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IV. RIEMANNIAN METRIC 

The operator L3 is expressed in a similar way. Define 

F(A.) = (21T)-dIZJ ddyg -1I4/.yI'a"g 

(30) 

with d the dimension of the space. By our usual steps this 
leads to the exponential of the operator, 

£3 = g- 1I4a" (g\12g"V)a
y
g - \/4, 

based on the O(E) relation 

(31) 

exp(E£3) = F (.[E72)exp( - (E/4 )g- \12 a"ay (gIlZg"Y»). 
(32) 

We have not quite recovered the Laplacian because our inte
gration volume is implicitly d dX . By going to the Rieman
nian volume, gllZd dX, we effectively replace the functions f 
on which £3 acts by f ..... t/J = g - 1IY. Under this transforma
tion the operator £3 of Eq. (31) becomes 
g-IIZa" (gIlZg"Ya,,), the usual Laplacian. 

As in our earlier cases, the relation (32) leads to mid
point evaluation of stochastic integrals, namely, the Straton
ovich form. 

By changes in the ordering scheme of objects of the form 
of our F(A.), potentials can be added to the effective gener
ator, and these potentials are of the same sort as those de
rived in earlier work. 6 The present calculations also make it 
clear why ordering errors can so easily escape notice. For us, 

y is basically lu/.[E;i and the c2 of L2 would be 0(11) if we 
were working with quantum mechanics. Matters of operator 
ordering gave us an effective potential (c2

)". Since the lead
ing term l /2c2 is O( 1/ c2

), the relative size of the correction 
is O( 112) and semiclassical results will not generally be affect
ed by ordering problems. Of course this is an old observation 
and we are only noting the natural way in which it emerges 
from the present considerations. 

The form of F given in Eq. (30), while manifestly Her
mitian, is not covariant and requires a noninvariant poten
tial [cf. the second factor in (32) ] to produce the Laplacian. 
Clearly one could experiment with slightly different order
ing to obtain a covariant form at all stages, but we expect that 
a coordinate-free expression right from the start would be 
the most efficient way to proceed. 

V. DISCUSSION 

Our goal in this article has been to develop further a new 
method for the introduction of stochastic processes into the 
solution of differential equations. This method was previous
ly used to derive the Feynman-Kac formula for the solution 
of the Schrodinger equation with Hamiltonian H = (1/ 
2m)p2 + V. We have now shown how to handle situations 
where the coefficients of the derivative terms are themselves 
functions, the simplest case being Hamiltonians containing 
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vector potentials. Under these circumstances we obtain the 
midpoint rule of the functional integral, although it is also 
clear how alternative forms (e.g., Ito rather than Stratono
vitch) can arise. The natural appearance of the midpoint 
rule arises in our method because we introduce our stochas
tic variables in a manifestly Hermitian way-that is, sprin
kling our a/ax's symmetrically with respect to x-dependent 
terms. 

Similar ideas have been developed for the case of a 
fourth-order elliptic operator of the type - /12 - VinRef. 7. 
But the path lives in the complex space. On the other hand, 
in Ref. 8, Hochberg has constructed signed measures of infi
nite total variation to treat the case of - /1 2

, and in Ref. 9 the 
fundamental solutions of evolution equations have been used 
to construct formal measures on path spaces. However, 
these authors do not consider any disentangling of products 
of noncommuting operators, which is one of the natural 
goals for developing path integral formulas. 
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A very simple model of a classical particle in a heat bath under the influence of external noise 
is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored 
noise (Ornstein-Uhlenbeck noise). In a second step, an external noise is coupled to the bath. 
The steady state probability distributions are obtained. 

I. INTRODUCTION 

Our interest and the main purpose of this paper is the 
study of a system under the influence ofinternal and external 
fluctuations from the microscopic point of view of Hamilto
nian dynamics. 

The study of a system interacting with its surroundings 
is an interesting problem and has deserved great attention. 1 

The methods to derive the equations of motion of such a 
system have been very different; they go from the projection 
operator technique2 to the direct elimination of the heat bath 
surrounding the system.3

-
9 The main results arising in such 

methods are expressed through generalized Langevin equa
tions or the corresponding kinetic equations for the proba
bility density. Those methods start with a selection of the 
relevant variables for the system, and they eliminate the irre
levant ones to obtain the behavior of the quantities we are 
really interested in. The relevant variable equations of mo
tion contain some characteristics of the irrelevant variables 
which manifest themselves as a noise. This is usually called 
internal noise. 

On the other hand, the behavior of a system driven by an 
external noise has also been studied through the introduc
tion of stochastic terms in the phenomenological equation of 
motion of the relevant variables. To be specific, let us think 
of the equation of motion for a relevant variable x, 

x = u(a,x), (1.1 ) 

where a is the parameter which will be stochastically driven. 
Then Eq. (1.1) becomes 

x = u(a + ,u(t),x), (1.2) 

where,u (t) is a stochastic process or noise with well-defined 
statistics. Equation (1.2) is called a stochastic differential 
equation. The problems associated with this kind of equation 
have been extensively studied in the literature. \0 

The joint study of internal and external noises was con
sidered by means of a master equation. 11 The internal noise 
was scaled with the size of the system, and the external noise 
was introduced through the parameters of the probability 
transitions. This approach does not incorporate the opportu
nity to study the effect of thermal noise. 

In this work, we are interested in the following explicit 
problem: A classical particle is immersed in a heat bath of 
normal modes under the influence of an external stochastic 
field. In Sec. II we study this simple system without external 
noise in order to obtain a new representation for the internal 
noise. Section III is devoted to the study of this system when 
the heat bath is coupled with an external delta-correlated 
noise, and in Sec. IV we consider the coupling with an Orn
stein-Uhlenbeck (OU) external noise. In all those cases, we 
found the stationary solution for the probability density. 
Finally, we make some comments about the results we have 
obtained. 

II. INTERNAL NOISE 

We start with the classical problem of a particle of mass 
M coupled to a heat bath of N normal modes. The Hamilto
nian is given by 

p2 1 N {Pa 2 
H=-+V(X)+-I -

2M 2 I ma 

+maWa2(qa -aa(x»)2}, (2.1) 

where x, p are the coordinate and the momentum of the 
particle, respectively, (q a,P a ) are the variables associated to 
the a normal mode, Wa is the corresponding frequency, and 
the quantity aa (x) measures the interaction between the 
particle and the bath. V(x) is the potential energy of the 
particle. 

The method we will follow here was developed by 
Zwanzig,8 and applied to several systems by Lindenberg et 
al.9 The Hamilton equations for the normal mode variables 
(q a,P a ) are immediately solved and their direct substitution 
in the Hamilton equations for the particle gives us 8,9 

x=pIM, (2.2) 

1 it p= - V'(x) -- dt'f3(t')P(t-t') +/o(t), 
Mo 

(2.3) 

where we have assumed that the interaction between the par
ticle and the heat bath is linear, 
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aa (x) = Oax. (2.4) 

The last term on the rhs ofEq. (2.3) is the fluctuating force, 
N 

/o(t) = L Oa{[qa (0) - aa(x(O»)]maw/ cos(wat) 
I 

(2.5) 

It depends on the coupling function 0 a and the normal mode 
initial conditions, which we will assume to be canonically 
distributed. The statistical properties of this fluctuating 
force are determined according to that assumption. At first 
we notice that Io(t) has a Gaussian distribution function 
with zero mean, and the correlation satisfies a fluctuation
dissipation relation, 

(Jo(t)/o(t'» = KB T{3(t - t '), 
N 

{3(t) = L maWa 20a 2 COS(Wat)· 
I 

(2.6) 

(2.7) 

It is well known that a nonlinear interaction between the 
normal modes and the particle leads us to an equation with 
multiplicative noise.9 But here we are much more interested 
in the analysis of internal noise properties. In order to ac
complish this fact, we realize that the number of the normal 
modes of the heat bath should be very large (N,> 1), and we 
will also assume that the frequencies are distributed accord
ing to a Lorentzian function. This assumption resembles 
broadly the behavior of the hydrodynamical modes in a mac
roscopic system. 12 

The frequency distribution we propose is 

(2.8 ) 

where 7-
1 is the cutoff frequency and the distribution is nor

malized to the number of normal modes. 
The coupling function Oa = O(w) is assumed to scale 

with the number of oscillators N in such a way that the final 
results were independent of N, 

O(W) = oolfih W (00 is a constant). (2.9) 

The masses ma are put all equal to m. The preceding as
sumptions transform our internal noise/o(t) in an OU pro
cess. In particular, the correlation function (2.6) is obtained 
transforming the sum in (2.7) in a W integral using (2.8) as a 
weight. The explicit expression we get is 

(Jo(t)/o(t'» = (mKB TOo
2/'T)e -It- t'l/r, (2.10) 

where mKB TO ~ is the intensity of this noise and 7 (the in
verse ofthe cutoff frequency) is its correlation time. 

It is well known that the OU noise becomes a delta
correlated noise when the correlation time 7 goes to zero, i.e., 
when the relaxation time of the normal modes is very small 
compared with the macroscopic time of the particle. 

The set of Langevin equations (2.2), (2.3) and the sta
tistical properties of the internal noise (2.10) define a non
Markovian problem. To circumvent this difficulty, we use 
the well-known procedure of expanding the variables' space 
in order to have a set of equations without the memory func
tion and a delta-correlated noise. 13,14 

An equivalent set of equations to (2.2), (2.3), and 
(2.10) can be written as 

2024 J. Math. Phys., Vol. 30, No.9, September 1989 

x=p/M, 

p = - V'(x) + R(t), (2.11 ) 

R = _!i. _ mOo
2 

p + nt), 
7 M7 7 

where 

1 it R(t)= -- dt'{3(t-t')P(t')+/o(t). 
Mo 

(2.12) 

R(t) is an additional variable and r(t) is a Gaussian, zero 
mean, and delta-correlated noise, 

(2.13 ) 

The evolution equation for the probability density 
P(x,p,R;t) is the following Fokker-Planck equation: 

ap _L ap + (V'(x) -R) ap 
at Max ap 

+ ~(!i. + mOo 
2 p)p 

aR 7 M7 

+K TmOo
2 
~P. 

B r aR 2 
(2.14 ) 

The stationary solution Pst (x,P,R) is given by 

Pst (X,p,R):::::exp{ _~(L+ V(x) + 7R
2

2)}. 
KB 1\2M 2mOo 

(2.15 ) 

It is a canonical distribution corresponding to the heat 
bath temperature, modified by the characteristic of the inter
nal noise and the coupling of the heat bath with the particle 
through the variable R(t). In spite of those couplings, it is 
also easy to prove that they are not relevant to studying the 
statics of the particle, because the variable R (t) can be eli
minated by a simple integration 

Pst (x,p) = J dR Pst (x,p,R) 

:::::exp{ - K: ~:~ + V(X»)}. (2.16 ) 

The result is the usual Maxwell-Boltzmann distribution 
function as we could expect. From the point of view of the 
stationary solution, it does not matter whether {3(t) is delta
correlated or not. The difference between those two cases 
will be in the dynamics of the system. 

III. INTERNAL VERSUS EXTERNAL DELTA
CORRELATED NOISE 

Weare interested now in the effects caused by the pres
ence of an external noise. If we start considering a direct 
coupling between the external noise and the particle coordi
nates through a parameter in the potential, then we will get 
the same results obtained when we introduce an external 
noise in a system described by a generalized Langevin equa
tion. We do not study that problem here, because its ap
proach is standard. 10 

The interesting case occurs when the coupling with the 
external noise is through the heat bath. The interaction we 
will study here is also the simplest one. It is linear in the bath 

Mencia Bravo. Velasco. and Sancho 2024 



                                                                                                                                    

coordinates. The Hamiltonian (2.1) is modified by adding a 
new term, 

(3.1) 

The function tPa (t) measures the interaction intensity and 
€(t) is the external noise which we will assume to be Gaus
sian. The correlation function of €(t) will be specified later. 

The elimination of the heat bath variables follows the 
same way as in the previous section, leading to the general
ized Langevin equation 

x=p/M, (3.2) 

p = - V'(x) -.! r'dt' [J(t ')p(t - t') 
MJo 

+ /o(t) + 1T(t). (3.3) 

The quantities[J(t) and/o(t) are the same as in (2.5) and 
(2.7). Note that 1T(t) is a fluctuating force related with the 
external noise through 

1T(t) = - L <l>(t- t')€(tl)dt', 

where 
N 

<l>(t) = I 8at1>a wa sin(wat)· 
I 

(3.4) 

(3.5) 

The statistical properties of 1T( t) are determined by the nor
mal mode distribution (2.8), the couplings of the system 
with the bath (2.4) and the bath with the external noise 
(3.1), and the external noise itself. 

Now the coupling function tPa = tP(w) in (3.1) is also 
chosen to scale with the system size in order to obtain a finite 
result in the continuous limit, 

tP(w)=~rN-lw<l>o (<l>o = constant). (3.6) 

A direct substitution of Eqs. (2.8), (2.9), and (3.6) in Eq. 
(3.5) leads to 

<l>(t) = (8o<l>oIr)e - tIT, (3.7) 

which allows the calculation of the correlation function for 
the 1T(t) noise. So far, the calculation we have done in this 
section is independent of the correlation function for the ex
ternal noise €(t). To continue, it is necessary to specify that 

I 

This is a canonical distribution with an effective diffusion 
which depends on the external noise intensity and the cou
pling between the noise and the heat bath. 

Once again the correlation time r coming from the inter
nal noise is irrelevant to the statics because the integration in 
the additional R variable is not coupled to the variables 
(x,p), giving us the usual exponential distribution function 
(2.15) but with a new diffusion coefficient. 
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function. First we will assume that €(t) is a delta-correlated 
noise, 

(€(t)€(t'» = 2Dt>(t - t'). (3.8) 

By definition, it is independent of the internal noise proper
ties. Then 

(€(t)/o(t'» = o. (3.9) 

The correlation function of 1T( t) noise is immediately calcu
lated and it is given by 

(1T(t)1T(t'» = D( 8o<l>o)2r- 1e - It - t'IIT, (3.10) 

where we have neglected the transient terms (t,t ' > r). Equa
tion (3.10) shows how the heat bath dresses the external 
noise. Although the external noise is a delta-correlated one, 
the particle sees it as an external OU noise with the same 
correlation time as the internal noise but with an intensity 
depending on the couplings and the external noise intensity. 

To construct the Fokker-Planck equation, we will fol
low the same procedure as in Sec. II with few changes. Equa
tion (3.3) has two noises and according to Eqs. (2.10) and 
(3.10), both have the same correlation time. We define an 
effective Gaussian noise a(t) =/o(t) + 1T(t), which has 
zero mean and a correlation function given by 

(a(t)a(t'» = (mKBT+D<l>o2)802r-le-lt-t'llT. (3.11) 

Note that a(t) is also an OU noise, but there is not a fluctu
ation dissipation relation because the external noise is pres
ent. 

The set of equivalent Markovian equations is the same 
as (2.11) but the intensity of the delta-correlated noise is 
given now by (mKB T + D<l>o 2)80

2, which changes the diffu
sion coefficient in the corresponding Fokker-Planck equa
tion, 

ap 
at 

(3.12) 

The stationary solution has the same qualitative features as 
Eq. (2.14), but the "temperature" has changed according to 
the new diffusion coefficient 

I 
IV. INTERNAL VERSUS EXTERNAL ORNSTEIN
UHLENBECK NOISE 

(3.13 ) 

In this section, we consider that the external noise is an 
OU process with a correlation function given by 

(€(t)€(t'» = (Dh')e-lt-t'I/T', (4.1 ) 

where D and r' are the intensity and the correlation time, 
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respectively. A direct calculation gives us the correlation 
function of 1T(t), 

(1T(t)1T(t'» = D(Oo<l>O)2 7' {~exp( _ It- t'l) 
(r'/r)2 - 1 r r r' 

_ ~ exp( _ It ~ t'l )}, (4.2) 

where we have neglected the transient terms. The dressed 
external noise 1T(t) now has a more complicated correlation 
function with two correlation times, rand r'. In order to see 
what is the meaning of Eq. (4.2), let us assume that the 
external correlation time is bigger than the internal one. 
Then the dressed noise is dominated by the external noise, 

(1T(t)1T(t'» = [D(Oo<l>o)2/r']e- lt - t'llT'. (4.3) 

On the other hand, when the external correlation time is 
smaller than the internal one, we then recover (3.10). 

Now let us see what is the physical situation correspond
ing to (4.3). The heat bath degrees offreedom act on the 
system as an internal noise, and relax with a characteristic 
time r. A physical intuition leads us to think that the internal 
degrees offreedom should relax faster than any real external 
noise. So we will take a delta-correlated internal noise 
( r = 0), and then the dressed noise correlation is dominated 
by the external noise (4.3). The set of Langevin equations 
(3.2) and (3.3) is simplified, 

x=p/M, 

p = - V'(x) - (mOo2/M)p + Io(t) + 1T(t), (4.4) 

where we have taken the white noise limit for/oU) [r = 0 in 
(2.10) ]. 

Note that 

(fo(t)Io(t'» = 2KB TmOo
2{)(t - t') (4.5) 

and the term - mOo
2p/MinEq. (4.4) comes from themem

ory function which is now P( t - t ') = 2mOo 2{) (t - t '). 

To study the problem described by the set ofEqs. (4.4), 
we define an effective Gaussian OU noise, 

O(t) =Io(t) + 1T(t), (4.6) 

with an intensity DR and a correlation time r R given by 

DR = I"" < O(t)O(O)dt, 

r R = - t < OU)O(O)dt. 1 l"" 
DR 0 

These definitions give 

DR = mOo
2(KB T + D<l>o2/m ), 

r R = D(Oo<l>o)2r'/DR , 

(4.7) 

(4.8) 

(4.9) 

which are some combinations of the parameters characteriz
ing the noises and their interactions. The problem has been 
reduced to a set of equations with an effective OU noise. The 
stationary solution has been discussed in the literature. 15 

The stationary distribution is now 

Pst (x,p) ;::::::exp - ---+ -- , { 
p2 Vex) } 

Dp2M Dx 
(4.10) 

where 
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Now we have different values for the p-diffusion and the x
diffusion coefficients. We notice that the D x coefficient is the 
same as in Eq. (3.15), but the Dp coefficient has changed 
again and it shows a correction due to the external noise 
correlation time. Finally, we mention that r' can not be eli
minated as it was done in earlier cases. The interaction 
between internal and external noises will now effect the stat
ic properties of our system. 

v. CONCLUDING REMARKS 

Here we summarize the results obtained in this paper. 
At first we considered the simplest Hamiltonian system to 
study the behavior of an open subsystem immersed in a heat 
bath. The heat bath coordinates were eliminated and we 
found the way to model an Ornstein-Uhlenbeck noise. In 
this case, we have obtained that the internal noise correlation 
time is not a relevant quantity in the stationary solution of 
the Fokker-Planck equation. The delta-correlated external 
noise, coupled with the heat bath and with an OU internal 
noise, also has that property. But the diffusion coefficient 
was modified by the coupling parameters, and as a conse
quence there is not a ftuctuation-dissipation relationship. 

From the point of view of a more realistic situation, we 
have found that the most interesting case corresponds to a 
delta-correlated internal noise and an OU external noise. 
The stationary solution has two renormalized diffusion coef
ficients, one of them depending explicitly of the external 
noise correlation time. Obviously the ftuctuation-dissipa
tion relationship does not hold, because the external noise is 
present. 

The approach presented here opens the possibility of 
studying more complicated systems with nonlinear cou
plings. 
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Bound on the mass gap for a stochastic contour model at low temperature 
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A two-dimensional stochastic contour model is considered in which the state space consists of 
simple closed lattice contours about a fixed origin and the evolution in the state space is a 
continuous time reversible jump process. An upper bound is obtained on the mass gap for the 
model, which goes rapidly to zero, in a low temperature limit. A connection between this 
model and statistical mechanical and droplet models is discussed. 

I. INTRODUCTION 

This paper concerns a simple model for stochastic geom
etry, i.e., a stochastic process in which the state space is a 
space of curves or a space of (hyper-) surfaces. The motiva
tion for considering such processes comes from various ex
amples in statistical physics, field theory, and nonequilibri
um phenomena: We have in mind the Peierls' contours or 
surfaces of Ising and lattice gauge models, interfaces in dy
namical chemical reaction models, and droplet models. I

-
7 

At the level of computational physics, certain Monte Carlo 
algorithms for treating problems of statistical physics and, 
for example, problems of self-avoiding random walk can be 
regarded as processes of the above sort (cf. Refs. 8-15). 
Mathematically, we can ask familiar questions about these 
processes, questions concerning ergodicity, typical geome
tries, etc. 

Here, we consider what may be about the simplest pro
cess, for which the state space consists of simple closed lat
tice contours in two dimensions and the process is a contin
uous time evolution (jump process) on this state space. 
Physically, the dynamics are those of a model for a two
dimensional droplet in which the contour is the boundary of 
the droplet. The dynamics bear some relation to those of 
Glauber for the two-dimensional stochastic Ising model at 
low temperature. 16 The latter can be thought of as a "gas" of 
Peierls' contours evolving in time; if we disregard interac
tions between contours and instead concentrate on the evo
lution of a single contour, we obtain a model which is essen
tially that considered here. (Insisting that the contours 
encircle a fixed origin is just to break translational invar
iance.) The evolution of the model will be given by a self
adjoint semigroup, so that the process is reversible. We will 
be primarily concerned with the rate at which the process 
approaches equilibrium. 

Let X be the space of simple closed lattice contours {y} 
of arbitrary length on ',[,2 (the two-dimensional integer lattice 
in R2) which bound an area containing a fixed origin, say at 
(M), in R2. For convenience, we will assume X contains the 
null contour y = 0 as well. A non-null contour of X consists 
of unit length line segments between integer lattice points; 
since y is simple, an integer lattice point p in y has exactly 
two unit line segments hittingp. In statistical mechanics lan
guage, X is the space of Peierls' contours about a fixed site. 

Let 1T P be the probability measure on X (defined for {3 
sufficiently large), 

1T {y}-Z-te-Plrl P - (P) , (1.1 ) 

where Iyl is the length of y and 

Z({3) = L e- P1rl (1.2) 
reX 

is the normalizing partition function. 
We define a non-negative self-adjoint operator G acting 

in the Hilbert space )it" = 12 (X, 1T p) with the inner product 
(,) (cf. Ref. 8). Letj(y,y') be non-negative, uniformly 
bounded speed functions which, moreover, satisfy the fol
lowing conditions. 

(i) Local motion condition: j( y,y') = 0 unless yily' is 
the perimeter of a unit lattice square. 

(ii) Detailed balance condition: For all y, y'EX, 

1Tp (y)j(y,y') = 1Tp (y')j(y',y). (1.3) 

Under the hypotheses (i) and (ii) the operator G having the 
Dirichlet form 

(J,Gf) = ~ Lj(y,y')lf(y') -f(y)1 2
1Tp (Y) (1.4) 

r.r' 

generates a (self-adjoint) Markov semigroup exp( - tG) 
which corresponds to a reversible Markovian jump process 
yU) and has 1Tp as an invariant measure (see Ref. 8 for 
details). On its domain !!lJ ( G), 

Gf(y) = - Lj(y,y')(j(y') -f(y»), fE!!lJ(G). (1.5) 
1" 

Clearly, G hasf= 1 as an eigenvector, with the eigenval
ue zero. A natural question to ask is whether G has a nonzero 
mass gap m, i.e., whether m = inf spec Gill> O. If m > 0, 
then the process approaches equilibrium exponentially fast. 
A related question concerns the random time 'T for the pro
cess y(t) to shrink to y = 0, 'T = inf{t Iy(t) = A}. If 
sUPr I yl-t Er ( 'T) = 00 [where I yl is the length of y and 
Er ( ) is the path space expectation starting at y], then 
m = 0.8 In fact, in Ref. 8, it was shown that if the speed 
functions decay in the sense that 

lim ~ sup I)(y,y') = 0, 
n-a> n Irl=n 1" 

( 1.6) 

then the sup above is infinite and thus m = O. 
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Sokal and Thomas have conjectured that if the nonzero 
j( , )'S do not decay, e.g., if 

j(r,r') =c({3)exp- ({312)(lrl-Ir'I) 

for rJir' the boundary of a unit lattice square, then Ey (r) 
-A(r), the area inside r (Ref. 8); see, also, the arguments 
of Ruse and Fisher l7 and Droz and Gunton, 18 who consider 
related problems. Assuming this area law to hold, it follows 
that there would be no mass gap. In fact, we are unable to 
prove this area law or that the mass gap is zero [the difficul
ties stemming from r(t) developing into a highly ramified 
configuration], although there is compelling numerical evi
dence for the former and hence the latter, at least for {3 large. 
We do show here, and this is the principal result of the paper, 
that if the speed functions remain bounded as {3 -+ 00, then 
the mass gap m = m ({3) goes to zero rapidly m ({3) 
S{3e- 4P ; see Theorem 2.10, as well as the concluding re
marks in Sec. II. 

We also show that a certain operator Goo' which can be 
regarded as the {3 -+ 00 limit of the operators G ({3) defined as 
above, has a corresponding process exhibiting at least an 
area law Ey(r) ~cA(r). We remark that Marchand and 
Martin3 and Rost6 (see, also, an account of the latter work in 
Liggett 7) have considered a related ({3 = (0) process with, 
however, the initial configuration rtaken to be the boundary 
of an infinite quadrant and with motions that do not locally 
change the length of r. Marchand and Martin and Rost do 
allow the speed functions j ( r, r') to be asymmetric, corre
sponding to an external magnetic field (whereas here Goo 
has only symmetric speed functions if I rl = I r' I ): By relat
ing the process to a one-dimensional exclusion process, these 
authors obtain the asymptotic shape of r(t). For negative 
magnetic field, r(t) has a limiting distribution3

; for zero 
magnetic field (corresponding to symmetric speed func
tions), t -1/2 r( t) approaches a known convex curve in prob
ability and the area of the quadrant is eaten away linearly in 
time; and finally, for positive magnetic field, t -Ir(t) ap
proaches a known convex curve, almost surely.6.7 

We conclude the introduction with some remarks con
cerning the means used to estimate the mass gap. Conceiv
ably, the estimate could be shown by exhibiting trial func
tions orthogonal to to = 1 and having Dirichlet form 
expectation suitably small. However, we never succeeded 
with this strategy and so rather we employ a probabilistic 
approach, some ideas of which were employed in Refs. 2, 8, 
and 9. The main ideas of this approach are these: We consid
er a particular family of operators G({3) in which the speed 
functions remain bounded, {3 -+ 00, and which for each {3 
satisfy detailed balance. We then construct a sequence of 
perturbationsofG(f3), Gn ({3)with Gn ({3) - G({3) compact 
(in fact, finite rank), non-negative [acting in 12( 1Tp )], and 
such that each Gn ({3) is also a Markov generator. Finally, 
we obtain a lower bound on the expected time for the process 
associated with G n ({3) to leave a certain finite domain 
D n ex, from which we infer an upper bound on the mass gap 
of Gn ({3) and hence of G({3). We note that our bound is 
actually a bound on what might be called the essential mass 
gap, i.e., the infimum of the essential spectrum of g({3). In 
particular, the estimate is unchanged if a finite number of 
speed functions are changed. 
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II. EXPECTED ESCAPE TIME ESTIMATES AND 
STOCHASTIC CONTOUR MODELS 

In this section we review at a somewhat abstract level a 
connection between an expected escape time and the mass 
gap and then go on to apply these ideas to the stochastic 
contour models. Some of the ideas appear in Ref. 8, but we 
include them here where they have been cast into a CODven
ient form for the problems at hand. 

A. Expected escape times and mass gaps 

Let X be a countable set, 1T a probability measure on X, 
and G a self-adjoint Markov generator acting in 12 (X, 1T) and 
having the Dirichlet form 

(Gf,g) = 1.- I Ij(x,x')(f(x') 
2 x x' 

-J(x»)(g(x') -g(x»)mx} 

and such that for Jin the domain of G, 

GJ(x) = - Ij(x,x')(f(x') - J(x»). 
x' 

(2.1 ) 

(2.2) 

Here, the j(x,x') are non-negative and satisfy the detailed 
balance 

j(x,x')mx} = j(x',x)mx'} 

and such that for each x, 

Ij(x,x') < 00. 
x' 

(2.3) 

(2.4) 

Clearly, J= 1 is an eigenvector of G, with the eigenvalue 
zero. 

For D a finite set of X, let GD be the operator obtained 
from G by imposing Dirichlet boundary conditions on the 
complement of D. In other words, GD acts in 12 (D,1T) and 
has the Dirichlet form 

(GJ,g) 1'(D,rr) = (G];g) 1'(X,rr) ' (2.5) 

where]; g are extensions ofJand g, respectively, to all of Xby 
settingj(x) = g(x) = 0, xW. 

Let m be the mass gap of G, i.e., 

m=inf spec G W (2.6) 

and set 

mD = inf spec GD • (2.7) 

Lemma 2.1 (Proposition 3.3 oj Ref. 8): The mass gap m 
for G satisfies 

(2.8) 

Thus an upper bound on m D provides an upper bound on m. 
Let xU) be (the right continuous) jump process asso

ciated with the semigroup exp( - tG); henceforth, to avoid 
trivialities we will assume x(t) is irreducible. Let r D be the 
time for x(t) to escape from D, i.e., inf{t Ix (t)W}. In the 
following, E will denote the path space expectation of the 
process. A bound relating the expected escape time to m D is 
given by the following lemma. 

Lemma 2.2: Assume 0 < () < 1. Then m D has an implicit 
upper bound in terms of the expected escape time starting at 
xED given by 
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m D < OEx ( 1" D) -I (In!!glll'(D.1T) 

- pn(1T{x}) -In((1- O)mD ), (2.9) 

where 

g(x) == I j(x,x'). (2.10) 
x'eD C 

Proof If m D = 0, there is nothing to prove. For € < m D' 

the function.t: (x) = Ex (eETD
) satisfies the differential equa

tion 

(G - €)IE (x) = 0, xED, (2.11 ) 

with.t: (x) = 1, xED c. [To see this, note that 

is a martingale and hence has an expectation constant in 
time. By optional stopping, we have that 

.t: (x) = Ex (MrD) ) = Ex (J:(X( 1" D) )e
ETD

) = Ex (e
ETD

). ] 

Now, Eq. (2.10) can be written as 

(GD - €).t:(x) =g(x), xED, 

with g defined by Eq. (2.10), so that 

.t:(x) = (mx})-1(8x,(GD - €)-lg )/'(D.1T) 

«mx})-1/2(mD - €)-llIglI/'(D,1T) 

by the Schwarz inequality. 
Also, by Holder's inequality we have that 

Ex (1"D) = lim ~Ex (eTD ) - 1) 
plO P 

< lim ~(Ex (eomDTD)PIOmD - 1) 
pJO P 

= (OmD)-lln/omD(x), 

(2.11') 

(2.12) 

(2.13 ) 

which, combined with inequality (2.12), gives the conclu
sion of Lemma 2.2. • 

It remains to give to a means for obtaining a lower 
bound on the expected time to exit D in order to apply Lem
mas 2.1 and 2.2. The reader should not be alarmed that the 
following Lyapunov function estimate involves mD • We as
sume the complement of D to be decomposed into two dis
joint pieces DC = DI U Dn (one of which could be empty). 

Lemma 2.3: Let mD > 0. Suppose that there is a function 
h (x) defined on X and a constant c> ° independent of xED 
such that 

Gh(x)<c, xED. 

Then 

Ex (1'D) 

(2.14 ) 

;;.c-I(h(x) - sup hey) -1T- 1/2(x)mD Illk 11/2(D'1T»)' 
yED, 

(2.15) 

where 

k(x) == I j(x,x')h(x'). (2.16) 
x'eDII 

Proof: Again we employ a martingale argument. Let M t 

be the martingale 
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M t = h (x(t») + L Gh (x(s) )ds. 

By optional stopping and by inequality (2.14), 

hex) = Ex (MTD)<Ex(h(XTD») + CE(1'D)' 

so that 

CE(1"D);;.h(x) -Ex (h(x(1"D))XI) 

- Ex (h (x( 1'D) )Xn) 

(2.17) 

(2.18 ) 

(2.19) 

where XI and Xn are indicator functions for the events that 
x( t) exits into DI or Dn , respectively. It remains to estimate 
the last term on the rhs of inequality (2.19). Call this term 
lex). Then, by a martingale argument similar to those used 
above, it is easy to see that/ex) satisfies 

GI(x) ==Gn!(x) - k(x) = 0, xED, 

with 

lex) = hex), xEDn , 

= 0, xEDI . 

Thus, 

I(x) = (mx })-1(8x,G D
ik) 

«mx})-i/2mD illk 1I/'(D.1T» 

(2.20) 

(2.21 ) 

(2.22) 

(2.23 ) 

which, combined with (2.19), gives the assertion of Lemma 
2.3. • 

In outline, we will bound the mass gap m of G (or actu
ally an operator that majorizes G) as follows. If m = ° there 
is nothing to prove; if m > 0, then m D is uniformly bounded 
away from zero as a function of D provided that 1T(D C) is 
uniformly bounded away from zero. We will consider a se
quence of domains D n with this property and such that ID n I 
-+ 00 • It will tum out that the terms involving m D on the rhs 
of inequalities (2.9) and (2.15) will be negligible relative to 
the other terms, so that the real issue is finding a suitable 
Lyapunov function hex) or, given hex), finding a suitable 
G';;. G, for which h (x) satisfies the hypotheses of Lemma 2.3. 

B. Stochastic contour models 

Here, we obtain an estimate on the expected escape time 
from various sets D n ex for some stochastic contour models 
and an upper bound on the mass gap for these models. 
Throughout this subsection G({3) will be the particular gen
erator, with the speed functionj(r,y') =j(r,y',{3) equal to 
zero if ray' is not the perimeter of a unit lattice square, and 
otherwise given by 

j(r,y') = e-fJ±fJ if Iy'l = Irl =t= 2 

(2.24) 

and, although it plays no essential role in the analysis, 

j(r,0) = 1, Irl = 4, 
(2.25) 

j(0,r) = e- 4fJ, Irl = 4. 

In fact, we will estimate some expected escape times for a 
sequence of operators {G n «(3)}, G n «(3);;. G«(3) , thus obtain-
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ing an estimate on the mass gaps for G n ({3) and hence the 
mass gap estimate for G({3). 

For n = 1,2, ... , let Yn be a square contour of sides n, so 
that IYn 1= 4n and A(Yn) = n2, where A(y) is the area 
closed by y. Define the subsets Dn, Sn, and Tn [these are, for 
each n, the subsets D, D J , and DII of Lemma (2.3)] by 

Sn = {yCXIA(Y)<ln2}, (2.26) 

Tn = {yCX ,-Sn Ilyl ;>5n}, (2.27) 

(2.28) 

Note that YnEDn. In what follows, Gn = Gn ({3) will denote 
the operator acting in [2(Dn ,1T) obtained from G({3) by im
posing Dirichlet boundary conditions on the complement of 
D n' Tn will denote the escape time for the process associated 
with exp( - tG({3») from Dn, and mn = mn ({3) 

= inf spec G n ({3). Throughout this subsection, the role 
of the Lyapunov function h of Lemma 2.3 will be played by 
the area h(y) =A(y). 

Our immediate goal is to obtain an upper bound on 
G nA (y) in terms of the geometry of y. Given y, we will say 
that a unit lattice square q (which we assume includes its 
edges and vertices) is inside or outside y according to 
whether q is contained in the (closed) region bounded by y 
or not. We set, for m = 1,2,3, 

J~(y) [resp.,J~(y)] 

= number of unit lattice squares q outside (resp., in
side) y such that qn y consists of m unit length edges 
of y. In the case m = 2, the two edges should be con
nected at a common vertex of y. 

The J's are in effect counting the number of transitions 
immediately possible from y. We also need to enumerate 
some ofthe/orbidden transitions, which are forbidden in the 
sense that they lead to a r' not in X. We set 

F:'o(y) [resp.,F:·i(y)] 

= number of unit lattice squares outside (resp., inside) 
y such that q n y is the union of one unit length edge 
of y along with one or two lattice vertices in y disjoint 
from the edge, 

Fi'O( y) [resp., Fi· i
( y) ] 

= number of unit lattice squares outside (resp., inside) 
y such that qny is the union of two (parallel) unit 
length edges of y which are disjoint, 

F~ (y) [resp., F~ (y)] 

=F:'o(y) +2Fi'o [resp.,F:·i(y) +2Fhy)], 

F~ (y) [resp., F~ (y)] 

= number of unit lattice squares outside (resp., inside) 
y such that q n y is the union of two unit length edges 
of y connected at a common lattice point, together 
with a lattice point of y, disjoint from the edges. 

Lemma 2.4: The following relations hold: 

J~(y) +2J~(y) +3J~(y) +F~(y) +2F~(y) = Iyl, 
(2.29) 

J~(y) +2J~(y) +3J~(y) +F~(y) +2F~(y) = Iyl, 
(2.30) 
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n(y) -J~(y) +2J~(y) -2J~(y) 

+F~(y) -F~(y) = -4. (2.31) 

Proof: Relations (2.29) and (2.30) are simply an enu
meration of the unit lattice squares outside (resp., inside) 
and tangent to y, taking into account the length of the tan
gency. 

Relation (2.31) is essentially the Gauss-Bonnet 
theorem for lattice contours: If y is traversed in a counter
clockwise direction, then the total number of right turns mi
nus the number of left turns is - 4. Associated with J~ 
squares and F~ squares are n (y) + F~ (y) right turns; 
with J~ squares are associated 2J~ (y) right turns. Similar 
remarks hold for inside squares. • 

Lemma 2.5: For yEX, we have that 

GA(y)<2(1 - 3e- 2P) + ~(1 + e- 2p)(F~ (y) - F~ (y») 

+e-2P(F~(y)-F~(y»). (2.32) 

Proof: Since A ( y) - A ( r') = ± 1 according to 
whether yar' is the perimeter of a lattice unit square outside 
or inside y, we have that 

-GA(y);>e-2P(J~(y) -J~(y»)+!(1 +e- 2P) 

X(J~ (y) - J~ (y») + J~ (y) - J~ (y) . (2.33) 

(We have inequality rather than equality since conceivably 
yar' could encircle the origin, which is a forbidden transi
tion.) Subtracting relation (2.30) from (2.29) we obtain 

J~(y) -J~ (y) = -2(J~(y) -J~(y») 

- 3(J~ (y) - J; (y») - (F~ (y) 

- F~ (y)) - 2(F~ (y) - F~ (y»). 

(2.34) 

Thus the rhs of (2.33) equals 

!(1-3e-2P)(J~(y) -J~(y) +2(J~(y) -J;(y»)) 

- e-2P(F~(y) -F~ (y) + 2F~(y) - 2F~ (y») 

= -2(1-3e- 2P) -!(1 +e-2P)(F~(y) -F~(y») 

- e-2P(F~ (y) - F~ (y») 

by relation (2.31). This completes the proof of Lemma 
(2.5). • 

Thus Ga( (y») fails to be bounded above because of "in
trusions" into y, resulting in a deficiency of possible immedi
ate outward transitions (the F~ and F~ terms count these 
deficiencies) unless the F~ and F~ terms compensate. 
Hence, the basic idea is to perturb G with some additional 
(nonlocal) transitions which are positive and which, in ef
fect, reduce the rhs of Eq. (2.32) for those y's where this 
quantity is large and positive. The mass gap for the new 
operator, which we then estimate by Lemmas 2.1, 2.2, and 
2.3, provides a bound on the mass gap for G. 

To further amplify these remarks, suppose that for each 
ywith 

U(y)=!(1 +e-2P)(F~(y) -F~(y)) 

+ e-2P(F~ (y) - F~ (y») 

positive there exists a r' = y' (y) with 

(2.35) 

1r'1 = Iyl, 
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AC1") >ACy), and UC1") = - UCy). Then the operator G 
defined by 

G/Cy) = GICy) - CA (1"Cy) -ACy»)-' 

X UCy)(fC1"Cy») - ICy» , 

if UCy);;;oO , 

G/C1") = GIC1") - CA (1"Cy) -ACy»)-' 

X UCyH/Cy) - IC1"») 

if UC1") <0 and 1" = 1"Cy) 

for some y, 

G/Cy) = GICy) , otherwise C2.36) 

has a quadratic form majorizing that of G, so that its mass 
gap exceeds that of G. However, Lemmas 2.1 and 2.3 imply 
an area law for the expected time to exit from Dn for G; 
hence, G and therefore, G has zero mass gap. The reader 
might imagine other schemes where y is mapped to a lamily 
of contours. Unfortunately, we cannot carry out such a pro
gram, although in a certain sense explained below, we do 
carry it out to lowest order in powers of e - 2tJ. 

We begin with the following definition. Let y be a con
tour. Then a connected segment g of y is called an intrusion 
of y if C i) there exists a unit length lattice bond b Cg), not in y 
and which we refer to as a neck, with endpoints the same as 
those of g such that 1" = bCg) U Cy - g)eX and 
A C 1") > A C y). (ii) bCg) is one side of a unit lattice square q 
outside y such that y" = y!l.q(£X. Ciii) g is maximal in the 
sense that g is not contained properly in another segment 
satisfying properties C i) and (ii). If g is oflength 2r + 1 we 
shall refer to g as an r-intrusion: See Fig. 1, which illustrates 
a contour y with four intrusions. Note that associated with 
each intrusion is a forbidden transition at or near the neck of 
the intrusion. 

The next step is to define a family of transformations 
among the contours f; C .) n' n,r = 1,2, .... Set 

k;=sup(1,15C4e- tJ )2rn). C2.37) 

FIG. 1. A contour with four intrusions; g, is a four-intrusion, g2 is a two
intrusion, and g, and g. are one-intrusions. The dashed lines are the unit 
length necks. 
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Given a contour y, let g " ... ,gm be the set of all of its r-intru
sions C the set could be empty). Then f; C . ) is defined by 

f~ C y) = y, if m < k ~ , 

f~Cy) = (y- U gi)U U gCg;) 

if m;;;ok~, C2.38) 

where bCg;) is the neck across g. Thus provided that m is 
sufficiently large, f~C y) is the new contour obtained from y 
by removing its r-intrusions and then filling the gaps with the 
unit length necks. Note that if A (f~Cy»);;;oAC1") and the 
inequality is strict if the number of r-intrusions is sufficiently 
large; moreover, if f~C y) #Y, then If~C y) I = Iyl - 2mr. 
Define 

fnCy) = f~of;o ... of/Cy) , for 1= Iyl. 
C2.39) 

We next define the operator perturbations Pn acting on 
functions defined on D n : 

PJCy) = -PnCy)(/(fnCy»)-/Cy» 

- L qn Cy,1"H/C1") -ICy»), 
rED" 

where 

C2.4O) 

Pn Cy) = (Iyl - fnCy»)/CA (fnCy») -ACy» C2.41) 

provided that fnC y) #Y, zero otherwise, and qn is obtained 
from P n using the detailed balance 

C2.42) 

[Note that if YEDn' fnC y)EDn also since fn does not de
crease the area of y nor increase its length.] 

We proceed to estimate the second term on the rhs of 
Eq. C2.39), applied to the area. 

Lemma 2.6: For {3 sufficiently large, there is a cC{3) in
dependent of n, y such that for YEDn' 

- L qnCy,1"HAC1") -A(y»)<cC{3). 
rED" 

/"(1") ~r 

C2.43 ) 

Proof Clearly the lhs of inequality C 2.43) is equal to 

- L CIr'I-lyl)e-tJ(lrl-lrl). 
rED" 

,f"(r) ~ r 

C2.44) 

If 1" contributes a term to the sum C 2.44 ), then r' can be 
obtained from y by inserting, say, k, one-intrusions, k2 
two-intrusions, ... , k m m-intrusions, where for each i, either 
k; = 0 or k;;;;ok 7. Such a term contributes 

2Ck, + 2k2 + ... + mkm ) 

xexp[ - 2{3(k, + 2k2 + ... + mkm )] (2.45) 

to the sum. An obvious bound on the number of ways k j j
intrusions may be placed along y is C \!.I ). There are fewer 

J 

than 32j j-intrusions possible emanating from a given bond of 
y. Thus the sum is bounded by 
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2 I rr(~I)(kl + 2k2 + ... + mkm) 
kj>kj 

X (3e- p)2(k, +2k,+ ... + mkml 

=zi.rr(l+ I (~I)ijkj), (2.46) 
Jz j kj>kj 

where z = 3e - p. Following a Chebyshev inequality 
strategy, we have that if r is defined by (zr)2j 

= (kjllrI>O- kjllrl>-I, then 

I (lrl )rjk < r - 2jkjI (lrl )(zr)2jk 
~>kj k>O 

2·k· 2·k· . = Z J j (zr) - J 1(1 + (zr)2J)IYI 

<exp(kjln(r~j:I)) 

<exp k j In( (3e - P);e5n) < (~)2j; 
15(4e- )2Jn 4 

(2.47) 

the last steps follow from the fact that for reD n' I rl < 5n and 
the definition of k j, Eq. (2.37). 

Thus the product in expression (2.46) is bounded by 
nj (l + (v 21, which evidently converges. In fact, this esti
mate would be uniform for z in a complex disk about the 
origin, so that by Cauchy's integral formula for the deriva
tive, it is evident that the derivatives will be bounded in any 
smaller disk. This concludes the proof of Lemma 2.6. • 

The following lemma is a measure of how good A ( r) is 
as a Lyapunov function for G + Pn • 

Lemma 2.7: There exist non-negative functions CI ({J), 
C2 ({J) which are independent of n and which are bounded 
{J -+ 00 such that for each reD n , 

(G + Pn )A (r) <c I ({J) + c2({J)e - 4Pn. (2.48) 

Proof Combining the results of Lemmas 2.6 and 2.7; 
equality (2.32) and inequality (2.43), and the definition of 
Pn , equality (2.40), we obtain that 

(G + Pn )A(r) <2 + F~ (r) + e-2PF~ (r) 

+ c({J) - (Irl- /n(r»), (2.49) 

where, again, 

Irl-/n(r)=2I'jkj (r), (2.50) 
j 

with kj the number of j intrusions; the sum extends over j 
such that k/~k j. 

Now every F~ or F~ unit lattice square is either tangent 
to an intrusion on tangent to the neck of an intrusion. 
Among the F~ squares we distinguish two sets: (i) those 
tangent to the neck of a one-intrusion and (ii) those tangent 
to the neck of aj-intrusion or tangent to aj-intrusionj;;;.2. 
The cardinality of set (i) is clearly kl (r), the number of one
intrusions; the cardinality of set (ii) is designated by F~ (r) 
[so that F~(r) =kl(r) +F~(r)]. Note that all F~ 
squares are tangent to j-intrusions withj;;;.2. Every j-intru
sion has at least two unit length segments not tangent to an 
F~ or F~ square, so that the number of unit length segments 

2033 J. Math. Phys., Vol. 30, No.9, September 1989 

of a j-intrusion tanget to an F~ or F~ square is not longer 
than 2j - 1. It follows that 

F~ (r) + F~ (r)<2 Ijkj(r)· 
j>2 

Inequalities (2.15) and (2.49) imply that 

(G + Pn )A(r)<2 + c({J) + e- 2Pk l (r)x
n(r) 

+ 2 Ijkj(r), 
j>2 

(2.51 ) 

(2.52) 

where Xn (r) = 1 if k I (r) < k ~ and zero otherwise, and the 
sum extends over j with kj (r) < k j. However, the rhs of 
inequality (2.52) is bounded by 

2 + c(fJ) + (15r 2P(4e- P)2 + 30 ~j(4e-P)2j)n 

=cl({J) + c2({J)e- 4Pn, (2.53) 

which concludes the proof of Lemma 2.7. • 
This is the key estimate. We employ this estimate along 

with Lemmas 2.1, 2.2, and 2.3 to bound the mass gap of 
G({J). 

Lemma 2.8: Suppose m({J) = inf spec G({J) W > o. 
Then the expected time for the process associated with 
G + Pn to escape from Dn satisfies, for {J and n sufficiently 
large, 

EYn(TD);;;,c3({J)ne4P, (2.54) 

with C3 ({J) bounded away from zero, {J -+ 00 • 

Proof Since the mass gap of G + Pn exceeds that of 
G and 1Tp (D ~) -+ 1, n-+ 00, we have that 
mD• ({J) = infspec(G + Pn )D. >m({J) (1 - €) for any €>O 

for n sufficiently large by Lemma 2.1, where (G + Pn ) D. is 
obtained from G + Pn by imposing Dirichlet boundary con
ditions on D ~. Let 

tn (r) = I j(r,y')A(y') (2.55) 
yeT. 

(noting that Pn contributes no terms to tn ). Then for n suffi
ciently large, 

tn (r)<2Irl sup A(y') 
j(y,yl#O 

<2.5n.(! n+1Y<16n3
, (2.56) 

so that 

IItn 11/2(D.l < 16n3
( 1T{rI5n - 2< Irl <5n}) 1/2 

< cn4ZiPl1l2(3e - p) (5n - 21/2 (2.57) 

for some constant independent of {J by the usual Peierls' 
estimate on the number of contours of a given length about a 
given point. Thus by Lemmas 2.3,2.7, and the fact that 
l:yeS.A (r) <in2, 

Ey (TD ) ;;;,(c i ({J) + c2({J)e- 4Pn)-I(A(rn) - sup A( r) 
• n ~~ 

- mii,. Icn4(3e -p) (5n - 2l/2~Pn) > c
4
({J)e4Pn 

(2.58) 

for some C4 ({J) bounded away from 0 for {J and n sufficiently 
large. • 
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Finally, this estimate implies a bound on the mass gap 
for G + Pn and hence for G. 

Lemma 2.9: The mass gap m (f3) for G(f3) satisfies the 
estimate 

(2.59) 

for some C 5 (f3) bounded for f3 -+ 00 • 

Proof Here we use Lemmas 2.1, 2.2, and 2.8. Again, 
m (f3) is less than the mass gap of G + Pn , which is less than 
mDn (f3)(1Ti I(D ~) )-1 < mDn (f3) (1 + E) for any E> 0 for n 
sufficiently large. We will assume that mDn ({3) is uniformly 
bounded away from zero in n -+ 00 since otherwise there is 
nothing to prove. Let 

gn (y) = L j(y,y'). 
r'ED~ 

Then clearly gn(y)<2Iyl < IOn for yEDn and Iignll12(Dn l 

< IOn(1Tp (Dn ))1/2 < 1 for n sufficiently large. Then for B < 1, 
n sufficiently large, and the initial x of Lemma 2.2 identified 
with Yn' we have that 

mDn (f3) < (Bc3 (f3)ne4P )-1(lnlign 1112(Dnl 

-! In 1Tp{Yn} -In(1 - B)mDJ 

< (Bc3 (f3)ne4P )-1(2nf3 + ! In Z(f3) 

-In(1 - B)mDJ <c5 (f3)f3e- 4P 

for some C5 (f3) bounded for f3 --+ 00 • • 

Theorem 2.10: Let G(f3) be any Markov generator act
ing in /2(X,1Tp), with the speed functionsj( y,y') = j( y,y',f3) 
satisfying the local motion and detailed balance conditions 
(i) and (ii) of Sec. I and which, moreover, satisfy 

j(y,y' ,{3)<co 

for some constant Co independent of y, f3. Then there exists a 
c depending only on Co such that the mass gap of G(f3) is less 
than cf3e - 4P for f3 sufficiently large. 

Proof The Dirichlet form for G (f3) is bounded above by 
a suitable constant times the Dirichlet form for the "stan
dard" generator considered above, from which Theorem 
2.10 follows. 

Remark: The operator Goo having the speed functions 
defined by Eqs. (2.24) and (2.25) with f3 = 00 generates a 
semigroup corresponding to a stochastic process y(t) in 
which transitions in which y(t) increases its length are for
bidden. If the process starts in a configuration in which there 
are no intrusions, then it is not hard to see that y(t) can 
never have any intrusions (the process is certainly not irre
ducible) and consequently, GooA (y(t»)<2 by inequality 
(2.32). Lemma 2.3 (with Dn empty) then implies that the 
expected time for y( t) to shrink to the zero contour satisfies 
Ey (r);;:.~ (y), where y is any contour without intrusions. 

To conclude this section, we can ask whether the mass 
gap bound for G(f3) can be improved. We have seen that 
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each contour y has associated with it a certain set of intru
sions. Contours with a large density of intrusions, e.g., 
kj (y) ;:: e - 2Pjl yl [and having only a low density of co~pen
sating extrusions which are defined analogously to mtru
sions, but with A (y') <A( y) and the inside squares replac
ing the outside squares] have a large GA (y) value, leading to 
a poor lower bound on the expected escape time. Effectively, 
we dealt with contours ofthis sort by constructing non-nega
tive perturbations Pn such that (G + Pn )A (y) is small for 
them; we did not attempt to compensate for 
contours having small intrusion density, in particular, where 

kj(y) Se- 2Pj lyl· 
Is there a way to compensate for contours having intru

sions with these low densities? In fact, the author found a 
more elaborate, but ad hoc perturbation P ~ of G defined in 
terms of a mapping /~ analogous to /n of Sec. I, but 
which, moreover, maps contours with one- and two-intru
sions to one- and two-extrusions. This perturbation scheme, 
which exploits the negativity of the Fi( y) terms of GA (y), 

Eq.(2.32), leads to an estimate (G + P ~)A (y) <e - 6
PO

( Iyl) 
and then ultimately to the mass gap estimate f3e - 6P for G. 
Thus this scheme follows the program outlined in Eq. (2.36) 
to order e - 6P I yl, whereas the basic scheme outlined in this 
section went to order e - 4P Iyl. The general problem of com
pensating forj-intrusions withj;;:.3 along these lines remain 
open. 
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The infinite series for log (exp X exp Y) for noncommuting X and Y is expressible in terms of 
iterated commutators of X and Yexcept for the linear term X + Y. Dynkin derived an explicit 
expression for the terms as a sum of iterated commutators over a certain set of sequences. This 
paper presents a practical algorithm for applying Dynkin's formula and gives several 
illustrative examples. 

I. INTRODUCTION 

XXP,yq, .. ·XPky Qk. (1) 

The summation goes over all possible systems of non-nega
tive integers (PI,ql""'Pk ,qk ) satisfying Pi + qj > 0 
(i = 1,2, ... ,k). From (1) one can easily show that the linear 
term is X + Yand the second degree term is (XY - YX) 12. 
However, (1) is not at all practical for obtaining higher de
gree terms. Collecting, in (1), all the terms for which 
PI + P2 + ... + Pk = p, ql + q2 + ... + qk = q, we get 
Pp,q (X,y), the homogeneous component of degree P in X 
and degree q in Y. Dynkin8

•
9 defined "a linear mapping 1/1 of 

the free associative algebra f!it into the free Lie algebra L by 
means of the formula 

1/1(X IX 2'''Xn ) = (lln)[x\[x2["'[xn _

"

x n ]"']]]" 10 

and derived the decisive resule 

(2) 

where 

[XP,yq, .. 'XPkyqk ] 

and the summation goes over all possible systems of non
negative integers (PI'ql .... 'Pk ,qk ) satisfying 

k 

LPi=P, 
i=1 

k 

L q; =q, Pi +qi>O. 
;=1 

(3) 

We call such a system of non-negative integers simply a se
quence. (See also Bourbak? and Varadarajan.3

) 

Richtmyer and Greenspan 11 determined the terms of 
the BCH series by computer. These authors used a different 
computational method and gave no detail of their "fairly 
intricate bit of programming." Since their results are not 
linearly independent, it is not possible to compare them with 
other results. 

Goldberg 12 expanded log(e-¥ e Y
) in terms of words inX 

and Y, and derived useful formulas for the expansion coeffi
cients. The Goldberg coefficients and the coefficients de
rived from (2) are related. Recently, Newman and Thomp
son 13 implemented Goldberg's algorithm on a 
microcomputer and computed these coefficients of words of 
length up to 20. 

This paper presents a simple and efficient algorithm for 
applying Dynkin's formula and gives illustrative examples. 

II. ALGORITHM 

Equation (2) shows that the iterated commutators are 
of two types: (a) The rightmost element is Yand its nearest 
neighbor is X' , wherer = 1,2, ... , i.e., (Plql) = (rl). (b) The 
rightmost element is X and its nearest neighbor is yr, i.e., 
(qzPlql) = (rIO). 

Our tool for generating the sequences is, naturally, par
titions of numbers. First, we determine the terminal se
quences. We denote the distinct arrangements of P - 1 
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(lO)'s and q - 1 (01)'s by AU), i = 1 to N, where Nis the 
binomial coefficient (P/_q 1- 2). The terminal sequences TU) 
are of the form A (i) 11 and A (i)011O. We reduce these se
quences to their shortest possible lengths and set 
T(2i - 1) = A (i) 11 and T(2i) = A (i)011O. One notes that 
T(2i - 1) and T(2i) represent the same commutator except 
for the sign. Two sequences are equivalent if one can be 
transformed into the other without 10 and 01-X and Y
crossing each other, i.e., if they are related to the same ar
rangement A (i). It follows that each terminal sequence de
fines an equivalence class C[ i] and all its equivalent ele
ments represent the same commutator. Thus the task of 
generating the sequences is divided into smaller and easier 
ones. 

We now rewrite (2) as follows 

(p + q)Pp,q (X,Y) = L W(PI,ql,· .. ,Pk,qk) 
eli] 

where 

(_l)k-l( k )-1 
W(PI,· .. ,qk) = II Pi!qi! . 

k i=1 

(4) 

To calculate the coefficient W( C[ i] ) of a class C[ i], we 
do not generate all the elements of C[ i] and thereby make a 
substantial reduction in computation. We introduce the DZ 
transformation 

Piqi~PiOOqi (5) 

and observe that a DZ transformation acting on W changes 
only its first factor. Let a be a NCZ (i.e., no contiguous 
zeros) sequence and F(a) represent the family a, i.e., a to
gether with all its offspring generated by applying all possi
ble DZ transformations to a. It is not difficult to see that 

W(F(a») = FW(a). (6) 

That is, the coefficient of F( a) can be obtained economically 
by applying all possible DZ transformations to Weal with
out at all generating the offspring of a. 

This leads us to the following scheme for determining 
the coefficient of an equivalence class C[ i], i.e., a commuta
tor. 

Step 1: Start with the terminal sequence reduced to its 
shortest possible length. 

Step 2: Use the seed to generate all the other NCZ ele
ments of C[i] by repeated partitions of p;'s and q;'s as fol
lows: 

(i) Piqi ~ lOPi - 1qi (Pi> 1), 

(ii) Piqi ~Piqi - 101 (qi> 1) 

(subject to Pi + qi > 0). 

(7) 

Step 3: Let a be an NCZ sequence of C[i]. Compute 
Weal and apply all possible DZ transformations to W(a). 
Repeat the operation for all the NCZ elements of C[i] and 
add up all their contributions. 

III. EXAMPLES 

We now apply our results. The sequences are given in 
Table I. 

2036 J. Math. Phys., Vol. 30, No.9, September 1989 

Example 1: First, we compute P2,2 (X, Y). The arrange
ments are 11 and 0110. Hence the terminal sequences are 
1111, 1210, 0121, and 011110. The construction of the 
classes of sequences is immediate. To compute FW( 1111 ), 
we note that we can choose n II's in (~) ways. We have 

FW(C [1]) = - 1/2 + (f}/3 - 1/4 = - 1/12, 

FW(C [2]) = ( - 1/2 + 1/3)/2! + (1/3 - 1/4) = 0, 

FW(C[3]) =FW(C[2]) and FW(C[4]) = 1/12. 

Hence 

4P2,2(X,y) = -1/12[XYXY] +0[Xy2X] 

+ O[ YX 2 y] + 1/12[ YXYX]. 

Using the identity 

[YXXY] = [XYXY] 

we get 

(8) 

P 2,2 (X,Y) = - 1/24[XYXy] = - 1/24[X[Y[X,Y]]]. 

Example 2: We now compute P2,3 (X,Y). The arrange
ments are 12, 0111, and 0210. Using (7) we construct th.e 
classes and see that FW(C[6]) = FW(C [4]). We com
pute 

FW(C[l]) = (-1/2 + (f)/3 -1/4)/2! 

+ (1/3 - (i )/4 + 1/5) = - 1/120. 

Similarly, we calculate the coefficients of the other classes 
and obtain 

TABLE I. Classes of NCZ sequences (i.e., no contiguous zeros). 

C[1] C[2] 

1111 1210 
IlOIlO 

C[1] C[2] 

1211 1310 
110111 120110 

110210 
11 (0\)'10 

C[5] 

0221 
(01 )'21 021011 

(01 )'1011 

C[1] 

41 
1031 
2021 

( 10)'21 3011 
102011 
201011 
(10)311 

P", 
C[3] 

0121 
011011 

P,,3 
C[3] 

011111 

p.,. 

C[4] 

011110 

C[6] 

C[2] 

C[4] 

011210 
01110110 

3110 
102110 
2011 10 

(10)'1110 
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TABLE II. Partitions of 7 and 8. (The entries in the parentheses give the 
numbers of permutations of the parts.) 

7(1),61 (2),52(2),43(2),512(3), 
421(6), n(3), 322(3), 413(4), 
3212(12),231(4),314(5),2213(10), 
21'(6),17(1) 

8(1),71(2),62(2),53(2),42(1)' 
612(3),521(6),431(6),422(3), 
322(3)' 51 3(4),421 2(12), 3212(6), 
3221(12), 24(1), 414(5),321 3 (20), 
2312(10),31'(6),2214(15),216(7), 
1"(1 ) 

P2.3 (X,Y) = {-1I120[Xy2Xy] + 1I180[xy3x) 

+ 1130 [ YXYXY) - 11120 [ YXy 2X) 

- 1I120[ y2X2Y] - 11120 [ Y 2XYX J}/5 

-1I360[XY2XY] + 1I120[YXYXY). 

By (8), we also have 

P23 (X,Y) = -1I360[Xy2Xy] + 1I120[Y2X2Y]. 

Example 3: We compute P4•1 (X,Y). Proceeding as be
fore we get the results given in Table 1. It is easy to see that 
the contributions of C[ 2] and the last half of C[ 1) cancel 
each other. Hence 

P4,1 (X,Y) = {FW(41 + 1031 + 2021 + (01)221)}/5 

= - 1I720[X[X[X[X,y]]]], 

Example 4: Here we compute PI,S (X, Y). The starting 
sequences are 0711 and 0810. In this case we use partitions of 
7 and 8 to generate the sequences. Note that a partition with 
m parts yields a sequence with k = m + 1 and of weight 
equal to the number of distinct permutations of m parts. 
Table II lists the partitions of 7 and 8 together with the 
numbers of permutations of parts. Using this table, (4) and 
the SUM function of the computer algebra system MAC

SYMA to do rational arithmetic, we obtain 

PI •S (X,y) = {1I151200[ y 7XY) - 111209600 [ Y 8X J}/9 

= - 111209600 [ Y 8X]. 

Example 5: We compute the coefficients of the follow-
ing commutators: 

(a) [XYXYXYXYXYX], 

(b) [X 2yXYXYXY], 

(c) [X 2y 2XYX]. 

(a) The sequence is 111111111110. The DZ transfor
mation is 11::::} 1001. Now one can choose n l1's in (~) ways. 
Hence 
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FW(u) = - 116 + n ) (117 - 1110) 

- (i)( 118 - 119) + 1111 

- 112772. 

(b) Here the sequence is 21111111. Partition of2 gener
ates 10 11111111. Hence 

FW(u) = {- 114 + (i) (115 + 117) 

- (i )/6 - 1I8}/2! 

+ {l/5 - (i)( 116 + 118) + (i)17 + 1I9} 

- 11(560) + 11(630) = - 1I7!. 

(c) Here the sequence is 221110. Repeated partitions of 
2 generate 10121110,21011110, and 1011011110. Therefore 

FW(u) = (113 - 112 + 115)/4 + ( - 114 + 2/5 - 1/6) 

+ (1/5 - 1/3 + 1/7) 

= 1/840. 
The numerical values of the corresponding Goldberg 

coefficients \3 are identical to these values of the coefficients 
of the commutators. 

IV. CONCLUSION 

The present algorithm is simple and rapid. The proce
dure is not recursive and computes directly the coefficient of 
a commutator. We are constructing software to implement 
the algorithm on a computer. 
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In a recent paper [J. Math. Phys. 26, 3080 (1985) ], the first of this series, it was shown that 
velocity-dependent symmetry mappings of second-order dynamical systems have a 
characteristic functional structure which is the same for all dynamical systems. The present 
paper continues the investigation of this characteristic functional structure. A shortened, 
improved, conceptionally simpler proof of the existence of the characteristic structure is given. 
It is shown how this characteristic functional structure may be formally incorporated into a 
new procedure for the determination of classical (velocity-independent) symmetries of 
dynamical systems. In addition to providing insight into symmetry analysis this new procedure 
is also a practical alternative to existing symmetry methods for those dynamical systems for 
which there exist sufficient knowledge of the form of the dynamical solution, so that it is 
feasible to determine constants of motion by inversion (or the converse). Application of the 
procedure to time-dependent linear systems readily gives the complete classical symmetry 
group for the one-dimensional case (with generators in a somewhat simpler form than those 
obtained by Leach, Research Report AM-79:05, La Trobe Univ., Bundoora. Australia, 1979) 
and the n-dimensional isotropic case [with generators the same as those obtained by Lopez. J. 
Math. Phys. 29, 1097 (1988)]. By inspection the formalism shows all n-dimensional time
dependent linear systems admit at least a 2n-parameter classical symmetry group and all 
decoupled n-dimensional time-dependent linear systems admit at least a 3n-parameter classical 
symmetry group. Other applications to linear and nonlinear systems are given. 

I. INTRODUCTION 

In a recent paper Katzin and Levine l showed that all 
(Noether and non-Noether) infinitesimal velocity-depen
dent symmetry mappings [8XI = si(x,x,t)8a. 
& = so(x.x,t)8a,i = 1 •... ,n] ofsecond-orderdynamicalsys
tems were expressible in a form with a characteristic func
tional structure which was the same for all dynamical sys
tems and was manifestly dependent upon constants of 
motion of the system.2,3 This characteristic structure was 
formulated by means of an auxiliary symmetry mapping 
function Zi(X.X,t) [introduced by the relation 
Si(X.X,t) = ZI(X,x,t) + XISO(x.x.t)]. Theformalismdevel
oped in Ref. 1, which determined the characteristic func
tional structure of the function Z i, was essentially indepen
dent of the velocity dependence or independence of the 
symmetry mappings 8Xl or &. We now continue our investi
gations of this characteristic functional structure by examin
ing in detail how this fundamental property of symmetry 
mappings may be utilized in the determination of classical 
[velocity-independent. in that 8xl = 5 i(x,t)8a. 
& = sO(x.t)8a] symmetry mappings. 

As pointed out in Remark 2.1 of Ref. 1 (and earlier by 
Sarlet and Cantrijn4 with regard to Noether symmetries). 
classical mappings are determined by auxiliary symmetry 
mapping functions Z i(X,x,t) which are linear in Xl. Our 
method for incorporating the above-mentioned characteris-

tic functional structure into a procedure which determines 
classical symmetries is based upon the requirement that the 
Z I satisfy this linearity property in addition to being ex
pressed in a form which exhibits the characteristic func
tional structure. The resulting novel procedure gives a new 
perspective to the process of formulating classical symmetry 
conditions in that it formally makes use of both the dynami
cal solution and the set of 2n functionally independent con
stants of motion obtained by inversion of the solution. The 
symmetry conditions obtained by this new procedure deter
mine (otherwise arbitrary) constants of motion which occur 
as part of the characteristic functional structure of Z i and 
thereby select from the totality of general (classical and non
classical) symmetry mappings admitted by the system those 
that are classical. One advantage we have observed in this 
new formalism is that for certain problems the symmetry 
conditions may be satisfied by inspection (as will be shown) , 
thus allowing immediate determination of symmetry map
pings which would not otherwise be so readily apparent. 
Since considerable information pertaining to the dynamical 
system is actually incorporated into the procedure it is not 
surprising that such is the case. 

Thus far, however, for practical purposes the applicabil
ity of the procedure appears to be limited in general to those 
systems for which there exist sufficient knowledge of the 
form of the dynamical solution, so that determination of the 
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constants of motion by inversion is feasible (or the con
verse). Such systems include the general class of time-depen
dent, n-dimensional, n> 1 linear systems which we shall treat 
in detail. In addition to showing the versatility of the proce
dure we obtain the classical symmetries of two additional 
dynamical systems described by nonlinear dynamical equa
tions. 

In Sec. II elements of symmetry theory pertaining to the 
characteristic functional structure of the auxiliary symmetry 
mapping function Z i are summarized. In addition, a new 
proof of this functional structure of Z i is given. This proof is 
shorter and conceptionally simpler than the original version 
contained in Ref. 1. 

In Sec. III conditions for determining classical symme
try mappings of a general n-dimensional dynamical system 
are formulated in a manner that makes use of the character
istic functional structure of the auxiliary symmetry mapping 
function Z i. These conditions are divided into two cases
those for one-dimensional systems and those for systems of 
dimension n > I. 

Section IV begins an analysis of linear systems. The dy
namical equations and constants of motion for a general 
time-dependent, n-dimensional, n> 1 linear system are syn
thesized in terms of the dynamical solution functions. The 
symmetry conditions developed in Secs. II and III are spe
cialized to treat such linear systems. The synthesized system, 
its concomitant constants of motion, and its associated sym
metry conditions are further specialized for the analysis of 
decoupled systems. Inspection of the symmetry conditions 
for general linear systems shows that all n-dimensional lin
ear systems admit at least a 2n-parameter group of classical 
symmetry mappings; moreover, it is found by inspection that 
all decoupled n-dimensional linear systems admit at least a 
3n-parameter group of classical symmetries. In both cases 
the symmetry mappings are given. 

In Sec. V the symmetry conditions derived in Sec. IV are 
solved to obtain the complete eight-parameter group of clas
sical symmetries for a general time-dependent one-dimen
sionallinear system. The symmetry mappings are expressed 
as functions of the solution functions of the dynamical equa
tions. The five-parameter subgroup of Noether symmetries 
are obtained. (The proced ure for extracting th N oether sym
metries is indicated in an associated Appendix). The results 
obtained are consistent with the work of Lutzky,5 Leach,6.7 
and Lopez8 (based upon other methods). 

In Sec. VI the conditions obtained in Sec. IV for deter
mining the classical symmetries of n-dimensional, n> I, de
coupled time-dependent linear systems are applied to obtain 
the complete group of symmetries of a specific two-dimen
sional time-dependent system. 

In Sec. VII the symmetry conditions (obtained in Sec. 
IV) applicable to n-dimensional (n> I) decoupled linear 
systems are further specialized to treat the case in which the 
system is isotropic. The complete (n2 + 4n + 3) -parameter 
(maximal) group of symmetries is obtained and without ba
sis change is found to be identical to that obtained by another 
method by Lopez. 8 

In Sec. VIII the complete group of classical symmetries 
is obtained for a one-dimensional nonlinear equation 
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(known to be transformable into linear form) to illustrate 
the general n = 1 theory given in Sec. III. 

In Sec. IX, as a second illustration of the general n = 1 
theory of Sec. III, the classical symmetries of a nonlinear 
dynamical system are obtained. 

II. ELEMENTS OF SYMMETRY THEORY 

Consider a dynamical system described by the second
order differential equation 

E ti,x,x,t) =Xi - Fi(x,x,t) = 0, i = 1, ... ,n. (2.1) 

Assume (2.1) has as its complete solution 

Xi = ¢/(c!, ... ,c2n ,t) =¢i(c,t),cA = const, A = 1, ... ,2n. 
(2.2) 

Equations (2.2) and those obtained by differentiation of 
(2.2) with respect to t may in principle be solved for the c A to 
obtain 2n functionally independent constants of motion: 

CA(X,X,t)~CA' (2.3) 

Remark 2.1: The notation ..!... denotes equality on the 

dynamical paths (2.2). D 
A dynamical system (2.1) is said to admit an infinitesi

mal symmetry mapping defined by 

Xi = Xi + OXi, oxi=si(x,x,t)oa, 

t = t + Of, Of=so(x,x,t)oa 

where! 

oxl = (t i - 2XigO - xitO)oa, 

OXi= (gi _ xigO)oa. 

(2.4 ) 

(2.5) 

(2.7) 

(2.8) 

Remark 2.2: The notation denotes "whenever 

E i = 0"; Eq. (2.1) is to be used to eliminate all time deriva
tives of the Xi which are higher than Xi in the functions 
tjJ(t,x,dxldt, ... ,dx(a) Idt (a) and which may appear as ex-

pressions or equations subject to ~. D 

Remark 2.3: In the background material summarized in 
this section we shall assume general velocity-dependent 
mappings. Subsequent restrictions on the theory that are dic
tated by the requirement that the mappings be classical, that 
is, based upon velocity-independent mapping functions 
Si(X,t), sO(x,t), will be discussed in Sec. III. D 

By introduction of an auxiliary mapping function 
Zi(X,X,t) by means of the relation 

Si(X,X,t) = Zi(X,X,t) + XiS ° (x,x,t) (2.9) 

it follows from Eq. (2.34) of Ref. 1 that 

oEi=aE i + (d!i)Of, (2.10) 

where 

(2.11 ) 
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J i(' )_aEi 
j X,x,t = aXi' (2.12) 

K i (' )_ aE
i 

j X,x,t =--.. 
ax' 

(2.13 ) 

The identity (2.10) and the fact that dEi/dt ~ O[ which 

follows from (2.1) and Remark 2.2] show that 

(2.14 ) 

It follows from (2.6) and (2.14) that the functions S i, 
So, which are solutions to the symmetry condition (2.6), are 
related by (2.9) to the functions Zi, which are solutions of 
the partial differential equations obtained by the formal ex
pansion of the auxiliary symmetry condition 

(2.15 ) 

In Ref. 1 it was proved that the solutions Z i of (2.15) 
are expressible in a form with a characteristic functional 
structure which is the same for all dynamical systems. We 
next give an alternative proof of this property of Z i solutions 
which is shorter and which we believe to be conceptionally 
simpler than that given in Ref. 1. 

Alternative Proof: The 2n functionally independent con
stants of motion (2.3) are used to define the transformation 

(2.16 ) 

between the 2n variables ;e, ... ,xn
, x1, ... ,xn and the 2n vari

ables C1, ••• ,C2n , with t acting as a parameter. The inverse 
transformation that follows from (2.16) has the form 

. aif/ f/I=-. 
at 

(2.17) 

(2.18 ) 

It is to be noted that the functions if/( C,t) in (2.17) are of the 
same functional form as the respective functions ¢/(c,t) 
which appear in (2.2). 

Equations (2.17) and (2.18) maybe used to express any 
functionj(x,x,t) as a function F( C,t) in that 

j(x,x,t) =/[¢(C,t),<ft(C,t),t] =F(C,t). (2.19) 

By this transformation procedure we find for the following 
functions, which appear in (2.15), that 

Zi(X,x,t) = Zi[¢(C,t),<ft(C,t),t] =Zi(C,t), 

J; (x,x,t) = J; [¢( C,t) ,<ft( C,t),t ] =j; (C,t), 

KJ (x,x,t) = KJ [¢( C,t),<ft( C,t),t] =k J (C,t). 

(2.20) 

(2.21 ) 

(2.22) 

From the transformation (2.16) and the fact that the 
functions CA (x,x,t) are constants of motion, it follows that 

the variables CA satisfy CA ~ 0 (see Remark 2.2). Using this 

property of the C's we find from (2.20) that 

Zi ~ ai(C,t) , (2.23) 
at 

a2i Zi ~ z (C,t) . 
at at 

(2.24) 

transformation (2.17) and (2.18) takes the auxiliary sym
metry equation (2.15) into the form 

a 2Z'C,t) + jj ( C,t) az
i 
(C,t) + k 5 ( C,t)z j (C,t) ~ o. 

at at at 
(2.25) 

Equation (2.25) is a system oflinear differential equations in 
which t is the independent variable and the C's are param
eters. The solution to (2.25) is therefore expressible in the 
form9 

i( C,t) = B A( C1"",C2n )g~ (C1, ... ,Cu,t), 0';;;u.;;;2n, 
(2.26) 

where the BA are arbitrary functions of the C's. 
To complete the proof we use (2.16) to express (2.26) 

in terms of the original variables X, x, and t to obtain 

Z i(X,x,t) = B A [C1 (x,x,t) ""'C2n (X,x,t) ] 

Xg~ [C1 (X,x,t), ... ,C" (X,x,t),t ], 0.;;;u.;;;2n. 
(2.27) 

The functions Z i in (2.27) exhibit the above-mentioned 
functional structure, which is characteristic of solutions of 
the auxiliary symmetry condition (2.15). 0 

Remark 2.4: If Zi(X,X,t) given by (2.27), wherein the 
functions (constants of motion) B A [C(x,x,t)] are arbi
trary, are used in (2.9), then for each arbitrarily chosen 
functionso(x,x,t) theS i(X,X,t) so determined will in general 
define a velocity-dependent symmetry mapping (in that ei
ther S i or S ° or both are explicitly velocity-dependent). Such 
mappings were discussed in detail in Ref. 1. With appropri
ate choices for the functions B A (C) it may be possible to 
obtain Z i in (2.27), so that both S i and SO are each velocity
independent functions (in which case SO could not be arbi
trarily chosen). An analysis of this situation will be devel
oped in the sections to follow. 0 

III. CONDITIONS FOR CLASSICAL SYMMETRY 
MAPPINGS 

The symmetry theory outlined in Sec. II includes both 
velocity-independent (classical) mappings and velocity-de
pendent mappings. We now assume the mapping functions 
Si'SO that appear in (2.4) and (2.5) to be velocity-indepen
dent in that they are of the form S i(X,t) ,S o(x,t). For such 
classical mappings we find, by use of (2.9) and (2.11)
(2.15), that the following theorem is readily proved. 

Theorem 3.1: A necessary and sufficient condition that a 
dynamical system 

Ei(x,x,x,t) =xi-Fi(X,X,t) =0, i= 1, ... ,n (2.1') 
admits a classical (velocity-independent) symmetry map
ping 

;e = Xi + 8Xi, 8xi=Si(x,t)8a, 

t = t + 8t, 8t=So(x,t)8a, 

in that 

8Ei~0, 

(3.1) 

(3.2) 

(2.6') 

Making use of (2.20)-(2.24) we find that the variable is that the auxiliary symmetry conditions 
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(2.15') 

be satisfied by the linear (in Xi) auxiliary mapping functions 

(3.3 ) 

o 
Remark 3.1: The notation Zi(Xi,x,t) indicates that the 

only X variable present in the ith component Z i is Xi. (There 
is no similar restriction on the x variables.) 0 

It follows from (3.3) that we may therefore state the 
following corollary to Theorem 3.1. 

Corollary 3.1.1: For a dynamical system (2.1') all ad
mitted classical symmetry mappings (3.1) and (3.2) are de
fined by the symmetry mapping functions Si(X,t),so(x,t), 
which are expressible in the form 

Si( ) _Zi('i t) _~'i aZj(Xi,x,t) x,t - x ,x, x ., 
n aX' 

(3.4) 

soc ) __ ~ aZj(xj,x,t) 
x,t - ., 

n aX' 
(3.5) 

where Z i(Xi,x,t) is described in Theorem 3.1. 0 
Remark 3.2: For Lagrangian systems formulations sim

ilar to those contained in Theorem 3.1 and Corollary 3.1.1 
hold for those Z i(Xi,x,t) that define classical Noether sym
metries (Sarlet and Cantrijn4

). 0 
It follows from Theorem 3.1 and Corollary 3.1.1 that 

the problem of obtaining classical symmetry mappings (if 
they exist) may be formulated as conditions for obtaining 
linear Zi of the form (3.3). These linearity conditions may 
be expressed as conditions on the functions B A (C) which 
appear in (2.27). To derive such conditions we first obtain 
alternative necessary and sufficient conditions for the func
tions Z i (n > 1) or Z 1 =Z (n = 1) to satisfy the linearity 
requirement (3.3). 

From (3.3) for n> 1 it is seen that 

az
i 

0 '-4-' --. = , lrj, 
aX' 

n> 1, (3.6) 

az i azj .. 
--. - --. = 0, lJ not summed, n> 1 (3.7) 
ax' aX' 

are necessary conditions on the functions Z i(X,X,t) in order 
for (3.3) to hold. To show that conditions (3.6) and (3.7) 
are also sufficient note that (3.6) implies that the only x 
variable present in Z i is Xi and hence we may write 
Zi = Zi(Xi,x,t). For such Zi it follows from (3.7) that 
aZilaxi = azjlaXi = ",(x,t), ijnotsummed; hence by inte
gration we obtain Z i = '" (x,t)xi + A i(X,t), which is of the 
form (3.3). 

When n = 1 conditions (3.6) and (3.7) do not apply. 
For this case it follows from (3.3) that (x 1=x). 

a2z 
--=0 n=l, 
ax ax ' 

(3.8) 

which is clearly necessary and sufficient for Z(x,x,t) to be 
linear in X. [Note that for n > 1 Eqs. (3.6) and (3.7) imply 
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a 2 Z il axi axi = 0, i not summed.] 
For the case n > 1 byuseof(2.27) we may express (3.6) 

and (3.7) in terms of the functions BA(C), g~ (C,t), and 
their derivatives to obtain, respectively, 

az
i 

(aB
A

. A a~ ) aCk •. --. = --g'A +B -- --. =0, l#j,n> 1,(3.9) 
aX' aCK aCK aX' 

az
i 

az
j 

(aB A . A ag~) aCK 

axi - axj = aC
K 

g'A + B aC
K 

axi 

_ (aB
A

. BA a~) aCK =0 
aC

K 
g'A + aC

K 
axj , 

i, j not summed, n > 1. (3.10) 

Similarly, for the case n = 1 by use of (2.27) we express 
(3.8) in the form (g~ =gA) 

a 2z (a 2BA aB A agA 
--= gA +2----
ax ax aCJ aCK aCJ aCK 

+ BA a
2
gA ) aCJ aCK 

aCJ aCK ax ax 

(
aB A A agA ) a

2
c K 

+ --gA +B -- ---=0, n= 1. 
aCK aCK axax 

(3.11 ) 

By transformations of the form (2.17) and (2.18) the 
functions aC/(x,x,t)laXi that appear in (3.9) and (3.10) 
and functions aC/(x,x,t)lax and a 2c/(x,x,t)lax ax that 
appear in (3.11) are expressed as functions ofthe C/ and t. 
The resulting equations [(3.16)-(3.18)] are given in the 
theorem that follows. 

Theorem 3.2: Necessary and sufficient conditions for 
the auxiliary symmetry equation 

to admit solutions Z i (linear in Xi) of the form 

Zi(X,X,t) =Si(X,t) -XiSO(x,t), 

are that Z i satisfy the conditions 

a2z 
n= 1: --=0 (ZI=Z x 1=x) 

ax ax " 

{ ~~i = 0, i#j, 

n> 1: 
az i azj 
-- - -- = 0 i,j' not summed. 
axi aXi ' 

(2.15') 

(3.3') 

(3.8') 

(3.6') 

(3.7') 

All solutions to conditions (3.8'), for n = 1, or (3.6') 
and (3.7'), for n > 1, are expressible in the form 

(all n) Zi(X,x,t) = BA(C)~ (C,t). (2.27') 

In (2.27') the constants of motion CA (x,x,t) and the func
tions tA ( C,t) are defined in Sec. II and the constants of mo
tion B A (C) satisfy the conditions 

(3.12) 
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i,j = 1, ... ,n, i,j not summed, A,K = 1, ... ,2n, 

where [g~ (C,t) =gA (C,t),n = 1] 

(3.13 ) 

(3.14) 

1JJKA (C,t) =PJ( C,t)PK (C,t)gA (C,t), 

agA (C,t) 
1JJA (C,t) =2PJ (C,t)PK (C,t) + QJ (C,t)gA (C,t), 

aCk 

(3.15 ) 

(3.16 ) 

a 2gA (C,t) agA (C,t) 
1JA (C,t) =PJ(C,t)PK(C,t) + QJ(C,t) ac ' ( 3.17) 

n = 1: aCJ aCK J 

(3.18 ) aCK(x,X,t) 

ax, 

a 2CK (x,x,t) 
QK(Ct)= , A,J,K= 1,2in (3.15)-(3.19), 

,- ax ax 
( 3.19) 

pJKA (C,t) =PKj (C,t)g~ (C,t), 

n> 1: 

. ag~ (C,t) 
pjA (C,t) =PKj (C,t) , 

aCK 

(3.20) 

(3.21 ) 

aCK (x,x,t) .. . 3 322 PK}.(C,t) ., l,j = 1, ... ,n, A,K = 1, ... ,2n In ( .20)-(. ). (3.22) 
ax} 

Corollary 3.2.1: The functions 

BA = k A, kA=const, A = 1, ... ,2n (3.23 ) 

will satisfy (i) Eq. (3.12) for the case n = 1 if [refer to 
(3.17) ] 

1JA (C,t) = 0, (3.24) 

or (ii) Eqs. (3.13) and (3.14) for the case n> 1 if [refer to 
(3.21) ] 

(3.25) 

Conditions (3.24) for the case n = 1 or (3.25) for the case 
n > 1 will be satisfied if 

atA (C,t) 
---= 0, A,K = 1, ... ,2n. 

aCK 

(3.26) 

D 
Remark 3.3: Equation (3.26) is satisfied for all linear 

dynamical equations. D 
Remark 3. 4: With the exception of the B A (C) and their 

derivatives all functions appearing in (3.12) for the case 
n = 1 and in (3.13) and (3.14) for the case n> 1 are as
sumed to be known functions of the C's and t. With the C's 
regarded as the independent variables and t as a parameter, 
Eq. (3.12) for n = 1 or Eqs. (3.13) and (3.14) for n> 1 
must hold for all applicable values of t. In principle this leads 
to conditions which in general will be partial differential 
equations in B A ( C) . 

Alternatively, by means of (2.3) Eq. (3.12) for n = 1 or 
Eqs. (3.13) and (3.14) for n> 1 may be evaluated on dy
namical paths. This path evaluation procedure in effect re
places each constant of motion CA which appears in (3.12)-
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D 

I 
(3.14) by its constant path value CA' Therefore, each equa-
tion obtained by this procedure will be identical in form to its 
precursor. Clearly, on each path these path evaluated equa
tions for B A (c) must hold for all applicable values of t and 
one again is led to conditions which in principle determine 
the functional form of B A. D 

When used in (2.27') of Theorem 3.2 the BA(C) ob
tained as solutions (not all zero) to the conditions referred 
to in Remark 3.4 will determine the most general functions 
Z i having the linear form (3.3) of Theorem 3.1 and there
fore, by (3.4) and (3.5) of Corollary 3.1.1, will determine 
the most general classical symmetry mapping functions 
S i(X,t) andso(x,t) admitted bya dynamical system (2.1). If 
the only solutions B A ( C) of the above-mentioned conditions 
are B A = 0, then the associated dynamical system does not 
admit classical symmetries. 

Remark 3.5: For certain dynamical systems it may hap
pen that (3.12) for the case n = 1 or (3.13) and (3.14) for 
the case n > 1 lead to equations expressible in the form 

r 

L fa (B)ra (t) = 0, (3.27) 
a=l 

wherefa (B) denotes functions of the B(Cl's and their de
rivatives with respect to the C's. For dynamical systems that 
lead to equations of this type it appears this new method for 
determining classical symmetries could be of particular val
ue. Such is the case for all linear dynamical systems, as will 
be shown in Sec. IV. 

Equations (3.12) or (3.13) and (3.14) may still betrac
table even though they do not lead to equations of the form 
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(3.27). We illustrate this situation by applying Theorem 3.1 
to determine the classical symmetries of a nonlinear dynami
cal equation (see Sec. IX). 0 

Remark 3.6: For certain dynamical systems the func
tionsgA (C,t) and the constants of motion CA (x,x,t) may be 
such that it is possible to determine by inspection the func
tions RA(C) such that (2.27') of Theorem 3.2 gives 
Z i(X,X,t) of the desired linear form, (3.3') of Theorem 3.2, 
and thereby obtain in a simple fashion classical mappings 
admitted by the system. Such is the case with the example 
given in Sec. VIII, as the reader may verify, and as illustrated 
in Remark 9.1 for the example given in Sec. IX. 0 

IV. SPECIALIZATION OF THEOREM 3.2 FOR THE CASE 
OF LINEAR DYNAMICAL SYSTEMS 

The work of Lewis lO in formulating a constant of mo
tion (invariant) for the one-dimensional time-dependent os
cillator appears to have generated the current interest in the 
analysis of time-dependent linear systems. Several different 
methods for determination of the symmetries and/or con
stants of motion for various classes of such linear systems 
have since appeared. Many authors have contributed to this 
research. We shall not attempt to give an exhaustive litera
ture review but mention only those papers that are most 
pertinent to our work. The interested reader may consult the 
bibliographies of the references cited for additional literature 
on this subject. 

Leach,6.7 in related papers, has obtained by phase space 
transformations and other techniques the complete symme
try group for a one-dimensional time-dependent oscillator 
and a general one-dimensional time-dependent linear sys
tem. Also, for the general one-dimensional time-dependent 
linear system, but in Newtonian form, Aguire and Krause, II 
by a different transformation procedure, obtained the com
plete symmetry group in finite form. Lopezs has contributed 
to the analysis of an n-dimensional time-dpendent linear sys
tem by establishing conditions on the coefficients in the dy
namical equations for the system to admit a symmery group 
of maximal dimension n2 + 4n + 3. Lopez obtained this 
maximal parameter symmetry group by transformation 
techniques (applied to the dynamical equations in Newtoni
an form) for the case of n-dimensional time-dependent, iso
tropic, linear systems. The maximal (n 2 + 4n + 3)-param
eter group of infinitesimal symmetry mappings was known 
to exist for the n-dimensional time-independent attractive 
and repulsive oscillators. (See, for example, Katzin et al. 12) 
Various techniques that lead to constants of motion of time
dependent linear systems are available. See, for example, 
Katzin and Levine,13 Eliezer and Gray,14 Lewis and 
Leach,15 Lutzky, 16 Prince and Eliezer,17 and Colegrave and 
Mannan. ls 

As a prerequisite to specializing Theorem 3.2 to the 
class of linear dynamical systems we first summarize some 
properties of a general system of linear second-order differ
ential equations: 

Ei=Xi - R j (t)xj 
- Sj (t):xi - Ti(t) = 0, i,j = 1, ... ,n. 

(4.1 ) 

The solution to (4.1) is of the form 
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Xi = cA)~ (1) + ifJ~ (1), cA = const, A = 1, ... ,2n, 
(4.2) 

where the functions ifJ~ (t) and ifJ~ ( t) are twice differentiable 
and where 

(4.3) 

with 

¢~ (1) =(p~ (t). (4.4 ) 

In the partitioned 2n X 2n determinant (4.3) the indices 
i = 1, ... ,n denote rows and the indices A = 1, ... ,2n denote 
columns (so, e.g., ¢~ denotes row n + 1, etc.). 

It is a straightforward matter (as described below) to 
determine the coefficients R; (1), S;, and Ti(1) of (4.1) and 
a set of 2n functionally independent constants of motion of 
this system from any given solution set ifJ~ (1) and ifJ~ (1). 

As a preliminary step we obtain, from (4.2), 

Xi = CA ¢~ (t) + ¢~ (1), 

Xi = CA ip~ (1) + ip~ (1), 

where 

¢~ (1) =(p~ (1). 

(4.5) 

(4.6) 

(4.7) 

With use of (4.3) the 2n equations (4.2) and (4.5) may 
be solved for the 2n constants C A to obtain 2n functionally 
independent constants of motion [refer to (2.3)] CA (X,X,t) , 

which are linear polynomials in Xi and Xi with coefficients 
determined by the solution functions ifJ~ (1), ifJ~ (1) of (4.2) 
and their derivatives. These linear constants of motion are 
given in detail in Theorem 4.1. 

By eliminating the constants C A from (4.6) by means of 
(2.3) and the above-described linear constants of motion 
( 4.1) and then comparing the resulting equation with (4.1) 
we may readily express the coefficients R; (1), S; (t), and 
T'(1) which appear in (4.1) in terms of the solution func
tions ifJ~ (t), ifJ~ (1) of (4.2) and their derivatives. These coef
ficients are also given in detail in Theorem 4.1. 

Theorem 4.1: A linear dynamical system 

E i=xi -RJ(t)xj -S;(1)xj
- Ti(t) =0, iJ= 1, ... ,n 

( 4.1') 

has a solution of the form 

Xi = CAifJ~ (1) + ifJ~ (1), CA = const. A = 1, ... ,2n. 
(4.2') 

The solution functions ifJ~ (1) and ifJ~ (1) are twice differen
tiable and satisfy the requirement (i denotes rows, A denotes 
columns) 

W = 11.~ (tll #0, (4.3') 
¢~ (1) 

where 

¢~(1)=(p~(1). (4.4') 

The coefficients in (4.1') are expressible in the form 

R j(t) = W-I~ I{I~, (4.8) 

S;(t) = W-lip~~A' (4.9) 

(4.10) 
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where [with reference to (4.3')] 

<I>~ (t) ==cof(tP~ of W), 'I'~ (t) ==cof(t/I~ of W) 
(4.11 ) 

and 

t/lb (t) ==ipb (t). (4.7') 

The dynamical system (4.1') admits 2n functionally inde
pendent constants of motion [obtained by inverting (4.2) 
and its I derivative] 

CA (x,x,t) = a Ai (t)x
i + {3Ai (t)xi + YA (t), 

where 

a Ai (t) == W-l'l'~, 

{3 Ai (t) == W-I<I>~, 

YA (t) == - W- 1 (tPb<l>~ + tfro 'I'~ ). 

( 4.12) 

(4.13 ) 

(4.14 ) 

(4.15 ) 

D 
Remark 4.1: It is to be noted that any given twice-differ

entiable functions tP~ (t) and tPb (t), i = 1, ... ,n, A = 1, ... ,2n 
[which satisfy (4.3)] will determine by (4.8)-(4.10) the 
coefficients R j (t), S j (t), and T i (t) and hence a synthe
sized system of equations (4.1) which have as solution func
tions the given tP~ (t) and tPb (t). It also follows that the given 
functions tP~ (t) and tPb (t) will determine the constants of 
motion CA (x,x,t) in (4.12) of such a synthesized system 
(4.1). D 

We now consider the specialization of the characteristic 
functional structure of the auxiliary symmetry mapping 
function Z i in (2.27) for the case of the linear dynamical 
system (4.1). For the dynamical equation (4.1) the auxil
iary symmetry condition (2.15) takes the form [refer to 
(2.12) and (2.13)] 

( 4.16) 

Following the procedure outlined in Sec. II, the system of 
partial differential equations (4.16) has an associated sys
tem of ordinary differential equations [refer to (2.20)
(2.25) ] 

( 4.17) 

n = 1: 

Remark 4.3: That all linear systems (4.1') lead to condi
tions of the form (3.27) is evident by inspection of Eqs. 
(4.21)-(4.23). D 

For the case n = 1 Eq. (4.21) of Theorem 4.2 will be 
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Since (4.17) is of the same form as (4.1), it follows that its 
solution will be of the form (4.2), that is 

Zi(C,t) = BA(C)tP~ (1). (4.18) 

Hence for the linear dynamical system (4.1) the functions 
g~ [appearing in (2.26)] are defined by 

g~ = tP~ (1). (4.19) 

Therefore [refer to (2.27) and the comments that follow], 
the general solution to (4.16) is 

Zi(X,X,t) =BA[C(X,X,I)]tP~(1), (4.20) 

where the B A appearing in (4.20) are arbitrary functions of 
the constants of motion CA (X,X,I) in (4.12). 

Remark 4.2: The auxiliary mapping function Z i in 
(4.20) exhibits the characteristic functional structure asso
ciated with all velocity-dependent symmetry mappings of 
the general time-dependent linear system (4.1); (refer to 
Flemark2.1). D 

Conditions on the B( C)'s of (4.20) for Z i(X,x,l) to be 
linear in Xi (and thereby determine classical symmetry map
pings) will now be obtained by specializing Theorem 3.2 to 
the case of the linear dynamical system (4.1). By use of 
(2.12), (2.13), (3.12)-(3.22), (4. 19),andtheformulasgiv
en in Theorem 4.1, we find for the linear system (4.1) that 
Theorem 3.2 may be restated as follows. 

Theorem 4.2: For a linear dynamical system 

Ei==:e-Rj(t):Xi-Sj(t)xj
- Ti(t) =0, iJ= 1, ... ,n 

( 4.1') 

(described in Theorem 4.1) to admit solutions Z i of the 
auxiliary symmetry condition 

(4.16') 

which are of the linear form 

Zi(X,X,t) = Si(X,I) - XiSO(x,t), (3.3') 

it is necessary and sufficient that Z i be of the form 

Zi = BA(C)tP~ (1), A = 1, ... ,2n, (4.20') 

where the functions B A (C) satisfy the conditions (tP ~ == tP A 
when n = 1) 

(4.21) 

(4.22) 

(4.23 ) 

D 
I 
solved (in Sec. V) and the results used to obtain the com
plete group of classical symmetries for the one-dimensional 
linear system [( 4.1) with n = 1]. 

For the case n> 1 Eqs. (4.22) and (4.23) of Theorem 
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4.2 obviously are satisfied when B A = k A, k A = const. 
This solution also follows from (4.19) and Corollary 3.2.1, 
as indicated by (3.23). From (4.20') and (3.3') of Theorem 
4.2, Theorem 3.1, and Corollary 3.1.1 the above-mentioned 
B solutions allow us to state the following corollary to 
Theorem 4.2. 

Corollary 4.2.1: Every n-dimensional, n> 1, linear dy
namical system (refer to Theorem 4.1) 

xi-RJ(t)xj-SJ(t)xi- Ti(t) =0, iJ= 1, ... ,n (4.1') 

admits at least a 2n-parameter classical symmetry mapping 
determined by the mapping function 

ti(x,t) = kA<p~ (t), to(x,t) = O. (4.24) 

These mapping functions define a 2n-parameter Abelian 
( sub) group of transformations with the generators 

XA = <p~ (t)ao A = 1, ... ,2n. (4.25) 

D 
A specialized class of the linear system (4.1) is defined 

by n equations of the form 

Ei=.Xi - R i(t)Xi - Si(t)Xi - Ti(t) = O. (4.26) 

It is to be noted that in (4.26) the only dependent variable in 
the ith equation is Xi. We shall therefore refer to (4.26) as a 
decoup/ed linear system. The (general) linear system (4.1) 
reduces to the decoupled form (4.26) iff 

R ;(t) = 8;R i(t), S;(t) = 8;Si(t). (4.27) 

When n = 1 every linear system (4.1) is obviously always of 
the decoupled form (4.26). 

For a nondecoupled linear system (4.1) each solution 
Xi(t), i = 1, ... ,n, (4.2) will in general contain 2n distinct so
lution functions <p~ (t), A = 1, ... ,2n determined by the ho
mogeneous portion of all n equations of the system. In con
tradistinction for each i, the solution Xi(t) of a decoupled 
linear system (4.26) will contain only two solution functions 
which are determined by the homogeneous portion of only 
the ith equation of the system (4.26). Hence when the linear 
system (4.1) is of the decoupled form (4.26) we may sim
plify the solution (4.2) by taking 

<p~ (t) = 0, A =l=2i - lor 2i (4.28) 

to obtain 

(4.29) 

where the solution functions <P~i _ I and <P~i must satisfy [re
fer to (4.3)] 

Wi =. I <P~i - I <p~,. I =1=0. (4.30) 
t/12i-1 t/12i 

It is noted by use of (4.28), (4.3), and the repeated use 
of the Laplace expansion that for the decoupled system 
(4.26) the function Win (4.3) reduces to 

(4.31 ) 

From the form of W(n) in (4.31) it can be shown for the 
decoupled system (4.26) that the cofactors (4.11) may be 
expressed in the form 

(4.32) 
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~i = -&;W(n)Wi-I~"_I' 
'11,. - I = - &; W(n) W i- I<p~i' 

'I1i = &; W(n) Wi-I<p~i_I' 

(4.33) 

(4.34) 

(4.35 ) 

If use is made of (4.12)-( 4.15), (4.28), (4.32)-(4.35), 
and Theorem 4.1, we may state the following corollary to 
Theorem 4.2. 

Corollary 4.2.2: If an n-dimensional, n> 1, linear dy
namical system (4.1) is decoupled in that it is of the form 

Ei=.x" - R i(t)Xi - Si(t)Xi - Ti(t) = 0 (4.26') 

and its solution is expressed in the form 

Xi(t) =C2i_I<P~i_dt) +C2i<P~i(t) + <pb(t), (4.29') 

where <P~i _ I and <P~i satisfy (t/1~ =.;P~ , A = 2i, 2i - 1) 

(4.36) 

then in Theorem 4.2 Eqs. (4.22) and (4.23) reduce, respec
tively, to 

. . aB 2i - 1 .. aB 2i . . 
<P~i - I ¢l2j ae + <P~i<P'2j ae - <P~i - I ¢l2j - I 

2j- t 2j- I 

aB 2i - t .. aB 2i 
X aC

2j 
- <P~i¢l2j - t aC

2j 
= 0, 

i =1= j, i, j not summed (4.37) 

and 

W.-t[(..I.i. )2 aB
2i

-
t 

+..I.i . ..I.i .(aB
2i 

_ aB
2i

-
l

) 
• 'fJ2. - I ae . 'fJ2. - t 'fJ2. ae. ae . 

2. 2. 2.- I 

_ (..I.i)2 aB
2i 

] = W.-t[<..I,j. )2 aB
2
j-t 

'fJ2. ae . J 'fJ2J - t ae . 
~-I ~ 

. . (aB 2j aB 2j - t ) 

+ ¢l2j - I <P'2j ae. - ae. 
2J 2) - I 

- (¢I2j) , l,j not summed. 
. 2 aB 2j] .. 

aC2j _ t 
(4.38) 

The constants of motion appearing in (4.37) and (4.38) 
have the form 

C W -t(..I.i 'i+./'; i+./';..I.i ..I.i ./';) (439) 2i-1 = i - 'fJ2i X 'fJ2iX 'f'O'f'2i - 'fJO'f'2i' . 

C2i = Wi-t(<P~i_IXi - t/1~i_tXi - t/1b<p~,.-t + <pb~"-I)' 
(4.40) 

D 
For any system of n, n> 1, decoupled dynamical equa

tions (4.26) it is easily shown that Eqs. (4.37) and (4.38) of 
Corollary 4.2.2 are satisfied by the functions 

B
2i

-
t

=f1i C2i_1 +Yi' 

B 2i =f1;C2i + v,., f1oYi,vi =.const. 
(4.41 ) 

The B 's in (4.41 ) may be expressed as functions of X,X, and t 
by use of the constant of motion formulas (4.39) and (4.40). 
The resulting B functions, along with (4.28), determine by 
(4.20') of Theorem 4.2 linear Zi of the form (3.3'); such zt 
by Theorem 3.1 and Corollary 3. L 1 allow us to state the 
following result. 

Corollary 4.2.3: Every n-dimensional, n> 1, decoupled 
linear dynamical system (refer to Corollary 4.2.2) 

( 4.42) 
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admits at least a 3n-parameter classical symmetry mapping 
determined by the mapping functions 

S i(X,t) = lLi [Xi - cP~ (t)] + ricP~i _ I (t) 

A,.i .£;-0 + Vi'f'2i (t), ~ (x,t) = 0. (4.43 ) 

These mapping functions define a 3n-parameter (sub) group 
of transformations with the generators 

Mi= [Xi - cP~(t) ]ao Gi=cP~i-1 (t)ai , Ni=cP~i(t)aO 
(4.44 ) 

which have the following group structure: 

[Mo~] = 0, [MoGj ] = - G/jJ, [Mi'~] = - N/jJ, 

[Gi,Gj ] =0, [Gi'~] =0, [NoNj ] =0. (4.45) 

o 
In Sec. VI a specific two-dimensional decoupled dynam

ical system which illustrates Corollaries 4.2.2 and 4.2.3 is 
analyzed. 

An additional illustration of Corollaries 4.2.2 and 4.2.3 
is found in Sec. VII, where the complete group of classical 
symmetries of the class of n-dimensional isotropic (decou
pled) linear systems is determined by the above-described 
techniques. 

v. EXAMPLE: CLASSICAL SYMMETRIES OF ALL ONE
DIMENSIONAL SECOND-ORDER LINEAR DYNAMICAL 
SYSTEMS 

We shall now use Theorem 3.1, Corollary 3.1.1, and 
Theorem 4.2 to obtain the complete group of classical sym
metries for all one-dimensional second-order linear dynami
cal systems (4.1), which with n = 1 may be written in the 
form 

E = x - R(t)x - S(t)x - T(t) = 0. (5.1 ) 

Remark 5.1: For the case n = 1 (A = 1,2) unneeded 
coordinate indices will be suppressed, for example, Xl = X, 

cP~=cPA' Rl=R,aAI=aA, etc. 0 
When n = 1 the formulas in Theorem 4.1 take relatively 

simple forms. They are listed below for convenience. For the 
one-dimensional system (5.1) the solution (4.2') reduces to 

X = C1cPl(t) + C2cP2(t) + cPo(t), CI,C2 const (5.2) 

and the Wronskian (4.3') takes the form 

W = cPl¢2 - cP2¢1 #0. (5.3 ) 

The coefficients appearing in (5.1) are obtained from (4.8)
(4.10): 

R(t) = W- 1(cPI¢2 - cP2¢1)' 

S(t) = W- I (¢2¢1 - ¢1¢2)' 

T(t) = ¢o - R(t)¢o - S(t)cPo' 

(5.4) 

(5.5) 

(5.6) 

Two constants of motion are obtained from (4.12)
( 4.15) for the case n = 1: 

where 
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al(t) = - W- 1cP2' a 2(1) = W-IcPI, 

/31(1) = W- I¢2, /32(t) = - W-I¢j, 

rl (I) = W -I (¢OcP2 - cPO¢2)' 

r2(1) = - W-I(¢OcPl - cPO¢I)' 

(5.9) 

(5.10) 

(5.11 ) 

It is of interest to note from (5.3) and (5.4) that in this 
n=lcase 

W=RW. (5.12) 

We now turn to the solution of ( 4.21) for the functions 
B I(CI,C2 ), B 2 (CI ,C2 ), where C1 and C2 are defined by 
(5.7 )-( 5.11). Equation (4.21) may be expressed in the form 

a
2
BI <f3+( a

2
B2 -2 a

2
BI )rr 

aC2 aC2 aC2 aC2 ac I aC2 

( 
a2B 1 a 2B2 ) a 2B2 + -2 a+ =0, (5.13) 

aCI aCI aCI aC2 aCI aCI 

where 

(5.14 ) 

WenotethatEq. (5.13) is of the form (3.27) discussed 
in Remark 3.5. Since in (5.13) the functions C A and tare 
treated as independent variables (refer to Remark 3.4), it 
follows by successive differentiations of (5.13) with respect 
to t [note by (5.3) that ir = W /cPi #0] that the coefficients 
of the various a terms in (5.13) are zero. Hence we are led to 
the following conditions on B I(C1,C2 ), B 2 (CI ,C2 ): 

a2B I(CI,C2 ) = 0, 
aC2 aC2 

a2
B

z
(C1,C2 ) = 0, 

aclacj 

aZB 2 (CI ,Cz) _ 2 a2B I(C1,C2 ) = 0, 
aC2 aC2 aCI aC2 

aZB I(CI,CZ) _ 2 a 2B z(C1,C2) = 0. 

aCI aCI aCI aC2 

(5.15 ) 

( 5.16) 

( 5.17) 

(5.18 ) 

Equations (5.15)-(5.18) are easily solved to obtain 

B/(CI ,C2 ) =ASKCJCK +ILSCJ + V, I,J,K= 1,2,(5.19) 

where the constants A SK ( =A L) satisfy the restrictions 

A 12 = 0, Ail = 0, A ~2 - U l2 = 0, A l I - U ~2 = 0, 
(5.20) 

but are otherwise arbitrary, and the constants ILS and v are 
arbitrary. 

It is a straightforward calculation to express B I in 
(5.19) as a polynomial inxby use of the constants of motion 
C I and Cz given by (5.7 )-( 5.11 ). The resulting polynomial, 
when used in (4.20') with n = 1, determines the desired 
function Z(x,x,t), which is linear in x (refer to Theorem 
4.2). When this so-obtained linear Z is used in (3.4) and 
( 3.5) of Corollary 3.1.1 we obtain [note that (5.20) has been 
used] 

s(x,t) = All W-I(¢zXZ + r 2x + 0 2cPo) 

- A ~2 W-I(¢jXZ + rlx + 0 lcPo) 

+ ILl W-'(cPI¢zX - 0 2cP,) 

-IL~ W-'(cPI¢IX - 0 1cPI) 

G. H. Katzin and J. Levine 2046 



                                                                                                                                    

+ Ili W-I(t/l2¢~ - 0 2t/l2) 

_1l~W-I(t/l2¢lX-01t/l2) +Vlt/ll +vt/l2,(5.21) 

SO(x,t) =A II W- I(t/l2X - t/lOt/l2) 

- A ~2 W-I(t/llx - t/lOt/lI) 

+Ill W- It/llt/l2 -Il~ W-It/llt/ll 

+ Ili W- It/l2t/l2 -Il~ W- It/l2t/l1' (5.22) 

where 

0 A =t/lJA - t/lA¢O' r A =t/lA¢O - 2t/lO¢A, A = 1,2. 
(5.23 ) 

The mapping functions s(x,t) in (5.21) andsoin (5.22) 
define the most general classical symmetries of the one-di
mensionallinear system (5.1). The eight arbitrary constants 
A II, A ~2' Ill, ILL Ili, ILL VI' and v that appear in the map
ping functions (5.21) and (5.22) determine, respectively, 
the following eight generators [each of the form 
X=s(x,t)ax + sO(x,t)at ] 

Al = W-I(¢~2 + r 2x + 0 2t/lo)ax + W-I(t/l2X - t/lOt/l2)a" 
(5.24 ) 

A2=W-I(¢~2 + rlx + 0 1t/lo)ax + W-I(t/llx - t/lot/ll)a" 
(5.25 ) 

Ml = W-I(t/ll¢~ - 0 2t/lI)ax + W- It/llt/l2 a" 

Mj = W-I(t/lI¢IX - 0 1t/lI)ax + W-It/llt/ll a" 

Mi = W-I(t/l2¢~ - 0 2t/l2)ax + W- It/l2t/l2 a" 

M~ = W- I(t/l2¢IX - 0 1t/l2)ax + W- It/l2t/l1 a" 

NI=t/l1 ax, 

N2=t/l2 ax' 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31 ) 

The generators (5.24)-(5.31) determine the complete 
eight-parameter group of classical symmetries of the linear 
dynamical equation (5.1). 

Remark 5.2: In the basis with the generators Ga , 

a = 1, ... ,8 defined by the basis change GI 

= - (MI +M~), G2=M~ -Mf, G3 =N2' G4 =NI, 
Gs = - (M1 +Mi), G6 =Ml -ML G7 = -A2' and 
Gg = - AI' the eight-parameter symmetry group (5.24)
(5.31) is isomorphic to both the eight-parameter symmetry 
group determined by Lutzkys in his analysis of the simple 
harmonic oscillator and the eight-parameter symmetry 
group determined by Leach6 in his analysis of the time-de
pendent oscillator. See, also, Leach 7 and Lopez. g 0 

The linear dynamical system (5.1) is a Lagrangian sys
tem with the Lagrangian 

L(x,x,t) = W- I [!X2 + !S(t)x2 + T(t)x]. (5.32) 

Iffor some function r(x,t) there exist mappings of the form 
(3.1) and (3.2) such that 

d dr 
8L+L-&= --8a, 

dt dt 
(5.33 ) 

a Lagrangian dynamical system is said to admit classical 
Noether symmetries. If a Lagrangian system admits such 
Noether mappings they will be a subgroup of the classical 
symmetries determined by variation of the dynamical equa
tion (Lagrange's equation) described in Sec. II} Hence to 
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obtain the mapping functions s(x,t) and sO(x,t), which de
termine the complete group of classical Noether symmetries 
of the linear system (5.1) characterized by the Lagrangian 
(5.32), we need only to find what restrictions the Noether 
symmetry condition (5.33) places upon the general classical 
symmetry mapping functions (5.21) and (5.22) and obtain 
the associated function r(x,t). 

The details of the above-described procedure for obtain
ing classical Noether symmetries of the linear dynamical 
system (5.1) are given in the Appendix. It is found that the 
dynamical system (5.1) admits a five-parameter group of 
classical Noether mappings determined by the mapping 
functions 

s(x,t) = W-I(!Mx - !t/loM + ¢oM) + N, 

sO(x,t) = W-IM, 

where 

M(t) = -Ilj (t/l1)2 + 2111 t/llt/l2 + Ili (t/l2)2, 

N(t) = Vlt/ll + Vt/l2' 

and the associated function r(x,t) takes the form 

r(x,t) = - !W-2{(M - RM)x2 

+ 2[2~oM + ¢o(M - 2RM) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

- t/lo(M - RM)]x + t/l~ (M - RM - 2SM) 

- 2 (t/lo¢oM - ¢~M)} 

- W-I(Nx - t/loN + ¢oN). (5.38) 

It is to be noted that the five parameters Ill, ILL Ili, Vi, and 
v that appear in the classical Noether mapping functions 
(5.34), (5.35), and (5.38) also appear in the mapping func
tions (5.21) and (5.22), which determine the more general 
group of classical symmetry mappings for the dynamical 
system (5.1). Corresponding, respectively, to the above
mentioned five parameters we obtain from (5.34) and 
(5.35) the five generators of the complete classical Noether 
group [refer to (5.26)-(5.31)]: Ail =Ml + ML ML 
Mi, N I , and N2• 

VI. EXAMPLE: CLASSICAL SYMMETRIES OF A TWO
DIMENSIONAL DECOU PLED LINEAR SYSTEM 

We now use Corollary 4.2.2 and Theorem 4.2 to obtain 
the classical symmetires of the two-dimensional decoupled 
system 

Xl - 6t -2X I = 0, 

X2 _ 12t -2X2 = O. 

(6.1 ) 

(6.2) 

Solutions to (6.1) and (6.2) may be expressed in the forms 
[refer to (4.28 )-( 4.30)] 

Xl = cl t
3 + c2t -2, 

x 2 = c3t4 + c4 t -3, 

so that 

(6.3) 

(6.4) 

t/l1=t 3
, t/l1=t-2, t/l~=0, t/l!=0, t/l~=0, (6.5) 

t/li = 0, t/l~ = 0, t/l~ = t 4
, t/l~ = t -3, t/l~ = 0, (6.6) 

and 
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WI=-5, W2=-7. (6.7) 

Inverting (6.3) and (6.4) we find the constants of motion to 
be [refer to (4.39) and (4.40)) 

C I =!t -2X I + ~t -3X I, 

C2 = - !t 3XI + ~t2xl, 
C

3 
= ,t -3X2 + ,t -4X 2, 

(6.8) 

(6.9) 

( 6.10) 

C4= _'t4X2+~t3X2. (6.11) 

For the case n = 2 two equations are determined by 
(4.37): With use of (6.5) and (6.6) they maybe expressed in 
the respective forms 

aB I + t -5 aB 2 _ t 7 aB I _ t 2 aB 2 = 0, (6.12) 
aC3 aC3 aC4 aC4 

aB 3 aB 4 aB 3 aB 4 
t 2 __ + t -5 -- - t 7 -- - -- = O. (6.13) 

aCI aCI aC2 aC2 
Equation (4.38) leads to one equation when n = 2. 

With use of (6.5) and (6.6) this equation may be expressed 
in the form 

1 8 aB 3 1 6 aB I 
-t ----t --
7 aC4 5 aC2 

+ t (J.- aB 4 _ J.- aB 3 _ J.- aB 2 + J.- aB I ) 
7 aC4 7 aC3 5 aC2 5 aCI 

+ J.- t -4 aB
2 

_ J.- t -6 aB
4 

= O. (6.14) 
5 aCI 7 aC3 

The linear independence of the coefficients in each of 
Eqs. (6.12)-(6.14) leads to the conditions 

aB I(C) = 0 34 
ac ' a=2", 

a 

(6.15 ) 

a~~c) = 0, fJ= 1,3,4, (6.16) 
f3 

a~~C) = 0, Y= 1,2,4, (6.17) 
y 

a~~{jC) = 0, {) = 1,2,3, (6.18) 

J.-[aB
4
(C) _ aB

3
(C)] + J.-[aB I(C) _ aB

2
(C)] =0. 

7 aC4 aC3 5 aCI aC2 
( 6.19) 

The solution to the system (6.15)-(6.19) is readily 
found to be 

BI=aICI+bl, 

B2 = a2C2 + b2, 

B3 = a3C3 + b3, 

B 4= (-~al +~a2+a3)C4+b4' 

(6.20) 

(6.21 ) 

(6.22) 

(6.23 ) 

The B A, A = 1,00.,4 given by (6.20)-( 6.23) are next ex
pressed as functions of X,X, and t by use of the constants of 
motion (6.8 )-( 6.11). The resulting formulas for B A, along 
with the functions <P~ in (6.5) and (6.6), are used in (4.20') 
of Theorem 4.2 to obtain the functions 

Z 1= !(2al + 3a2)xl + b It 3 + b 2t -2 + !(al - a2)txI, 
(6.24) 
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Z2 = ( - ~al + ~a2 + a3)x2 

+ b 3t 4 + b 4t -3 + !(al - a2)tx2. (6.25) 

It now follows from (6.24), (6.25), and (3.3') of 
Theorem 4.2 (or alternatively by Corollary 3.1.1) that the 
classical symmetry mapping (3.1) and (3.2) for the dynami
cal system (6.1) and (6.2) is determined by the mapping 
functions 

(6.26) 

S2(X,t) = al ( - ~2) + a2(~2) + a3x2 + b3t4 + b4t -3, 
(6.27) 

(6.28 ) 

The mapping functions (6.26 )-( 6.28) determine a sev
en-parameter group with the parameters aI' a2, a3, bl' b2, b3, 
and b4 • The corresponding generators may be chosen to be 

AI = 2x1 al - 4x2 a2 - ta" A2 = 3Xl al + 4x2 a2 + ta" 

A3 = x2 a2, BI = t 3a l, B2 = t -2al, B3 = t 4a2, 

B4 = t 3a2• (6.29) 

Corollary 4.2.3 is applicable to the dynamical system 
(6.1) and (6.2). By use of (6.5) and (6.6) weformulate the 
six (3n, n = 2) generators M I, M 2, G I , G2, N I, and N2 de
fined by (4.44) of Corollary 4.2.3. A comparison of these 
generators with the seven generators in (6.29) shows 
MI = (AI + A2)/5, M2 = A3, GI = B I, G2 = B3, NI = B2, 
and N2 = B4 , which verifies Corollary 4.2.3. 

VII. EXAMPLE: CLASSICAL SYMMETIRES OF AN n
DIMENSIONAL, n> 1, ISOTROPIC LINEAR SYSTEM 

If the coefficients appearing in the decoupled linear sys
tem (4.26) are chosen to be 

R i(t) = R(t), Si(t) = Set), i = 1,00.,n, (7.1) 

then each of the n dynamical equations will be of the same 
form except for their nonhomogeneous terms T i ( t). The d y
namical system is then said to be isotropic and has the dy
namical equations 

Ei=X/ - R(t)xi - S(t)xi - Ti(t) = 0, i = 1,00.,n. 
(7.2) 

We apply our new method to obtain the classical sym
metries ofthe isotropic system (7.2). The reader may wish 
to compare this approach with that of Lopez.8 

With reference to (4.28)-(4.30) the solution to (7.2) 
may be expressed in the form 

Xi(t) = c2i _ I <PI (t) + C2i<P2(t) + <P~ (t), 

where [refer to (4.4) ] 

(7.3 ) 

W=Wi =<PltP2-<P2tPl#0, i=l,oo.,n, (7.4) 

<P1(t)=<pii-I(t), <P2(t)=<pii(t), i=l,oo.,n, (7.5) 

The constants of motion (4.39) and (4.40) simplify by 
means of (7.4 )-(7.6),80 that for the isotropic system (7.2) 
they have the form 

C2i _ 1 = w- I( - <P2Xi + tP2Xi + tP~<P2 - <P~tP2)' (7.7) 
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It follows from (7.4) and (7.5) that for the isotropic 
system (7.2) Eqs. (4.37) and (4.38) of Corollary 4.2.2 take 
the form, respectively, 

~ +7 =~ 
aB 2i ( aB 2i - I _ aB 2i) _ aB 2i - I 

aC2j _ I aC2j _ I aC2j aC2j 

( 
aB2i 

~ aC2i _
1 

aB 2
j ) 

aC2j _ 1 

(
aB2i aB2j aB 2i- I aB 2j-l) 

-7 ------ +---
aC2i aC2j aC2i _ I aC2j - I 

i=/=j, 

(7.9) 

- - - 0, ij not summed, (
aB 2i - 1 aB 2j-I)_ 

aC2i aC2j 
(7.10) 

where 

7(t)=-tP~/tP~i-1 =tP2/tPI' i= 1, ... ,n. (7.11) 

By successive differentiation of both (7.9) and (7.10) 
with respect to t (recall C's and t are to be treated as indepen
dent variables) and noting from (7.11) and (7.4) thatf=/=O, 
we find that the B ( C)'s must satisfy the conditions 

aB 2i 
--- = 0, i=/=j, 
aC2j _ 1 

aB 2i - I aB 2i • • 
---=--, l=/=J, 
aC2j _ 1 aC2j 
aB 2i - 1 

--- = 0, i=/=j, 
aC2j 

aB 2i - I aB 2j - I 

aC2i = aC2j , all i,j, 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

aB 2i aB 2i - 1 aB 2j aB 2j-1 
all i,j, --- =---

aC2i aC2i _ 1 aC2j aC2j _ 1 
, 

(7.16) 

aB 2i aB 2j 
all i,j. (7.17) 

aC2i aC2j _ 1 
, 

Equations (7.12)-(7.17) maybe solved in a straightforward 
fashion to obtain (k = 1, ... ,n) 

(7.18) 

B 2i - 1 ~ kC C = ~ a o 2k - I 2i - I 
k 

+ L/3~C2k-1 C2i + L iokC2k _ 1 
k k#i 

+ ~C2i_1 + /30C2i + ~ , (7.19) 

where 

uio - ~ = uo, all i. (7.20) 

The BA(C),S,A = 1, ... ,2n defined by (7.18)-(7.20) are 
next expressed as functions of x,x, and t by means of (7.7) 
and (7.8). The resulting functions, together with the tP's in 
(7.5), are employed in (4.20') of Theorem 4.2 to obtain the 
functions Z i [wherein the parameters uio, i = 1, ... ,n have 
been expressed in terms of ~ and Uo by (7.20), the nota
tional change ~ =- yg has been adopted, and use has been 
made of the definitions (4.4) and (4.7)]: 

Z i = L a~ w- I [ - (xk - tP~ ) tP2Xi + ¢~iXk - 8~ Xk - tP~ ¢2Xi + 8~ tP~ ] 
k 

+ L!3~W-1 [(xk - tP~)tPIXi - ¢IXiXk - 8~Xk + tP~¢IXi - 8~ tP~] 
k 

+ Liok(Xk - tP~) + /3ow- 1 (tPltPlXi - tPI¢IXi + 8~ tPI) + uow- I (tPltPZXi - tP2¢IXi + 8~ tPz) 
k 

(7.21 ) 

where 

8~ =-tP~¢A - tPA¢~' (7.22) 

By means of (3.3') of Theorem 4.2 [or by use of Corollary 3.1.1 and (7.21)] we obtain the mapping functions 

Si = L a~w-I(¢zxixk - 8~Xk - tP~¢ZXi + 8~ tP~) + L/3~w-I(¢IXiXk + 8~Xk + tP~ ¢IXi + 8~ tP~) 
k k 

+ L iok(Xk - tP~) - /30W- I(tPI ¢IXi - 8\ tPI) - uow-l(tPZ¢IXi - 8\ tPz) + aow-l(tPz¢zxi - 8~ tPz) 
k 

+ ~ tPI + fl~ tPz, (7.23 ) 

SO = La~w-I (xk - tP~ )tPz - L /3 ~W-I (xk - tP~ )tPI - /3oW- ItPltPl 
k k 

- UoW-ltPl tPz + aow-ltPztPz' (7.24) 
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The N = n2 + 4n + 3 arbitrary constants io\ a~, P ~ 
~, J.Lb, ao, Po, and uo that appear in the mapping functions 
(7.23) and (7.24) determine N infinitesimal symmetry map
pings (3.1) and (3.2). These mapping define the complete 
N-parameter group of classical symmetries of the n-dimen
sional isotropic linear system (7.2) and have been obtained 
(in the same basis) by LopeZ8 by an alternative method. 

In Theorem 4.2 and Corollary 4.2.2 it was necessary to 
distinguish the cases n = 1 and n> 1 when formulating the 
conditions for obtaining the Ir (C)'s that determine linear 
Z i(.:e,x,t) and therefore classical symmetries. It is of interest 
to note, however, that if the mapping functions S i(X,t) in 
(7.23) and sO(x,t) in (7.24), which were based upon the 
n > 1 formulation for the isotropic systems (7.2), are formal
ly evaluated for n = 1 the resulting mapping functions lead 
to eight generators (X = sax + soa,) which by a simple ba
sis change can be expressed in the same form as those 
[ (5.24 )-( 5.31)] determined by the n = 1 formulation for 
the one-dimensional dynamical system (5.1). 

The isotropic system (7.2) is a decoupled system; hence 
Corollary 4.2.3 is applicable. The 3n generators determined 
by use of the solution functions (7.6) of the isotropic system 
in (4.44) of Corollary 4.2.3 are seen by inspection to be those 
associated with the 3n-parameters"g, ~, andJ.Lb, i = 1, ... ,n 
which appear in the above-determined mapping functions S i 
in (7.23) andSoin (7.24). 

VIII. EXAMPLE: CLASSICAL SYMMETRIES OF THE 
DYNAMICAL SYSTEM il-XZ/ x= 0, (n= 1) 

The theory developed in Sec. III will now be used to 
determine the classical symmetries admitted by the one-di
mensional (n = 1) dynamical system 

(8.1 ) 

Remark 8.1: By the coordinate transformation 

x=eY (8.2) 

the nonlinear equation (8.1) can be converted into the sim
ple linear equation 

y=o. (8.3 ) 

Clearly, the classical symmetries of (8.3) may be readily 
found (with the appropriate notation change x -+ y) as a spe
cial case of those derived in Sec. V for the general one-dimen
sionallinear system (5.1); when obtained, these symmetries 
could by (8.2) be expressed in terms of the coordinate sys
tem of (8.1). However, solely for illustration purposes, we 
shall work directly with the nonlinear equation (8.1) to 
show how Theorem 3.1, Theorem 3.2, and Corollary 3.1.1 
may be used to obtain the classical symmetries of a simple 
nonlinear equation. D 

Remark 8.2: The dynamical equation (8.1) was used in 
Ref. 1 to illustrate the procedure for determining the charac
teristic functional structure of the auxiliary symmetry map
ping function ztx,x,t) in (2.27). Use will be made ofre
suits of that calculation in the present illustration. D 

Equation (8.1) has the solution 

(8.4 ) 

from which it follows that 
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(8.5) 

From (8.4) and (8.5) there is obtained functionally inde
pendent constants of motion [refer to (2.3) ] 

(8.6) 

(8.7) 

For the dynamical system (8.1) the auxiliary symmetry 
condition [Eq. (2.15') of Theorem 3.2] takes the form 

Z - (2Xlx)Z + (X/X)2Z ~ o. (8.8) 

From Sec. VII of Ref. 1 the solution to the partial differential 
equation obtained by the formal expansion of (8.8) is ex
pressible in the form [refer to (2.27') of Theorem 3.2] 

Z = B I (CI,C2)ec" + B 2(CI,C2)teC", (8.9) 

where C I , C2 are given by (8.6) and (8.7), respectively, and 
where the functions B I( C I , C2 ), B 2(C I ,C2) are arbitrary. 

From Sec. VII of Ref. 1 or by comparison of (8.9) and 
(2.27) it follows that the functions 
~ (C,t) [ =gA (C,t),n = 1] have the form 

gl(C,t) = eC", g2(C,t) = teC". (8.10) 

We now determine theBe C) 's, so that Z in (8.9) will be 
linear in X, as required for classical symmetries. 

With reference to (8.4 )-( 8.7) and the discussion in the 
paragraph preceding Theorem 3.2 it is found that the func
tionsPK(C,t) in (3.18) and QK(C,t) in (3.19) are 

PI (C,t) = - te- c", 

P2(C,t) =e-c"ICI, 

QI(C,t) = t 2e- 2C"ICI, 

Q2(C,t) = o. 

(8.11 ) 

(8.12 ) 

(8.13 ) 

(8.14 ) 

The 7J'S defined by (3.15 )-( 3.17), (n = 1) are evaluat
ed by means of (8.10)-(8.14) and used in (3.12). The re
sulting equation may be expressed in the form 

t 3F 3 + t 2F2 + tFI + Fo = 0, (8.15) 

where the Fa' a = 0, ... ,3 are functions of C I and the B 's and 
their derivatives with respect to C I and C2• 

With reference to Remark 3.4, it follows that Fa = 0, 
(a = 0,1,2,3). This leads to the following conditions on the 
B A (CI ,C2 ): 

C 2 a
2
B2 _ C aB

2 
+ B2 = 0 (8.16) 

I aCI aCI I aCI ' 

2 a 2BI a 2B2 aBI 
C I -2CI -CI --

aCI aCI aCI aC2 aCI 

+ 2
aB2

+B I =0 (8.17) 
aC2 ' 

a 2B2 a 2B I aB I 
----2CI +2--=0 (8.18) 
ac2aC2 aCI aC2 aC2 
a2BI 

---=0. (8.19) 
aC2 aC2 

Equations (8.16 )-( 8.19) can be solved without diffi
culty to obtain 
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B I=! a lC2Cl ln CI + a2C IC2 + a3CI 

+ a4CI In CI + asCI (In CI )2, 

B2 =! aICIC~ + a6C IC2 + a7CI 

(8.20) 

+ aSC2CI InCI + asCI In CI. (8.21) 

TheB's in (8.20) and (8.21) are used in (8.9). If the 
resulting equation is expressed in terms of X, x, and t by 
means of (8.6) and (8.7) we obtain Z(x,x,t), which has the 
desired linearity inx. By means of (3.4) and (3.5) ofCorol
lary 3.1.1 this linear Z leads to the following eight-parameter 
symmetry mapping functions: 

s(X,t) = a3x + a4x In x + asx(ln X)2 + a7tx + astx In x, 
(8.22) 

sO(x,t) = -~allnx-a2+a4t+astlnx-a6t +ast2. 
(8.23 ) 

By Theorem 3.1 the mapping functions (8.22) and (8.23) 
determine the complete eight-parameter group of classical 
symmetry mappings for the dynamical equation (8.1). 

With reference to Remark 8.1, we may express the map
ping functions s(x,t) in (8.22) and sO(x,t) in (8.23) in 
terms of they coordinates toobtain~(y,t) and~o(y,t), where 

~(y,t) = : s(x,t) = e-Ys [x(y),t], (8.24) 

~o(y,t) = SO[x(y),t]. (8.25) 

As to be expected (and the reader may readily verify), the 
transformed functions ~(y,t) and ~o(y,t) will be those ob
tained by specializing the mapping functions (5.21) and 
( 5.22) of a general linear system (7.1) to the case of a free 
particle (8.3) by taking <PI (t) = t, <P2 (t) = 1, <Po(t) = 0 and 
making the notational change x ..... y. 

IX. EXAMPLE: CLASSICAL SYMMETRIES OF THE 
DYNAMICAL SYSTEM X+SZe''I--{lls)X=O 

As our final illustration of Theorem 3.1, Theorem 3.2, 
and Corollary 3 .1.1 we determine the classical symmetries of 
the class of one-dimensional nonlinear dynamical systems 

x+.rexls _ (S/S)X=O, s=s(t), s:;60. (9.1) 

Equation (9.1) has solution 

X= (s+cl)[l-ln(s+cl )] +c2, Cl, c2 =const, 

from which it follows that 

x = Sln(s + c l ). 

(9.2) 

(9.3 ) 

By inversion of (9.2) and (9.3) we obtain the function
ally independent constants of motion [refer to (2.3)] 

C ( . ) -xis I 
I x,x,t =e -S=CI, (9.4) 

(9.5) 

The auxiliary symmetry condition [Eq. (2.15') of 
Theorem 3.2] for the dynamical equation (9.1) is given by 

(9.6) 
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Following the procedure described in Sec. II (refer to 
the Alternative Proof) we obtain an associated equation [of 
the form (2.25) ] : 

z+ [S(S+CI)-I-SS-I].i~O. (9.7) 

The solution to (9.7) is 

z(C,t) =BI(CI,C2 )ln(s+CI) +B2(CI,C2), (9.8) 

where Bland B2 are arbitrary functions of CI and C2. Hence 
the partial differential equation obtained by formal expan
sion ofthe auxiliary symmetry condition (9.6) has the solu
tion 

(9.9) 

where BI and B2 are arbitrary functions of the constants of 
motion CI in (9.4) and C2 in (9.5). 

Remark 9.1: As mentioned in Remark 3.6, the new pro
cedure for obtaining classical symmetries introduced in this 
paper may, for certain problems, lead to classical symmetry 
solutions by inspection. In practice this may be accom
plished by a judicious choice of the arbitrary constants of 
motion B A [C(x,x,t)] which occur in the general auxiliary 
symmetry mapping functions Zi(X,x,t) in (2.27), so that 
the resulting Z i are linear in Xi. As an illustration consider 
the dynamical system (9.1). To formulate a Z that is linear 
in x from the general Z(x,x,t) function (9.9) we note by 
inspection from (9.4) that In(s + CI) = - xis and hence 
the choice B I = a2 = const, B 2 = 0 immediately gives 
Z = - a2x/s, which results in the classical symmetry map
ping functions S = 0, SO = a2s- l

• 0 
To obtain the complete group of classical symmetry 

mappings for the dynamical system (9.1) we now continue 
with the formal procedure for determining the functions 
B A( C), so that Z(x,x,t) in (9.9) will be linear in X. 

By comparison of (9.9) with (2.27) it follows that the 
functions g~ (C,t) [ =gA (C,t) ,n = 1] have the form 

gl (C,t) = In[s(t) + CI ], g2 = 1. (9.10) 

With reference to (2.16)-(2.20) and the paragraph pre
ceding Theorem 3.2, it follows from (9.2)-(9.5) that the 
functionsPK(C,t) in (3.18) and QK(C,t) in (3.19) take the 
form 

PI(C,t) = -S-I(S+ CI ), 

P2(C,t) = - S-I(S + CI)ln(s + CI ), 

QI (C,t) = S-2(S + CI), 

Q2(C,t) = S-2(S + CI ) [1 + In(s + CI )]. 

(9.11) 

(9.12) 

(9.13) 

(9.14 ) 

The 'Tf's defined by (3.15)-(3.17) are evaluated by 
means of (9.10)-(9.14) and used in (3.12) to obtain an 
equation of the form 

A I + A 2V + A3U + A4V2 + AsUV + A6UV2 + A7UV3 = 0, 
(9.15) 

whereAu ' a = 1, ... ,7 are linear combinations of the first and 
second derivatives of the B 's with respect to the C's (defined 
below) and 

(9.16) 
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With reference to Remark 3.4, it is readily shown by 
successive partial differentiation of Eq. (9.15) with respect 
to t that Aa = 0, a = 1, ... 7. The following equations for 
B A (CI ,C2 ), A = 1,2 result: 

A =2 aB
I 

+ aB
2 

+ aB
2 

=0 (9.17) 
I aCI aCI aC2 ' 

A2=aB
I 

+3 aB
I 

+ aB
2 

=0, (9.18) 
aCI aC2 aC2 
a 2B2 

,1.3 aC
I 
aC

I 
= 0, (9.19) 

aB I 

,1.4=- = 0, (9.20) 
aC2 

a 2B I a2B2 
,1.5= +2 =0, (9.21) 

aCI a CI aCI aC2 
a 2B2 a2B I 

,1.6 + 2 = 0, (9.22) 
aC2 a C2 aCI aC2 
a2BI 

,1.7 = 0. (9.23) 
aC2aC2 

Equations (9.17)-(9.23) are easily solved to obtain 

BI =alCI +a2, 

B2 = - al(CI + C2) + a3, 

(9.24) 

(9.25) 

where aI' a2, and a3 are arbitrary constants. 
Use of B I in (9.24) andB 2 in (9.25) in (9.9) results in a 

linear Z of the form 

Z(x,x,t) = - al(x - s) + a3 - x( - als5o- 1 + a25o- I ). 
(9.26) 

Bycomparisonof(9.26) with (3.3) one obtains the classical 
symmetry mapping functions 

S = - a l (x - s) + a3, (9.27) 

(9.28 ) 

When used in (3.1) and (3.2) the mapping functions (9.27) 
and (9.28) define a three-parameter (complete) group of 
infinitesimal classical symmetry mappings of the dynamical 
system (9.1). 

APPENDIX: CLASSICAL NOETHER SYMMETRIES 
ADMITTED BY THE DYNAMICAL EQUATION 
K-R(t)x-S(t)- T(t)=O 

When the Lagrangian (5.32) [associated with the linear 
dynamical system (5.1)] is used in the Noether symmetry 
condition (5.33) the resulting equation (cubic in x) leads to 
the following conditions on the Noether mapping functions 
S(x,t),So(x,t), and 'T(x,t) (Sx =as lax, etc.): 

S-~ = 0, (Al) 

SX = ~S~ - ~RSo = 0, (A2) 

St + (~SX2 + Tx)S~ + W'Tx = 0, (A3) 

(~SX2 + Tx)S~ + WS - RS)x2 + (T - RT)x]5° 

+ (Sx + ns- + W'TI = 0, (A4) 

where W(t), R(t), set), and T(t) are defined by (5.3)
(5.6). 

Following the procedure discussed in the paragraph 
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containing Eq. (5.33) we shall require that the general clas
sical mapping functions (5.21) and (5.22) satisfy the 
Noether symmetry equations (AI )-(A4). 

Use of sOin (5.22) in (AI) shows that in order to satisfy 
the Noether conditions the parameters A 11 A ~2 that appear 
in the general mapping functions (5.21) and (5.22) must 
satisfy 

A 11 =A~2 =0. (A5) 

If S in (5.21) and SO in (5.22) are simplified by means of 
(A5) and the resulting functions used in (A2) it is found 
[with use of (5.12)] that the parameters,u1 ,u~ must satisfy 
the condition 

,u1 +,u~ = 0. (A6) 

We may, by use of (A6), eliminate,u~ in the above-described 
simplified S and SO to obtain S(x,t) in (5.34) and SoU) in 
(5.35). 

Equations (A3) and (A4) remain to be solved for 'T. 
Before considering these equations we first derive an identity 
involving Min (5.36) and its derivatives which will be useful 
in obtaining the solution of these two remaining equations. 
To obtain this identity consider the quadratic constant of 
motion 

(A7) 

defined in terms of the linear constants of motion CI in (5.7) 
and C2 in (5.8) of the dynamical system (5.1). By means of 
(5.7)-(5.11) Q in (A7) can be expressed in the form 

Q = W- 2{Mx2 
- Mxx + !(M - RM - 2SM)x2 

+ (¢oM - 2~oM)x + [~oM 
- ¢o(M - RM - 2SM) ]x 

+ ~¢~ (M - RM - 2SM) - ¢o~oM + ~~M}. (A8) 

From the manner in which Q in (A 7) was defined in terms of 
the constants of motion CI in (5.7) and C2 in (5.8) it follows 
that (refer to Remark 2.2) 

Q~o. (A9) 

Use of (A8) in (A9) [with (5.12) to eliminate the W terms, 
(5.1) to eliminate x terms, and (5.6) to eliminate any re
maining functions T] leads to 

[M - 3RM - (R - 2R 2 + 4S)M 

- 2(5' - 2RS)M] (x - ¢O)2=0. (AW) 

Since (AW) must hold for all solutions (5.2) we obtain the 
desired identity 

Ai - 3RM - (R - 2R 2 + 4S)M - 2(S - 2RS)M=0. 
(All) 

We now return to the solution of (A3) and (A4). By use 
of (5.35) we may integrate (A3) to obtain 

'T(x,t) = - W-IStx + g(t), (AI2) 

where g(t) is to be determined. Substitution of'T in (AI2) 
into (A4) with use of (5.6), (5.34)-(5.37), and (All) 
leads to 
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g(t) = gJ (t) + g2(t), 

where 

gJ (t) == W-2(~o - R~o - S4>o) (!4>oM - ~oM), 
g2(t) == - W-J(~o - R~o - S4>o)N. 

(A13) 

(A14) 

(A1S) 

To integrate (A13) we shall expressgJ (t) in (A14) and 
g2(t) in (A1S) as total derivatives. Consider firstgJ (t). If to 
the rhs of (A14) we substract the well-chosen zero obtained 
by multiplying the lhs of (All) by W-24>~/4, we find that 
g J is expressible in the form 

d { 1 2[ 1 2" . gJ(t) =- - - W- -4>o(M-RM-2SM) 
dt 2 2 

(A16) 

Next consider g2(t). If in (A1S) we make the substitution 
SN=N-RN [which follows from (S.37), (S.l), and 
(S.2)] and use is made of (S.12) we findg2 is expressible in 
the form 

g2(t) =:{ [W- J(4)oN - ~oN)] . (A17) 
dt 

It follows from (A13), (A16), and (A17) that 

g(t) = -!W-2[!4>~(M-RM-2SM) 

- 4>o~oM + ~~M] + W- J(4)oN - ~oN), (A18) 

where the constant of integration has been dropped. 
The function r(x,t) may now be determined by evalua-

2053 J. Math. Phys., Vol. 30, No.9, September 1989 

tion of (A12) by means of (S.34) and (A18) to obtain 
(S.38). 

IG. H. Katzin and J. Levine, J. Math. Phys. 26, 3080 (1985). 
2 A discussion of the characteristic functional structure of first-order sys
tems of differential equations is given by G. H. Katzin and J. Levine, J. 
Math. Phys. 26, 3100 (1985). 

3Special symmetries admitted by first- or second-order systems of differen
tial equations that have cyclic variables may be determined by use of the 
characteristic functionaistructure theory. See G. H. Katzin and J. Levine, 
J. Math. Phys. 27,1756 (1986). 

4W. Sarlet and F. Cantrijn, SIAM Rev. 23, 467 (1981). 
sM. Lutzky, J. Phys. A: Math, Gen. 11, 249 (1978). 
6p. G. L. Leach, J. Math. Phys. 21, 300 (1980). 
7p. G. L. Leach, Research Report No. AM-79:05 (La Trobe Univ., Bun
doora, Australia, 1979). 

8A. G. Lopez, J. Math. Phys. 29,1097 (1988). 
~epeated indices are summed (lower case I-n, upper case 1-2n) unless 
otherwise indicated or apparent. 

wH. R. Lewis, Jr., Phys. Rev. Lett. 18, 510 (1967); J. Math. Phys. 9, 1976 
(1968); Phys. Rev. 172, 1313 (1968). 

11M. Aguire and J. Krause, J. Math. Phys. 29, 9 (1988). 
12G. H. Katzin, J. Levine, and R. N. Sane, J. Math. Phys. 18, 424 (1977). 
13G. H. Katzin and J. Levine, J. Math. Phys. 18, 1267 (1977). 
14c. J. Eliezer and A. Gray, SIAM J. Appl. Math. 30, 463 (1976). 
ISH. R. Lewis and P. G. L. Leach, J. Math Phys. 23,165 (1982). 
16M. Lutzky, Phys. Lett. A 68, 3 (1978). 
17G. E. Prince and C. J. Eliezer, J. Phys. A: Math. Gen. 13, 815 (1980). 
18R. K. Colegrave and M. A. Mannan, J. Math. Phys. 29,1580 (1988). 

G. H. Katzin and J. Levine 2053 



                                                                                                                                    

The Helmholtz conditions in terms of constants of motion in classical 
mechanics 

Francisco Pardo 
Instituto de Ciencias Nuc/eares, Universidad Nacional Autbnoma de Mexico, Circuito Exterio, C. u., 04510 
Mexico, D.F., Mexico 

(Received 18 October 1988; accepted for publication 25 January 1989) 

The Helmholtz conditions are the necessary and sufficient conditions for a set of second-order 
differential equations to be equivalent to a variational principle. In this work an alternative 
approach to the inverse problem in classical mechanics is described. It is proven that the 
Helmholtz conditions can be transformed into a set of conditions for a nonsingular 
antisymmetric matrix whose entries are constants of motion of the problem in question. 

I. INTRODUCTION 

Classical mechanics deals with systems of particles and 
their equations of motion. The equations of motion will be 
considered as a set of second-order differential equations 
whose solutions determine the evolution of a given system of 
particles. When written as functions of time, these solutions 
will be called trajectories. 

Although a set of differential equations determines a 
unique set of trajectories-its solutions-the converse is not 
true, that is, a set of trajectories does not determine uniquely 
a set of differential equations. For example, take the set of 
differential equations 

ii = 0, iP = o. ( 1.1 ) 

The set of solutions to Eqs. (1.1) are the curves (with aj> {Jj 
constant) 

ql{t) =a1t+{JI' q2(t) =a2t+{J2' (1.2) 

However, the curves (1.2) are also solutions of 

ti + q2 = 0, ql - q2 = O. ( 1.3 ) 

Basically, the sets of differential equations (1.1 )-( 1.3) 
are different; however, their sets of solutions coincide. This 
fact means that a given set of trajectories Scan be determined 
by more than one set of differential equations and what is 
more, it could be that one does not need, in principle, a set of 
differential equations for determining such a set of trajector
ies. With this idea in mind, it is then natural to seek other 
methods of obtaining the set of trajectories. One method is 
the Hamilton principle,1 which states that the set of trajec
tories S of a given system of particles are those curves that 
make stationary a certain functional. 

In general, for a given set of trajectories S, this func
tional does not exist; if it does, it could happen that it is not 
unique. The problem of determining the existence of this 
functional is known as the inverse problem of the variational 
calculus, a problem whose study dates back to the past cen
tury.2.3 The related problem of non uniqueness is known as 
the problem of s-equivalent Lagrangians.4-9 

The inverse problem of the variational calculus in classi
cal mechanics can be studied using different, but equivalent 
approaches. For example, SarletlO proves that the Helm
holtz conditions, as written in Sec. II, can be transformed, in 
principle, into an infinite set of algebraic equations. Hen-

neaux,8 using a more geometrical method ( differential 
forms), analyzes the inverse problem and shows that the 
Helmholtz conditions are in general very strong, that is, he 
proves that in general the Helmholtz conditions do not have 
a solution and if they do, this solution will in general be 
unique. 

Hojman et al. 11-16 also study the inverse problem of the 
variational calculus using what they call the first-order ap
proach to the inverse problem: Using this approach they find 
another method for constructing a Lagrangian as a linear 
combination of the lhs of the equations of motion. 

In Sec. II we will present the inverse problem of the 
variational calculus in classical mechanics and exhibit the 
Helmholtz conditions, which are a set of algebraic and dif
ferential equations for a certain matrix W which plays the 
role of an integrating factor for the inverse problem. The 
existence of more than one matrix Wimplies the nonunique
ness of a variational principle for such systems, that is, the 
existence of s-equivalent Lagrangians. 

In Sec. III we will use the approach used by Hojman et 
al. 11-16 In accordance with the ideas ofHojman et al. 11-16 we 
will show that it is possible to obtain a compact formula for 
building a Lagrangian L which can be thought of as an inter
mediate recipe between that of Engels 17 and Hojman et al. II 

In Sec. IV we will use the Henneaux8 approach to show 
that a variational principle for a given set of second-order 
differential equations exists if and only if there exists a cer
tain nonsingular 2n X 2n matrix such that all its entries are 
constants of motion. This matrix will satisfy some properties 
that are shown to be equivalent to the Helmholtz conditions. 
Using this approach to the inverse problem we will provide 
an alternative proof of the trace theorem. 

In Sec. V we will exhibit some examples of the inverse 
problem related to the ideas of this work and in Sec. VI we 
will present the conclusions. 

II. THE INVERSE PROBLEM AND THE HELMHOLTZ 
CONDITIONS 

We consider a set of particles whose configuration space 
is R N, with the Cartesian coordinates {ql}. In what follows 
we make use of integration theorems which are valid in R N; 
we will not treat the case where the configuration space has a 
topology different from R N. A trajectory of the system is 
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defined by the functions qi(t), where t is the time. The com
ponents of the velocity are Ii = dqij dt. The set of trajectories 
S that describes the evolution of a system of particles will be 
considered to consist of all the solutions of a given set of 
second-order differential equations. 

The inverse problem of the calculus of variations in clas
sical mechanics consists4.!8 in determining whether the set S 
of solutions of a set of second-order differential equations 

(2.1 ) 

is also the set of stationary curves of a variational problem 
based on the integral 

f" I [q] = L(t,q,q)dt. 
" 

(2.2) 

The functional I[ q] will be referred to as the action integral 
and L(t,q,q) will be referred to as the Lagrangian. 

In other words, the inverse problem of the variational 
calculus in classical mechanics consists in determining the 
existence of an action integral such that its set of stationary 
curves qi(t) coincides with the set of solutions of a given set 
of second-order differential equations such as (2.1). 

In this work we consider only nonsingular, second-or
der systems of differential equations, that is, systems of dif
ferential equations (2.1) such that the determinant of the 
matrix 

11:11 (2.3) 

is different from zero in the whole set of points where the Fi 
are defined. We will not consider the inverse problem for 
singular systems in this work, although its study is of great 
importance (take, for example, the case of gauge theories). 
However, from the point of view of the inverse problem, 
singular systems involve problems that fall out of the scope 
of this work. 

It is a well-known result that the set of curves that make 
I[q] stationary is precisely the set of solutions of the Euler
Lagrange equations. 

(2.4 ) 

Consequently, the inverse problem can be stated as seeking 
the existence of a Lagrangian L such that its Euler-Lagrange 
equations have the set S as solutions. 

The Euler-Lagrange equations are also a set of second
order differential equations; however, they have a very par
ticular form. The result is that any set of differential equa
tions with this very particular form is also a set of Euler
Lagrange equations for some Lagrangian L. This result 
means that the inverse problem can also be thought of as 
seeking the existence of a set of second-order differential 
equations whose solutions are S and have this very particular 
form. 

In a neighborhood of a point where the determinant 
(2.3) is different from zero the equations of motion (2.1) 
can be written equivalently as 

(2.5) 

Equations (2.1) also have the set S as solutions. The func-
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tionsji(t,q,q) will be called forces (in lieu of the more cum
bersome, but more proper "forces divided by masses"). 

It is possible to prove6 that any other set of nonsingular 
second-order differential equations of the form 

(2.6) 

where Wij (t,q,q) is a nonsingular matrix called the mass 
matrix, will also have the set S as solutions if and only if 
ji = p. The inverse problem for this kind of system is then 
reduced to finding a Lagrangian L(t,q,q) such that 

!!.... aL _ aL=W .. (q_P) 
dt aq' aq' I} 

(2.7) 

for some nonsingular matrix Wij (t,q,q). If such a Lagran
gian exists, then 

a2L 
W .. =-- (2.8) 

I} aqi ail 

and 

Wr)" j - aL a 2L;,i a 2L 
i' - aqi - aqi aq '1 - aqi at' (2.9) 

This form of considering the inverse problem is the most 
convenient for nonsingular systems. The following question 
thus arises: Is it possible to write a set of conditions for the 
existence of a variational system using only the forces? The 
answer is affirmative: The set of conditions can be written as 
a set of equations for the matrix Wij in terms of the forcesj i. 
These equations are known as the Helmholtz conditions and 
can be written in matrix notation: 

W=W T, 

aWij aWik 
aqk = ail ' 

d W= WF+FTW, 
dt 

(2.lOa) 

(2.lOb) 

(2.1Oc) 

WAo = A [w. (2.lOd) 

where the superscript Tindicates the transposed matrix and 

d =~+qi~+F~' (2.11) 
dt at aqi aqi' 

also, 

Ao=E-F2- dF 
dt 
(2.12) 

The conditions (2.10) will have a solution Wij if and 
only ifthere exists a variational system such as (2.2) with the 
set S as its set of stationary curves. In fact, if the matrix Wij 
satisfies the Helmholtz conditions, then a Lagrangian L can 
be constructed using the formula shown in Engels!7 such 
that its Euler-Lagrange equations are Wij(q - jj) = 0: 

L = - qi f Ei(t,rq, 'Tq, rq)dr 

d Sa! Sa! i;,iW ( ")d ' d + - rq'1 ij t, rq, rr q r r, 
dt 0 0 

(2.13 ) 

where 

(2.14) 
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Note that the first integral in (2.13) involves the acce
lerations: the reason for adding the second integral is to can
cel the accelerations; it does not have any influence in the 
equations of motion since it is only a total derivative. 

Given a Lagrangian LI whose Euler-Lagrange equa
tions have S as solutions, it is always possible to build an
other Lagrangian L2 which generates the same set S of solu
tions: 

d 
L2 = aLI + - g(t,q), 

dt 
(2.15 ) 

where a is a nonzero numerical constant. The Euler-La
grange equations obtained from the new Lagrangian L2 are 
exactly a times those obtained from L I • 

It can be said that a Lagrangian L is essentially unique if 
any other Lagrangian L I whose Euler-Lagrange equations 
EiL I = 0, also having the set S as solutions, is related to L 
through a relation such as (2.15). 

Two Lagrangians Land L I can be said to be s equivalent 
if their Euler-Lagrange equations generate the same set of 
solutions and if they are not related through a relation such 
as (2.15). 

With the above definitions and the kind of systems con
sidered in this work, an s-equivalent Lagrangian L I will be 
one such that 

!!... aL' _ aL: = w~.(q - ji), 
dt aq' aq' IJ 

(2.16) 

with Wij¥=aWij anddet (Wij)¥=O. 
The Helmholtz conditions in their form (2.10) can be 

thought of as a set of conditions for the existence of a certain 
matrix W ij when a set of forces P is given. Assume that a 
nonsingular set of second-order differential equations such 
as (2.1) is given and we are required to know if there exists a 
variational problem such as (2.2) that has S as the set of 
stationary curves. First, one transforms the differential 
equations to the form (2.5) and sees if conditions (2.10) 
have a solution Wij' If this is the case, using formula (2.13) 
one can easily build the Lagrangian: This Lagrangian will be 
uniquely determined up to the addition of a total derivative. 

Note that if a certain matrix Wij is a solution of the 
Helmholtz conditions (2.10), then the matrix Wij = aWij 
(a constant) is also a solution. This property defines an 
equivalence class of the solutions of the Helmholtz condi
tions and the Helmholtz conditions have two or more solu
tions if these solutions pertain to different equivalence 
classes. A solution is unique if there exists only one class of 
equivalent matrices Wij which are solutions of (2.10). From 
each solution of the Helmholtz conditions it is possible to 
build a Lagrangian; therefore, each class of equivalent solu
tions of the Helmholtz conditions also defines a class of 
equivalent Lagrangians related by (2.15). In the same way, a 
Lagrangian is unique if there exists only one class of equiva
lent Lagrangians. Two Lagrangians pertaining to two differ
ent classes of equivalence will be said to be s equivalent. 

It is important to mention that conditions (2.10) do not 
always have a solution, that is, given a set offorces/ i

, it is not 
always possible to find a matrix Wij that satisfies (2.10). If 
the Helmholtz conditions have a solution, in general it will 
be unique (in the above sense). 8 
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The trace theorem says that the trace of any power of a 
certain matrix M must be a constant of the motion; this ma
trix is formed when two Lagrangians Land L I are s equiva
lent in the sense defined above.6,9 

Trace theorem: If the Lagrangians Land L I ares equiva
lent, then the trace of any power of the matrix 

(2.17) 

is a constant of the motion. 
It is assumed that the mass matrix W is nonsingular. 

The inverse of W is written as 

W- I = (Wij), 

so that 

(2.18) 

ik i W Wkj =8j • (2.19) 

The matrix W' is the mass matrix defined from the La
grangian L I. 

The trace theorem does not use all the information con
tained in the Helmholtz conditions (2.10).19 Therefore, the 
existence of a matrix that satisfies the trace theorem does not 
guarantee the existence of s-equivalent Lagrangians. 

III. FIRST-ORDER APPROACH 

In this section we will present some definitions for a 
system of nonsingular second-order differential equations in 
order to exhibit the first-order approach to the inverse prob
lem and to obtain an alternative formula for building a La
grangian L. As mentioned in Sec. II, a set of nonsingular 
second-order differential equations is characterized by the 
equations of motion 

1l =/i(t,q,q), i = 1, ... ,n. (3.1) 

Hojman et al. 11-16 use the definitions given below in the anal
ysis they make of the inverse problem, using what they call 
the first-order approach. The first-order approach to the in
verse problem consists in transforming the set (3.1) of n 
second-order differential equations into a set of 2n first-or
der differential equations. 

To accomplish this aim, it is necessary to define the vari
ables xa, a = 1, ... ,2n by 

Xi = qi, xn + 1 = qi. (3.2) 

A new set of forces]a is also defined by 

]i = qi, ]n+i =/i. (3.3) 

Actually, Hojman et al. 12
-

16 use an extended system xJ.l. and 
]J.I.(XV) (/l,v = 0,1, ... ,2n) defined by 

xO=t, r= 1. (3.4) 

Therefore, the system of differential equations 

jeJ.l. =]J.I.(XV) (3.5) 

is equivalent to (3.1). 
Consider now a set of 2n + 1 functionally independent 

variables d': 

cQ = cQ(xJ.I.), cO=xo = t, a = 0,1, ... ,2n (3.6) 

such that 

(3.7) 
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and chosen in such a way that 

d ca=o 
dt ' 

where 

d=fu~ 
dt - axfL' 

(3.8) 

(3.9) 

that is, the variables ca are a set of 2n functionally indepen
dent constants of motion. Hojman 16 proves that the system 
of differential equations (3.5) can be written in terms of the 
coordinates ca equivalently as 

(3.10) 

(3.11 ) 

that is, 

gO = 1, ~ = O. (3.12) 

Using the first-order approach Hojman et al.11 proved 
that if a given set of nonsingular second-order differential 
equations such as (3.1) can be represented by a Lagrangian 
L(t,q,q), then there exists another Lagrangian I(t,q,q,q) 
which differs from L by a total time derivative and which can 
be written as a linear combination of the lhs of the equations 
of motion (3.1). In other words, if there exists a Lagrangian 
L for the set of differential equations (3.1), then there exists 
a Lagrangian I such that 

I = /-li (t,q,q)(qi - Ii) = L(t,q,q) +!!... g(t,q,q). 
dt 

(3.13 ) 

Thus the Euler-Lagrange equations of I and L coincide. 
The functions /-li satisfy 

a/-li a/-lj 

aqj = aqi' 

d(d alk) ap 
dt dt /-li + /-lk aqi - /-lk aqi = 0, 

and 

det( Wij) #0, 

where 

(3.14 ) 

(3.15 ) 

(3.16) 

( 3.17) 

Hojman et al. 11 also proved that if /-li is such that it 
satisfies relations (3.14)-(3.16), then the matrix Wij' de
fined by (3.17), satisfies the Helmholtz conditions (2.10): 
Thus these relations can also be thought of as another equiv
alent form of the Helmholtz conditions. 

Relation (3.14) implies that the accelerations can be 
canceled from I: Let L ' be given by 

L' = I -!!... h(t,q,q). 
dt 

(3.18 ) 

Thus requiring L ' to be independent of the accelerations, 
aL ' / aqi = 0, implies that the function h is such that 
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ah 
aqi =/-li' (3.19) 

Relation (3.14) is precisely the integrability condition ofEq. 
(3.19), so that 

h = f qk/-lk (t,q,rq) dr. 

Relation (3.20) can be used in (3.18) to obtain 

L' = /-li (qi - Ii) -!!... flqk/-lk (t,q,rq)dr 
drJo 

= - d (q"f-lk (t,q,rq)dr. 
drJo 

(3.20) 

(3.21 ) 

Equation (3.21) is another formula for building a Lagran
gian which can be thought of as a combination of that by 
Engels 17 (see Sec. II) and that of Hojman et al. l1 [(3.13)]. 
Note that in (3.21), as in that ofHojman et ai, II one needs to 
first find thefunctions /-li that satisfy (3.14 )-(3.16). In gen
eral this is a hard problem which is completely equivalent to 
finding a solution Wij for the Helmholtz conditions (2.10). 

IV. ANOTHER FORM OF THE HELMHOLTZ CONDITIONS 

In this section we will use the Henneaux8 approach to 
the inverse problem to show the existence of an alternative 
form of the Helmholtz conditions. 

Definitions (3.2) and (3.3) are also used by Henneaux8 

in his study of the inverse problem. Henneaux shows that the 
set of differential equations (3.1) can be described equiv
alently by a variational principle such as 

I
I, 

1= L(t,q,q)dt 

" 
(4.1 ) 

if and only if there exists a nonsingular two-form U which 
satisfies 

U ab = 0, for n < a<.2n, n < b<.2n, 

du=O, 

(a, + 2".r)u=O, 

where 2" .r is the Lie derivative along the vector f 
2"JUab =fcuab,c + f~bUac + f~aUcb 

and 

a a,=-, 
at 

(4.2a) 

(4.2b) 

(4.2c) 

(4.3) 

(4.4 ) 

Relations (4.2) are completely equivalent to the Helm
holtz conditions (2.10), as will be proved in the following 
theorem. 

Theorem 4.1: The Helmholtz conditions (2.1) have a 
nonsingular solution Wij if and only if there exists a nonsin
gular two-form which satisfies relations (4.2). 

Proof: Assume first that a given nonsingular two-form U 

satisfies relations (4.2). Then the matrix W defined by 

(4.5) 

will also be nonsingular and will satisfy the Helmholtz con
ditions (2.10). Now relation (4.2c) can be written as 

(4.6) 
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where 

d -
-=a, +faaa' 
dt 

(4.7) 

Relation (4.6), written for a = n + i and b = n + j, is the 
Helmholtz condition (2.lOa): 

(4.8) 

where (4.2a) is used to cancel the lhs. 
Relation (4.6) also implies the Helmholtz condition 

(2.1Oc). Since 

d d 
dt an + ij - dt ain + j = 

afk afk 
--a k +-a· k, ail n + ~ ail In + 

(4.9) 

(2. lOa) and the above definition for W cause this equation to 
read exactly as (2.1Oc). 

er 
Now, in order to prove (2.1Od), it is necessary to consid-

afk 
- 2aij - ail Un+kj 

afk 
--a k ail in+ . (4.10) 

However, the lhs ofEq. (4.10) is zero. Thus 

a .. =--W.--W· . 1 (ap afk ) 
'J 2 ail k, ail kJ 

( 4.11) 

Therefore, when a = i and b = j, relation (4.6) can be writ
ten as 

1 d(ap afk ) ap afk 
2" dt ail Wki - ail wkj = aq Wki - aqi wkj · 

( 4.12) 

As in Sec. II (2.lOd) is obtained using (2.1Oc) in relation 
( 4.12). It is now necessary to prove the Helmholtz condition 
(2.1Ob). Relation (4.2b) implies that 

an+in+j,k +an+jk,"+i +akn+i,n+j =0, (4.13 ) 

where the first term is zero and the last two terms are exactly 
(2.1Ob). 

The proof of Theorem 4.1 in the opposite direction is as 
follows: Assume that there exists a nonsingular n X n matrix 
W which satisfies the Helmholtz conditions (2.10). Then, 
using Engels,9,17 formula (2.13) it is possible to build a La
grangian L such that 

and 

aZL 
W .. =--

'J ail ail 
(4.14 ) 

(4.15 ) 

Now define the time-dependent one-form A in the 2n-dimen
sional space by 

A = aL = (aL ,0). 
a a5ca ail 

( 4.16) 

Relation (4.15) can be rewritten more geometrically in 
terms of the one-form A as 
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( 4.17) 

Using the one-form A it is easy to define a two-form 
which satisfies relations (4.2): Let a be the exterior deriva
tive of A, a = dA, that is, by components, the two-form a is 

aAb aAa 
uab = axa - axb ' (4.18 ) 

It is clear that the definition of a implies (4.2a) and (4.2b). 
Also, a is nonsingular since by hypothesis W is nonsingular 
and det(a) = det( WZ). Then it is only necessary to prove 
that (4.2c) is satisfied. Relation (4.2c) is obtained by taking 
the exterior derivative of ( 4.17) : 

( 4.19) 

Therefore, it has been proved that the Helmholtz condi
tions (2.10) and (4.2) are completely equivalent. In what 
follows, we will refer either to (2.10) or (4.2) as the Helm
holtz conditions and we will say that the Helmholtz condi
tions have a solution if there exists a two-form uthat satisfies 
( 4.2) for a given vector J 

Henneaux8 uses relations (4.2) to prove that in general 
the Helmholtz conditions do not have a solution, that is, a 
given set of differential equations such as (3.1) in general 
cannot be represented by a variational principle such as 
( 4. 1 ). Henneaux also proves that if the Helmholtz condi
tions have a solution a then in general it is unique. 

As will be shown below, the Helmholtz conditions 
(2.10) or (4.2) can be written in another equivalent form 
based on a certain matrix formed only with constants of mo
tion. Assume that the Helmholtz conditions have a solution 
for a given set of nonsingular second-order differential equa
tions such as (3.1), that is, there exists a two-form a which 
satisfies relations (4.2). Define the nonsingular antisymme
tric 2n X 2n matrix 0 by 

axe axd 
0ab=--aed , (4.20) 

aca acb 

where the variables ca are any set of2n functionally indepen
dent constants of motion of the system (3.1). Thus the non
singular matrix 0 satisfies the properties 

aca acb 
o b ---- = 0 (4.21a) a ax" + i axn + j , 

aOab aObe aflea --+--+--=0, 
ace aca acb 

d 
-flab =0. 
dt 

(4.21b) 

(4.21c) 

It is clear that (4.21a) and (4.21b) are a direct conse
quence of (4.2a) and (4.2b). In order to prove that (4.2c) 
implies (4.21c) it is enough to see that 

d axe axd 
-fl b =-- (a + .Yf-)a d • 
dt a aca acb ' e 

(4.22) 

It is also clear that the inverse of the above statement is true, 
that is, if a given nonsingular antisymmetric matrix 0 is such 
that it satisfies (4.21), then there exists a nonsingular two
form a which satisfies (4.2). Therefore, a necessary and suf-
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ficient condition for the Helmholtz conditions [say (2.10) 
or (4.2) ] to have a solution is that for any set of2n function
ally independent constants of motion of system (3.1) there 
exists a nonsingular antisymmetric matrix 0 which satisfies 
relations (4.21). 

Thus relations (4.21) can also be thought of as the 
Helmholtz conditions since it has been proved that (4.2) 
and (4.21) are completely equivalent. In what follows we 
will refer to (4.21) as the Helmholtz conditions. The inter
esting aspect regarding 0 is that all of its entries are con
stants of motion. This fact will be used below to show that 
the Helmholtz conditions (4.21) can be reduced to a single 
condition related to the existence of a certain set of constants 
of motion. 

It is possible to use the form of the Helmholtz conditions 
(4.21) to find the functions Ili defined in Sec. III and from 
there build a Lagrangian L(t,q,q) using (3.21). Note that 
relation (4.21 b) implies that 

ara arb 
Oab = aCb - aCa ' 

(4.23 ) 

where the functions ra depend only on the constants ofmo
tion ca, that is, draldt = O. Then thefunctionslli defined by 

aca 

Ili=ra aqi (4.24) 

satisfy relations (3.14)-(3.16). In effect, (3.14) is satisfied 
since 

alli allj _ 0 aca acb 

ail - aqi - ab aqi ail . 
(4.25) 

To prove that (3.15) and (3.16) are also satisfied, note that 

d ajk aca 

-II. +11. -- -r-
dt ri rk aqi - a aqi' 

(4.26) 

Therefore, (3.15) and (3.16) are satisfied and (3.21) can be 
used to build a Lagrangian L. 

The Helmholtz conditions (4.21) can also be used to 
prove the trace theorem in a very easy way. Two s-equivalent 
Lagrangians Land L ' imply the existence of two two-forms 
u and u' such that 

ac
c 

ac
d 

u' = ac
c 

ac
d 
0' 

Uab = axa axb Ocd' ab axa axb cd' (4.27) 

where u-=/=u' if and only if 0-=/= 0'. The trace theorem can be 
proved as Henneaux8 does, using the two-forms u and u', 
since 

trace(u'u-Iy) = 2 trace(MS), (4.28) 

where M is defined as in Sec. II as M = W' W -I. The matri
ces u- I and 0- 1 are defined in such a way that 

u ab (U-I)bc = Oab (O- I )bc = 8~. 
Relations (4.27) for u and u' imply 

u'u- I = 0'0- 1• 

Therefore, 

2 trace (M S
) = trace (0'0- 1)1 

(4.29) 

(4.30) 

(4.31) 

and the trace of any power of M is a constant of motion since 
the matrix 0'0- 1 is also a constant of motion. Another 
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point that is interesting regarding the Helmholtz conditions 
( 4.21) is the following: The Darboux theorem2o says that at 
least locally there always exists a set of coordinates (in this 
case 2n functionally independent constants of motion) such 
that the matrix Oab can be written as 

-1) 
o ' (4.32) 

where 1 stands for the n X n identity matrix. Obviously, the 
matrix (4.32) obeys the Helmholtz conditions (4.21 b) and 
(4.21c). Therefore, the Darboux theorem2o implies that the 
Helmholtz conditions (4.21) have a solution if and only if 
there exists a set of 2n functionally independent constants of 
motion of the system (3.1) such that 

aca acb 
o ----=0 ab axn + i axn + j , 

(4.33 ) 

where Oab is given by (4.32). 
That is, the Helmholtz conditions in any of their pre

vious forms have been changed to a single relation over a set 
of2n functionally independent constants of motion. Then to 
say that the Helmholtz conditions have a solution is equiva
lent to saying that there exists a set of 2n functionally inde
pendent constants of motion which satisfies (4.33). 

Note that the existence of two or more sets of constants 
of motion that satisfy (4.33) does not guarantee the exis
tence of s-equivalent Lagrangians since these sets can be re
lated by a canonical transformation: These transformations 
are known to preserve the form of 0ab' What does guarantee 
the existence of s-equivalent Lagrangians is the existence of 
o and 0' such that both satisfy (4.21) and such that 
O'-=/=aO. 

As a final remark about the Helmholtz conditions 
( 4.21 ), note that if there exist two nonsingular antisymme
tric matrices 0 and 0' that satisfy these conditions, then the 
matrix 0 defined by 

O=aO +/30' (4.34) 

also satisfies the Helmholtz conditions. Therefore, if there 
exist two nonsingular solutions, then there exist infinitely 
many nonsingular solutions. In other words, the existence of 
two s-equivalent Lagrangians implies the existence of infi
nitely many s-equivalent Lagrangians. 

V. EXAMPLES 

In this section we will present some examples to show 
how the previous ideas can be applied. 

A. Example 1 

The first example is that of one-dimensional systems: 

q =/(t,q,q). (5.1 ) 

When integrated one-dimensional systems have two con
stants of motion c l and c2

, the Helmholtz conditions (4.21) 
always have a solution. In effect, the matrix 

0=( 0 - a(cI,c
2 ») (5.2) 

a(c l ,c2
) 0 

is the most general solution to the Helmholtz conditions 
(4.21). In particular, if a = 1, then 
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(5.3 ) 

is a solution for any set of two functionally independent con
stants of motion e l and e2

• To build a Lagrangian, take, for 
example, 

The function I" is then 

ae2 

I" = e
l 

aq 

(5.4 ) 

(5.5) 

and a good Lagrangian for one-dimensional systems is 

L = - d t ql"(t,q,rq)dr. (5.6) 
dtJo 

Since the function a can be chosen in an infinite number of 
ways, the solution (5.2) actually is an infinite family of solu
tions. Therefore, one-dimensional systems always have infi
nitely many s-equivalent Lagrangians. 

B. Example 2 

The system described by the equations of motion 

x=Y, Y=Y (5.7) 

cannot be described by a variational method.4 In effect, con
sider now the ideas of this work. This system can be com
pletely integrated. A set of four functionally independent 
constants of motion for this system is 

e l = ~(y + y)e- t, e2 = !(y _ y)e t
, 

(5.8) 
e3 =x-y, e4=y-x+t(x-y). 

The Helmholtz condition (4.21a) reads in this case as 

0 34 - (013 + tO I4 )e- t + (023 + t024 )et = O. (5.9) 

Relation (5.9) must be satisfied for all times t. Therefore, 
assuming that (4.21c) is satisfied, relation (5.9) implies 

0 34 = 013 = 0 14 = 0 23 = 0 24 = O. (5.10) 

Thus 0 is singular and no variational problem exists for this 
system. 

C. Example 3 

As a last example consider the system described by the 
differential equations 

X=y, Y= -x+y. 

A convenient Lagrangian for this system is 

L = !(x2 + r) + !(xy - yx) + !y2. 

(5.11 ) 

(5.12) 

Using the ideas of this work it is possible to show that the 
Helmholtz conditions (4.21) have a single solution. A con
venient set off our functionally independent constants of mo
tion of this system is 

e l =x-y, e2=y-yt-!(x-y)t2, 

2=x-xt +!(x_y)t 3 +!yt 2, e4=!(y-(x-y)t). 
(5.13) 

The Helmholtz condition (4.21a) for these constants of mo
tion reads as 
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0= !014 - t0 12 + !t2(013 - 0 24 ) 

- (M 4 + t 2 )023 + W3 - jt)034' (5.14 ) 

Relation (5.14) must be satisfied for all times t. Therefore, 
assuming that (4.21c) is satisfied, the relation (5.14) im
plies 

0 12 = 0 14 = 0 23 = 0 34 = 0 

and 

(5.15 ) 

013 = 024' (5.16) 

Therefore, the most general solution to the Helmholtz con
ditions (4.21a) and (4.21c) is 

n~p(C"C'N)U ~ 11 i} (5.17) 

The matrix (5.17) must also satisfy the Helmholtz condition 
(4.21b). However, (4.21b) implies that the function /3 is 
such that 

(5.18 ) 

Therefore, the only solution to the Helmholtz conditions is 
obtained when /3 is a number. 

It is interesting to notice that the set of constants of 
motion (5.13) satisfies relation (4.33), with 0 as in (4.32), 
that is, if we had first checked (4.33), then we would have 
known that this system has a solution. However, it was nec
essary to use (4.21) in order to know that this solution is 
unique. 

The functions r for this system can be chosen as 

rl=O, Y2=0, Y3=e l
, Y4=e2

• 

Then a solution for the functions fLi is 

1"1 = (!t 3 - t)e l 
- !te2, 

1"2 = !t 2el + !e2. 

( 5.19) 

(5.20) 

The Lagrangian for this system can be built using (3.21). 

VI. CONCLUSIONS 

In this work we have shown an alternative approach to 
the inverse problem. This consists mainly in an alternative, 
more geometric form of the Helmholtz conditions. The con
ditions were written here as a set of conditions (4.21) of a 
certain matrix whose entries are constants of motion. An 
interesting aspect of these conditions is that if one considers 
the Darboux theorem,20 then the Helmholtz conditions 
( 4.21 b), (4.2lc) are obeyed automatically. The remaining 
condition (4.21a) means that the Helmholtz conditions 
have a solution if and only if there exists a set of functionally 
independent constants of motion which satisfy (4.33). This 
result implies a completely different form of the Helmholtz 
conditions (4.2). Physically, it is important since it shows 
that the constants of motion of systems that can be described 
by a variational principle have a very particular form. 

The Helmholtz conditions in the form (4.21) are an 
alternative approach for the study of the inverse problem: 
The interesting aspect of this form of the Helmholtz condi-
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tions is that it is possible to change them to a single relation 
for the existence of a set of 2n functionally independent con
stants of motion. 

In Sec. V we exhibited some examples to show how the 
ideas of this work can be applied. However, as shown with 
the last example (Sec. V C), relation (4.33) is not of great 
help in determining if the solution n is unique. It is necessary 
to use all the information in the Helmholtz conditions 
(4.21) to know that the solution was unique. 
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The problem of obtaining two Hamiltonian functions linked by a canonoid transformation is 
solved in the realm of generalized mechanics. By pairing the canonically conjugated pairs of 
variable a technique that also appears to be useful in solving many other problems in 
generalized mechanics is introduced. 

I. INTRODUCTION 

In a recent publication in this journal we derived the 
necessary and sufficient conditions for a canonoid transfor
mation with respect to a given Hamiltonian. I In the present 
paper we consider the same problem in the realm of general
ized mechanics. 

As is well known, in generalized mechanics the Lagran
gian and Hamiltonian functions depend on time derivatives 
of generalized coordinates higher than first order. After the 
original work of Ostrogadsky,2 Borneas3 laid the founda
tions of the formalism and at present the theory is enriched 
by the contributions of many authors (Ref. 4 and the others 
cited here are a brief list of such contributions). 

In this paper we solve the problem of obtaining two gen
eralized Hamiltonian functions related by a canonoid trans
formation using a technique that reduces generalized Hamil
tonian mechanics to classical (with only first-order time 
derivatives) mechanics. Our procedure is based on the 
"pairing of the canonically conjugated pairs" maintaining 
the dimensionality of the phase space: It shares some fea
tures with a proposal by Riahi.5 Our technique is suggested 
by the great similarity between the Lagrangian and Hamilto
nian formalisms of higher-order mechanics and that of clas
sical theory. Indeed, both theories are analogs in all relevant 
aspects: the definition of the canonically conjugated vari
ables, the definition of the Poisson brackets, the canonical 
transformation theory, the the Hamilton-Jacobi equation, 
etc. Besides, it must also be remembered that the formalism 
of generalized mechanics goes over into classical mechanics 
when s = 1, where s is the order of the highest temporal 
derivative. 

Motivated by this similarity we unify, after defining an 
"s family" of coordinates, the treatment of classical and gen
eralized Hamiltonian formalisms; our main aim of obtaining 
"canonoidically" conjugated generalized Hamiltonians is 
easily reached. Also, remembering the close relation 
between canonical and canonoid transformations (a trans
formation that is canonoid with respect to any Hamiltonian 
function is a canonical transformation), we go a step further 
in our procedure and discuss how one can obtain canonically 
conjugated generalized Hamiltonians. To explicitly show 
the main features of our approach we exhibit a model for 
which we derive some standard results and parallel them 
with those of the corresponding generalized case. 

II. GENERALIZED AND CLASSICAL DESCRIPTIONS 

(s) 

Let L(t,qk' ilk"", qk)' k = 1,2, ... ,r be a Lagrangian 

function for some generalized system with r> 1 degrees of 
freedom. The associated Hamiltonian function is written in 

(s-I) (n) 

terms of t, qk, ilko'''' qk and Pk/l , Pk/2 ,,,,PkISl where qk 

and Pkln + I are the canonically conjugated variables6-8 
(s- I) (0) 

(when s = 1, qk -+qk' which, as usual, is defined as qk)' 

Alternatively, we can write H = H(Sv,t), v = 1,2, ... , 
2rs after introducing the following compact S notation: 

(s-I) 

SI = ql' S2 = ill"'" Ss = qk , 

, ... , 

S(r-l)s+1 =q" S(r-I)S+2 =ilr'"'' 

Srs+1 =PI/I' Srs+2 =PI/2"'" SS(r+l) =PI/s' 

S(r+l)s+1 =P2/1' S(r+l)s+2 =P2/2"'" SS(r+2) =P2Is' 

, ... , 

The snotation (1) has the property of pairing the canonical
ly conjugated pairs of variables, thus allowing the use of a 
more tractable form of the equations; also, it does not alter 
the dimensionality of the original phase space. 

Now, formally, the H(Sv,t) function can be regarded as 
the Hamiltonian function for some ordinary (not higher
order dependent) system. The canonically conjugated vari
ables are Sm and Sm + rs (m = 1,2, ... ,rs) and the 
Hamiltonian equations of motion are conveniently written 
as9•10 

. JH 
Sa = Ya/3 JS/3' (2) 

where the indices a, /3, v, .. , range from 1 to 2rs and 

II Ors Irs II IIYa/311 = _ l
rs

O
rs 

' (3) 
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so that 

YapYav = {jPv' (4a) 

YaP + YPa = 0. (4b) 

Adopting this point of view, all that is needed is just to 
use what we learned from ordinary mechanics. To illustrate 
the procedure let us consider some pertinent applications. 

Letting Rand S be any two dynamical variables for a 
given generalized system we first switch over to the S nota
tion, writing R(Sv,t), S(Sv,t). The Poisson bracket of Rand 
S is then given by9 

[R S] _ aR as 
, - aSI" YI"V asv 

(5) 

and all related results follow, for example, the Poisson 
the?rem: If R(Sv,t), S(Sv,t) are constants of motion [that 
is, R = 0, S = ° after using Eq. (2)], so is [R,S]. 

Consider now an invertible transformation from the set 
(~~), Pkln ) to another set where the variables are (~:), Pkln ). 

In the S notation this transformation is the map S v 

...... 'T/v (SI")' where 'T/v stands for the new set of variables. To 
see whether this is a canonical transformation it suffices to 
verify whether or not there exists a nonzero constant z such 
that for all dynamical variables R, S we have 
[R,SP = z[r,S] 5 , where the superscripts specify the co
ordinates to be used. II Also, an invertible transformation 
that preserves the form of the Hamiltonian equations for 
some given Hamiltonian function H (but not for every!) is 
called canonoid with respect to H. Recently, we established 
the necessary and sufficient conditions for such a transfor
mation to exist in the realm of ordinary mechanics. I There 
had been no such definition nor any systematic procedure 
for obtaining two Hamiltonians linked by a canonoid trans
formation in generalized mechanics, but we can now do both 
based on the procedure depicted above. Indeed, we need only 
retain the same definition of canonoid transformation and 
after writing H(Sv,t) we just follow the systematic proce
dure given in Ref. 1 to arrive at a new Hamiltonian, say 
K('T/v,t), canonoidically conjugated toH(Sv,t). Also, if we 
prefer to write everything in the original generalized nota
tion, it can easily be done from definitions ( 1 ). In Sec. III we 
present an example in which we demonstrate the above re
sults. 

III. EXAMPLE 

We consider the Lagrangian for a classical spinning par
ticle I2,13; 

L = (m12)[X 2 - (llcu2)X2], 

where X = (QI,Q2,q3)' The Hamiltonian function is 

H = itl (Pj/lqj -; qJ - ;~ pJ/2). 

where the momenta are 
(3) 

Pj/I = mqj + (mlcu2) qj' 

Pj/2 = (mlcu2)qj' 

(6) 

(7) 

(8a) 

(8b) 

Thus the canonical equations of motion are (for j = 1,2,3) 
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(9a) 

(9b) 

Fj/l = 0, (9c) 

Fil2 = mqj - Pj/\' (9d) 

Now, we switch over to the snotation. Using definitions 
( 1) for this case we obtain 

H(SI",t) =S2S7+S4S9+S6S11- (m/2)(s~ +S~ +S~) 

(l0) 

and the corresponding Hamiltonian equations (2) are 

~A = SA+ I' for A odd, (lla) 

~A = - (cu2Im)SA + 6' for A even, (lIb) 

~a = 0, for a odd, 

~a =mSa- 6 -Sa-I' for a even, 

(llc) 

(lId) 

where, also for future convenience, we adopt the convention 
of using the indices A, B, C, ... ranging from 1 to 6 and a, b, 
c, ... ranging from 7 to 12. It is very simple to verify that Eqs. 
(lla)-( lId) are the same as Eqs. (9a)-(9d) as a result of 
definition (1). Note, also, that the problem of finding inte
grals of motion for Lagrangians, including higher-order de
rivatives studied by Constantellos,13 can easily be solved in 
the present approach: In fact, starting from Eqs. (lla)
(lid) it is very simple to obtain these constants. We present 
some of the constants, expressing them in the S and the gen
eralized notations: 

(3) 

Ka==Sa =const, for a odd~Kj =mqj + (mlcu2)qj' 

j= 1,2,3, 

Ma=S~+2 + (l/cu2)(msa_ 4 - Sa+ 1)2 = const 

j= 1,2,3, 

Na == (cos cut Icu)(Sa - mSa_ 5) 

- Sa- 5 - Sa+ \ sin cut = const, 

for a odd~1\j 

= (mlcu2) [ (cos cut lcu) ¥~ + qi sin cut l 
j= 1,2,3. 

The Poisson theorem can also be used to generate other con
stants from the above set. For example, 

[N7 , M 6 ] 

==J = (2mlcu)[ (mS2 - S7)(sin cut lcu) - S8 cos cut] 

is a constant of motion which corresponds to 

J= - (2m2/cu3)[¥~(Sincutlcu) -q\ cos cut ] 

in the original notation. 
Now, consider the time-dependent invertible transfor

mation 
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Qj = Pj/I , Qj = Pj/2 , [R,S)"1= [R,S]S, 

Pj/I = (t Im)Pj/l - qj' ~/2 = (t Im)pjl2 - qj' (12) 

withj = 1,2,3. In the 5 notation we have 

thus proving that Eqs. (13) define a canonical transforma
tion. The generating function of this transformation is 

l1A =5A+6' l1a = (tlm)5a -5a-6' (13) 

Hence, with Rand S being any two dynamical variables it is 
simple to verify that and the new Hamiltonian K( l1v,t) has the form 

K( 111',t) = (t 1m) [111112 + 113114 + 115116 + m( 112118 + 1141110 + 1161112)] 

- (1 12m )(t 2 + w
2 + 1)( 11~ + 11~ + 11~) - (111118 + 1131110 + 1151112) 

- (m/2)(11~ +l1io + l1i2) - (1!2m)(l1i +l1i +11;>' 

For completeness we also write the Hamiltonian function in terms of the set Qk,Pk1n : 
(

n) ) 

K = t Im[QIQI + Q2Q2 + Q3Q3 + m(QIPI/2 + Q2P2/2 + Q3P3/2)] 

- (1/2m)(t 2 + w2 + l)(Qi + Q~ + Q~) 

- (QIPI/2 + Q2P2/2 + Q3P3/2) - (m/2)(Pi12 + P~12 + P~12) - (1/2m)(Qi + Q~ + QD· 

(14) 

(15a) 

(15b) 

Finally, let us consider the problem of obtaining a Hamiltonian function which is related to the Hamiltonian given in Eq. 
(7) by a canonoid transformation. As pointed out in Sec. II, what is needed is to apply the systematic procedure we have 
developed previously I toH(5v,t) from Eq. (10). We shall not go into the details of the calculations to be performed; instead, 
we refer the reader to Ref. 1 on this subject. Thus it is not too difficult to obtain the following canonoid transformation with re
spect to H(5v,t): 

l1A =5A' 

l1a=5a+5a-65a-5' fora odd, 

l1a = Sa + ! 5 ~ -7' for a even. 

The new Hamiltonian function is 

K(l1l',t) = (w2/2m)(l1i 118+11~ 111O+11~ 1112) - (w2/8m)(l1i +l1j +111) - (11111~ +11311~ +11511~) 

+ (112117 + 114119 + 1161111) - (m/2)(11~ + 11~ + 11~) - (w2/2m)(11~ + l1io + l1i2) (16a) 

and in terms of the set (k:), Pk1n ) we have 

K = (w2/2m)(Qi PI/2 + Q~ P2/2 + Q~ P3/2 ) - (w2/8m)(Qi + Qi + Qj) - (Qi QI + Q~ Q2 + Q~ Q3) 

(16b) 

The Hamiltonian function (16a) and the one given by Eq. (7) describe the same system, namely, a classical spinning particle. 
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BAcklund transformations for the Caudrey-Dodd-Gibbon-Sawada-Kotera 
equation and its A-modified equation 

w. L. Chan and Yu-kun Zheng 
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Kong 
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A A-modified equation for the Caudrey-Dodd-Gibbon-Sawada-Kotera equation is 
introduced. A new Backlund transformation for this equation is derived from the invariance 
property of the scattering problem for the Caudrey-Dodd-Gibbon-Sawada-Kotera equation 
under a Crum transformation [Q. J. Math. 6, 121 (1955)]. This, in turn, gives rise to a new 
Backlund transformation for the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. 

I. INTRODUCTION 

One of the interesting fifth-order integrable nonlinear 
evolution equations is the Caudrey-Dodd-Gibbon
Sawada-Kotera equation 1.2 (CDGSKE). It is not a member 
of the Lax hierarchy of the Korteweg-de Vries equation and 
has some distinct properties, as reported in Ref. 3. The aim of 
the present article is to construct a new Backlund transfor
mation (BT) for the CDGSKE. Other BT's have been found 
earlier.2.4 Our study is prompted by the work oferum.5 The 
BT developed here can be considered as an extension and 
improvement of that of Strampp and Briz.6 The article is 
organized as follows. In Sec. II the results on the BT of Ref. 6 
for the CDGSKE are summarized. Its shortcoming is pre
sented. A A-modified CDGSKE (A-mCDGSKE) is intro
duced. In Sec. III, the general solution of the scattering prob
lem of the CDGSKE is found under the assumption that one 
of its solutions is known. A BT is derived, in Sec. IV, for the 
A-mCDGSKE. This, in turn, gives rise to a BT for the 
CDGSKE in Sec. V. 

II. THE CDGSKE AND THE }.,-mCDGSKE 

In Ref. 6 Strampp and Briz had studied the following 
CDGSKE2

: 

ul + Uxxxxx + 5 (uuxxx + UxU xx + u2ux ) = O. (2.1) 

It is an integrability condition of the scattering problem3 

"'xxx + u"'x = A"', (2.2) 

"'I = Mu",+ (uxx - u2)"'x + (9,1 - 3ux )"'xx, (2.3) 

For convenience, here we have replaced that "6u" in Ref. 6 
by u. By using bilinear operators, they showed that the scat
tering problem (2.2) and (2.3) are invariant under the fol
lowing transformations: 

,1-+,1'= -A, 

u-+u' = u + 6vx' 

where 

(2.4 ) 

(2.5) 

(2.6) 

(2.7) 

This means that if the function u in (2.6) is a solution of the 
CDGSKE (2.1), then function u', defined in (2.6) and 
(2.7), is also a solution of Eq. (2.1). and the function "", 
defined in (2.4), is a solution of (2.2) and (2.3) with A' in 

(2.5). Their results can be summarized as follows: 
(SB 1 ): A necessary and sufficient condition of integra

bility for the scattering problem (2.2) and (2.3) is that the 
function u satisfies the CDGSKE (2.1). 

(SB2):Thescatteringproblem (2.2) and (2.3) isinvar
iant under the transformations (2.4)-(2.7). 

(SB3 ): If u is a solution of Eq. (2.1), then the function 
u', defined in (2.6) and (2.7), is also a solution of (2.1), that 
is (2.6) and (2.7) isaBTfor (2.1). 

Generally, in constructing a BT for an evolution equa
tion, we naturally expect that the BT can be used repeatedly 
in generating infinitely many solutions of that equation. Un
fortunately, the BT (2.6) and (2.7) can only be·used effec
tively once, since if we make use of (2.6) and (2.7) twice, we 
will have 

"" -+"''' = 11",' = "', 

v-+v' = "'~/"" = - "'xl'" = - v, 

u' -+u" = u' + 6v~ = u + 6vx - 6vx = u, 

A' -+,1 " = - A ' = A. 

Weare back to the original solution. 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

In this paper, we propose a method to overcome the 
above deficiency. Note that the function v, defined in (2.7), 
is in fact a solution of the following evolution equation: 

VI + [vxxxx - (5Iv)(vxvxxx -Avxx +,12) 

+ (5Iv2)(v~vxx - AV~) + v(8v~ - 8vvxx - 5Av) 

+ v5 ]x = O. (2.12) 

This equation can be obtained by the following procedures: 
(a) Divide Eq. (2.3) by", and then take the derivative with 
respect tox and use (2.7); (b) divide Eq. (2.2) by", and use 
(2.7); and (c) solve for u from (b) and substitute this 
expression of u into the equation obtained in (a). 
We call Eq. (2.12) the A-modified CDGSKE (,1-
mCDGSKE). Thus we have the following 

Proposition 1: If '" is a solution of the scattering problem 
(2.2) and (2.3), then the function V, defined by (2.7), is a 
solution ofEq. (2.12). 

Substituting (2.9) and (2.5) into (2.12), one finds that 
(2.12) is invariant under these transformations. Our task is 
to find a BT 

(v,A.) -+ (v', - A) (2.13 ) 

2065 J. Math. Phys. 30 (9), September 1989 0022-2488/89/092065-04$02.50 © 1989 American Institute of Physics 2065 



                                                                                                                                    

for (2.12) that excludes the transformation (2.9). We will 
discuss this problem in the following sections. 

III. THE GENERAL SOLUTION FOR THE SCATTERING 
PROBLEM OF THE CDGSKE 

We now try to find the general solution for the scattering 
problem (2.2) and (2.3), when one of its solutions is known. 
From (SB2), we know that it possesses a particular solution 
(2.4), corresponding to u' in (2.6) andA 'in (2.5); we denote 
this solution by rp: 

rp = 1/t/!. (3.1) 

Assume that rp * is another particular solution of (2.2) and 
(2.3). Let 

rp * = rp L: Q dx. (3.2) 

We want to determine the unknown function Q. Substituting 
(3.2) and u' and A' into (2.2) and (2.3), we find that Q 
satisfies the following system of partial differential equa
tions: 

Qxx - 3vQx + [3(v2 - vx ) + u'] Q = 0, 

Qt = [B~ -2(vC')x]Q 

+ (B' - 2vC' + C~)Qx + C'Qxx' 

where 

C'=9A'-3u~. 

( 3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

Assume that Q has been solved from (3.3a) and (3.3b); then 
we have two particular solutions (3.1) and (3.2) for (2.2) 
and (2.3), corresponding to u' and A '. 

It is well known that, for a differential equation of order 
three 

y'" + ay" + by' + cy = 0, (3.5) 

if two of its independent solutionsYI andY2 are known; then 
it possesses a general solution of the following form 7: 

Y = [ CI - C3 f: Y2(YIYi - Y;Y2) -2 exp( - f: a dX) ]YI 

+ [C2 + C3 fX YI (YIYi - Y;Y2)-2 
JX() 

X exp( - L:a dx )dX ]Y2' (3.6) 

where CI, C2, and C3 are some constants. Therefore, if rp and 
rp * are two known solutions of scattering problem (2.2) and 
(2.3), then comparing (2.2) to (3.5) and using (3.6) and 
(2.2), will possess the following general solution: 

t/!' = (CI - C3Z)rp + (C2 + C3 W)rp *, (3.7) 

where 

Z = fXrp *60 -2 dx, 
Jxo 
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(3.8) 

(3.9) 

(3.10) 

and CI, C2, and C3 are some arbitrary functions of t and A '. 
We now try to determine these functions, such that t/!' in 
(3.7) also satisfies Eq. (2.3) with u and A being replaced by 
u' and A 'in (2.6) and (2.5), respectively. Substituting (3.7) 
into (2.3), and with rpand rp * being solutions of (2.3 ), we get 

(Cit - C3t Z - C3Z t )rp + (C2t + C3t W + C3 Wt )rp * 

=c3C'6o- I. (3.11) 

Further, by using (3.10) and (2.3), we have 

:/rp*6o-2) = ! {[(B'+C~)rp*-c'rp~]6o-2}, 
(3.12) 

:/rp6o-2) = ! {[(B'+C~)rp-C'rpx]6o-2}, (3.13) 

where B' and C' are the two functions defined in (3.4a) and 
(3.4b). Thus, by (3.8) and (3.9), we obtain 

Zt = r i.(rp *60 -2)dx 
L" at 

= {[ (B' + C~)rp * - C'rp~]6o -2} I~", (3.14) 

(3.15 ) 

Then, substituting (3.14) and (3.15) into (3.11), it leads to 

{CIt + [(B' + C~)rp* - c'rp~)6o-2]x=x"cJrp 

+ {C2t - [(B' + C~)rp- c'rpx)6o- 2]X=x"C3}rp* 

+ (Wrp * - Zrp)C3t = 0. (3.16 ) 

Now we choose CI, C2 , and C3 to satisfy the following system 
of ordinary differential equations: 

CIt + {[ (B' + C~)rp * - C'rp~] a -2}x=x" C3 = 0,(3.17) 

C2t - {[ (B' + C~)rp - C'rpx]6o -2L=x" C3 = 0, (3.18) 

C3t = 0; (3.19) 

then the function (3.7) will satisfy Eq. (2.3). Solving 
(3.17)-(3.19) gives 

CI (t,A ') = a' - r f {[ (B' + C ~)rp * 

- c'rp~]6o-2}x=x" dt, (3.20) 

C2(t,A')=P+r f{[(B'+C~)rp 
- c'rpx]6o- 2}x=x" dt, (3.21) 

C3 (t,A ') = r, (3.22) 

whereA ' corresponds to that contained in C', and a,p, and r 
are some arbitrary constants. Note that the two relations 
(3.12) and (3.13) imply that the following two differential 
forms: 

rp*6o-2dx+ [(B' + C~)rp* - c'rp~]6o-2dt, 

rp60 -2 dx + [(B' + C~)rp - c'rpx]6o -2 dt, 

(3.23 ) 

(3.24) 

are exact differentials. Therefore there exist two functions 
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P * (X,t,A ') and P(x,t,A '), such that 

f
(X,1) 

P*(x,t,A') = rp*I:l.-2dx+ [(B'+C~)rp* 
(x",~,) 

- C'rp~]A-2dt, (3.25) 

f
(X") 

P(X,t,A') = rpl:l. -2 dx + [(B' + C~)rp 
(xo,to> 

-C'rpx]I:l.- 2dt. (3.26) 

Substituting (3.20)-(3.22) into (3.7) and using (3.25) and 
(3.26), we finally get the general solution of (2.2) and (2.3), 
corresponding to u' and A ' as follows: 

r/l(x,t,A') = [a - yP*(x,t,A')]rp 

+ [p + yP(X,t,A')]rp *. (3.27) 

We state the result of this section in the following. 
Proposition 2: If rp and rp * are two known solutions of the 

scattering problem (2.2) and (2.3) corresponding to u' and 
A', then (2.2) and (2.3) possess a general solution (3.27). 

IV. THE BT FOR THE A-mCDGSKE 

In this section we will use the result obtained above to 
derive a BT (2.13) for theA-mCDGSKE (1,12). 

First we rewrite the formula (3.27). Denote 

Q* = LX Qdx, 
x" 

(4.1 ) 

where Q is the function defined in (3.3a) and (3.3b). By 
(3.27), (3.1), (3.2), and (4.1), we have 

r/l = I/I-I{a - YP*(X,t,A') + [P+ yP(X,t,A ')]Q*},(4.2) 

where [by (3.25), (3.26), (3.2), and (3.1)] 

f
(X") 

P*(x,t,A') = rfQ *-2{Q * dx + [(B' + C~)Q * 
(-GI,tO) 

+C'(Q*v-Q~)]dt}, (4.3) 

f
(X") 

P(X,t,A') = rfQ*-2{dx+ (B' + C~ + C'v)dt}. 
(xu.to ) 

(4.4) 

Note that (4.2) is the transformation formula for 1/1, which is 
a generalization of formula (2.4). Next we denote 

v' = I/I~/I/I', (4.5) 

where 1/1' is the function defined in (4.2). By the property of 
(2.4 )-(2.7) and Proposition 2, the pair (V',A ') must satisfy 
Eq. (2.12). Substituting (4.2) into (4.5) gives 

v' = v + {In[a - yP*(x,t,A') 

+ (P + yP(x,t,A '»Q*]t· (4.6) 

This is the transformation formula for function v, which is a 
generalization of formula (2.9) and is a BT for the A
mCDGSKE (2.12). 

V. THE BT FOR THE CDGSKE 

The formulas (2.6), (4.2)-(4.4), and (4.6) now form a 
BT for the CDGSKE (2.1 ). In principle, by these formulas, 
starting from one known solution u I of (2.1), we can obtain 
three hierarchies of I/I's, v's, and u's. This procedure can be 
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depicted by the following diagram: 

(ul,A) • (U2' - A) • (u 3,A) • 

, ~VI/' ~vi' ~ _____ , (5.1) 

1/11 • 1/12 • 1/13.....;,.---~ 
We want to point out that the problem of integration of 

the CDGSKE (2.1) has not been reduced to quadrature. In 
iterating the BT, the solutions of (3.3a) and (3,4b) are re
quired. 

Example: Let us now give an example to show some 
partial success of the procedure of (5.1) and to see some of 
the difficulties that we will be facing. 

Equation (2.1) obviously possesses the trivial solution 

U I = O. (5.2) 

Substituting (5.2) into (2.2) and (2.3) and writing A = r/, 
we get the following system of linear partial differential 
equation: 

(5.3 ) 

(5.4) 

This system of equations possesses the following solution: 

1/1 = a exp[ - !7](x + 97]4t) ]sin()l3/2)7](x - 97]4t + P> 

+ yexp 7](x + 97]4t), (5.5) 

where a, p, and yare some constants. For simplicity, we 
take y = 0 in (5.5), so that 

1/11 = a exp[ - ~7](x + 97]4t) ]sin( )1312)7] 

X (x - 97]4t + p> (5.6) 

is the first generation of solutions of (5.3) and (5,4). Substi
tuting (5.6) into (2.7), we get the first generation ofsolu
tions of Eq. (2.12), 

VI = !7]()l3 cot wp - 1), 

where 

w= ()l3/2)7], p=X-97]4t +p. 

(5.7a) 

(5.7b) 

Further, substituting (5.2) and (5.7a) into (2.6) gives the 
second generation of solutions of Eq. (2.1), 

(5.8) 

To continue the procedure (5.1), we have to solve the 
function Q from (3.3a) and (3,4b). Substituting (5.7) and 
(5.8) into (3.3a) and (3.4b) we obtain the following system 
of differential equations: 

Qxx + ~7] (1 - !3 cot wp) Qx - ~7]2 (1 + !3 cot wp) Q = 0, 
(5.9) 

Q, = ¥7]5(9 sin-4 wp + 4/3 sin-3 wp cos wp 

- 8 sin-2 wp)Q + a7]4(27 sin-4 wp 

- 6/3 sin - 3 wp cos wp 

- 30 sin - 2 wp + 4/3 sin - I wp cos wp - 4) Qx 

(5.10) 

It is not obvious that they have an explicit solution. So the 
procedure could not go further. However, we have simpli
fied the problem to that of basically solving a system of ordi-
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nary differential equations. And, we believe that the subse
quent third generation of solutions U3 of (2.1) will be a new 
solution, that is, it does not coincide with U2 in (5.8). 
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The conserved quantities associated with Fokker-Wheeler-Feynman interactions between two 
particles are usually presented in terms of arbitrary times t I and t2 for particles one and two, 
respectively; these conserved quantities involve integrals over the world lines of the particles. 
These integrals are evaluated so as to yield integral-free conserved quantities, with a resulting 
shift in focus to one particle at arbitrary time tl and the second particle at the tl-related times 
oft2 (retarded) and t2 (advanced). 

I. INTRODUCTION 

Solutions for the relativistic two-body problem involv
ing Fokker-Wheeler-Feynman interactions are not plenti
ful. These action-at-a-distance interactions are time sym
metrtc, using half the sum of the retarded plus advanced 
potentials. Starting with either a least-action principle I or 
the equations ofmotion,2.3 one can obtain conserved quanti
ties in terms of arbitrary times t I for particle one and t2 for 
the second particle; these quantities contain double integrals 
over the world lines of the particles. For example, the con
served four-momentum P for a massless vector interaction 
without radiation reaction between two point particles can 
be written as 

P= (PI +qIAI)r, + (P2+q2A2)r, +PI , (1.1) 

where Pj = mj Vj is the momentum of the jth particle with 
mass mj and charge qj moving with four-velocity Vj 
through a vector potential Aj due to the other particle, and 
PI is the "interaction momentum" or "momentum in tran
sit" 4 given by 

wheret 2± = tl ± R leandPj = drjle dtj . Figure l(b) illus
trates the world-line segments which now enter into the cal
culation of a conserved quantity; although the advanced and 
retarded times t l are related to t l, the time t2 can be chosen 
independently of t I' The residual integrals are still difficult to 
evaluate since, in principle, one must know the trajectories 
as a function of time; however, they have been evaluated for 
the vector interaction 7 as well as for the scalar and linear6 

interactions for uniform concentric circular motions. 
The integrals in Eq. (1.3) can be eliminated by using 

unphysical time-asymmetric interactions8 where the two 
particles only interact for such times that particle one is at 
time tl and particle two is at time t2 = t2 - = tl - R Ie, as 
illustrated in Fig. 1 (c). Then only the second term in Eq. 
( 1.3) is nonzero2 and the resulting PI must be multiplied by 

PI = 2kqlq2e-3(i~ dr~ f~' '" dr; 

- f~'", dr~ i~ dr; )V I ·V2SO'(5'2). (1.2) 

Here, rj is the proper time and Sj = (,Pj ,ietj ) is the space
time position of the jth particle, S = SI - S2' 

2 2 2 2..... ..... , 2' 5' = (tl - t2 ) - R Ie ,R = 71 - 72,R = IR 1,0 (5' )lsthe 
derivative of the Dirac delta function with respect to its ar
gument and k = /-lol41T in SI units. Similar interaction mo
menta arise from scalar and linear6 potentials. The delta 
function and its derivative in the interaction terms, such as in 
Eq. (1.2), reduces the semi-infinite double integrals into in
tegrals over finite segments of the world lines of the two 
particles, as illustrated in Fig. 1 (a). 

Alternatively, by integrating Eq. (1.2) first over the 
world line of particle one, the resulting interaction momen
tum contains integrals only over segments of the world line 
for particle tw02

: 

(1.3 ) 

I 
two. Time-asymmetric interactions led to solutions not only 
for uniform circular motions9 but also for one-dimensional 
motions with vector lO and Lorentz scalarll potentials. 

In this paper I present the results of evaluating the inte
grals appearing in all time-symmetric interaction terms, 
such as in Eq. (1.3), so as to yield integral-free conserved 
quantities associated with the Lorentz group of transforma
tions. This evaluation shifts the focus from arbitrary times tl 
and t2 for the two particles, as illustrated in Fig. 1 (b), to one 
particle at time t I and the second particle at the related times 
t 2- and t 2+ , as illustrated by Fig. 1 (d). 

II. CONSERVED QUANTITIES 

The integrands in all the interaction terms, such as in 
Eq. (1.3), were cast into exact differentials by using the 
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equations of motion, advanced/retarded time relations such 
as ct l = ctl ± R and their deri~tiyes, and the derivatives 
of other functions such as d(R ± R'!3I) -1/dt2. Lengthy and 

tedious calculations led to the following conserved energy 

W, momentum P, angular momentum 1, and Lorentz mo
mentum11 : 

I 

W= (WI +ql<l>I)I, +~(W2+ +q2<1>2+)I,.I/ +~(W2- +q2<1>2-)I,.12-

- ~c2kqlq2[ U -: PI·P2)l!. =+ I + u -: PI·P2)l!... I ], 
(R +R'!3I)(R +R'!32) ".1/ (R -R'!3I)(R -R'!32) ""2-

(2.1) 

~ ~ ~ ~ 

p= (PI + qIA I )" + ~(P2+ + q2 A 2+ )""2+ + ~(P2- + q2 A 2- )1"'2-
~-+-+ -+-+-+ 

+ ~Ckqlq2[ U -: !31·!32)l!. =+ I - u -: !31·!32)l!. =+ I ], 
(R + R'!3I)(R + R'!32) ""/ (R - R'!3I)(R - R'!32) 1"'2-

(2.2) 

which can be combined into 
-+.... -+ -+-+ 

W - P'!3IC = (WI - C!3I'PI)', + H (W2+ + q2 <l>t) - C!3I' (pt + q2 A 2+) L,.,/ 

+ H (w2- + q2 <1>2-) - CPl' (P2- + q;A 2-)] ""2-' (2.3 ) 

1 = [1\ X (PI + ql::t) L, + Hr2 X (P2+ + q2 At) L,.,/ + Hr2 X (P2- + q2 A 2- ) L"'2-

+~Ckqlq2[ (1;;;;~I'P2)r2>g1=+ I _ (1;;;;~I'P2)r2>g1=+ I ], 
(R + R'!3I)(R + R'!32) 1,.'2+ (R - R'!3I)(R - R'!32) ""2-

(2.4) 

=rlxP-HR X (P2+ +q2 A t)L."2+ -HR X (P2- +q2 A 2-)L"'2-' (2.5) 

1, = [(PI +qIAI)ctl-rl(wl +ql<l>I)/cL, +H(pt +q2 A 2+)Ct 2+ -r2(w2+ +q2<1>2+)/CL."2+ 

+H(P2- + q;A2-)Ct 2- -r2(w2- +q2<1>2-)leL"'2-

+ ~Ckqlq2[ (1 - PiP}) (riR +;}gtl ) I + (1 - P1;'P})(rIR -4
R gtl ) I ], 

(R + R'!3I)(R + R'!32) ".'2+ (R - R'!3I)(R - R'!32) 1"'2-
(2.6) 

= PCtl - r l W Ie + 21 [(wt + q2 <l>t )R Ie + (P2+ + q2 At )R] + 
l •• t 2 

ct 

t+ 
I, , 

/ 
/ 

/ 

/ 
t- / 

(0) 1 
ct 

t x 
2 

(b) 

(d) 

ct 

ct 

/ 

FIG. 1. Conserved quantities might include terms evaluated at t l , t2 , t 1-

=t2-R/c,tt =t2+R/c,t2- =tl-R/c,t/ =tl+R/c plus inte
grals over sections of the world-lines indicated by heavy lines: (a) time
symmetric with integrals of the form in Eq. (1.2) with both tl and t2 arbi
trary; (b) time-symmetric with integrals of the form in Eq. (1.3) with both 
t I and t2 arbitrary; (c) time-asymmetric with no integrals and t2 = t 2- func
tionally related to t l ; (d) time-symmetric with no integrals and with both 
t 2- and t 2+ functionally related to t I' 
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(2.7) 

In the above equations the four-momenta are PI = CPl' iWI/ 
c), and P2 = ~(P2-' iw2- /c) + !(pt, iwt Ie), and the Lien

anI-Wiechert vector potential Aj = (Aj , i<l>jle) is com
posed of retarded and advanced components, e.g., Al (r .. 
t l ) = !(AI+ + A I-)· 

It is much easier and somewhat less tedious to verify 
that Eqs. (2.1 )-(2.7) are conserved by differentiating them 
with respect to tl or t 2- or t 2+ and show that these deriva
tives are zero by virtue of the equations of motion, e.g., dW / 
dt l = dW /dt 2- = dW /dt2+ = O. 

One notes that all these conserved quantities follow the 
same pattern. For example, the conserved energy Wis com
posed of the canonical energy for particle one at observation 
time t l , plus halfthe canonical energy for particle two at the 
retarded time t 2- and at the advanced time t t , plus an inter
action potential energy again evaluated for (t I' t 2- ) and (t I' 
t 2+ ). The integrals in Eq. (1.3) cancel the canonical energy 
for particle two at the arbitrary observation time t2 of Eq. 
( 1.1) and instead substitute halfthe values at the tl-related 
timesoft 2- andtt;compareFig.l(b) withFig.l(d). 

The remaining conserved quantities associated with the 
full conformal group of transformations follow the same pat
tern, but consist of many terms. They can be combined with 
other conserved quantities, such as was done with 1 and 1, 
in Eqs. (2.5) and (2.7), to give the following compact forms 
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-> 
for the timelike component K t and the spacelike component K of the conformal vector, and for the dilation scalar D: 

III. DISCUSSION 

The Schild7 results for two particles moving in concen
tric circles were recovered using Eqs. (2.1), (2.2), (2.5), 
and (2.7); there was no advantage in using these equations 
over those containing integrals over the world lines since the 
trajectories 71 (t l ) and 72 (t2 ) are predetermined for uniform 
circular motion. However, the possibility now exists that the 
more complicated motions related to the other conic sec
tions can be computed by using these conserved quantities 
without integrals. 

In this development of the Fokker-Wheeler-Feynman 
formalism, we have converted a manifestly nonlocal interac
tion between two particles at tl and t2 which includes inte
grals, in general, over spacelike world lines, into a boundary 
value problem for which the positions and velocities for one 
particle at tl and the other particle located on the light cones 
of particle one determines the motion. 12 A well-defined 
boundary value problem is not restricted to the specification 
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(2.8) 

(2.9) 

(2.10) 

of initial conditions at some time t l , but can also include the 
specification of initial conditions at times which are func
tionally related to t l , such as t f = tl ± R /c. 
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Extended wave solutions in an integrable chiral model in (2+1) dimensions 
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There is a modification of the SU(2) chiral model, which is integrable in (2 + 1) dimensions 
[J. Math. Phys. 29, 386 (1988)]. In addition to localized lumps, it admits extended wave 
solutions, which move at constant velocity. The interaction of two waves causes each to 
experience a phase shift. In the interaction between a wave and a lump, the wave suffers no 
phase shift, but the lump changes shape. 

I. INTRODUCTION 

There are numerous examples of scalar field theories in 
(2 + 1) dimensions, which are integrable, including the Ka
domtsev-Petviashvili and Davey-Stewartson equations. 
However, neither of these is Lorentz invariant in the sense of 
possessing an SO(2,1) symmetry acting on space-time. In 
fact, no example of a Lorentz invariant theory that is integra
ble in (2 + 1) dimensions is known, and it may well be that 
one does not exist. I A partial remedy is to take an SO (2,1 ) 
invariant model and modify it slightly, in such a way as to 
trade Lorentz invariance for integrability. One may still 
hope for a "generalized" Lorentz invariance, in the sense 
that the behavior of the soliton solutions, or of some restrict
ed class of soliton solutions, is Lorentz invariant. 

Ward2 has studied a modification of the SU(2) chiral 
model in (2 + 1) dimensions, given by the field equation 

(1fv + Va €,J.lV)aJ.l (J -I aJ) = o. (1.1) 

Here J takes values in SU(2) and is thought of as a 2X2 
matrix of functions of the space-time coordinates (t,x,y) , 
sometimes also written (xO,X1,X2). Greek letters are space
time indices, taking values 0, 1,2, and a J.l denotes partial dif
ferentiation with respect to xJ.l. The quantity €,J.lV is the alter
nating tensor on three indices (with ~12 taken equal to + 1) 
and 1fv = diag( - 1, + 1, + 1) is the (inverse) Minkowski 
metric. Finally, Va is a constant vector in space-time. 

Choosing Va = (0,0,0) corresponds to the unmodified 
chiral model, which is Lorentz invariant but nonintegrable. 
Note that a nonzero Va explicitly breaks Lorentz invariance 
by picking out a particular direction in space-time. A case of 
particular interest occurs when Va is chosen to be a spacelike 
unit vector, i.e., 1fvVJ.l Vv = + 1, since then the theory ap
pears to be integrable. I Moreover, if Vo = 0, then the theory 
possesses the same conserved energy-momentum vector as 
the unmodified chiral model, namely, 

PJ.l = (-5;og +!'TJJ.lo'TJaP)Tr(J-IJaJ-lJp)' (1.2) 

The corresponding energy density is 

Po = -!Tr(J- 1J,)2+ (J- 1Jx )2+ (J-IJy)2). (1.3) 

Here 5; is the Kronecker delta, Tr denotes the matrix trace, 
and Ja =aaJ. It should be emphasized that Po is a positive
definite functional of the field J. 

If Vo#O then it is not at all clear that a conserved ener
gy-momentum vector exists, and so from now on, in order to 
ensure integrability and a conserved energy, we shall take Va 

to be a spacelike unit vector with Vo = O. To be specific, 
choose Va = (0,1,0). Ward has shown that this model ad
mits solitons, localized in two dimensions, which pass 
through each other without scattering or changing shape. It 
is the purpose of this paper to construct extended plane wave 
solutions and to investigate their interactions. Such waves 
are localized along the direction of motion, but have infinite 
spatial extent perpendicular to it. 

In fact, one family of extended solutions may be exhibit
ed immediately by noting that ( 1.1 ) is a generalization of the 
sine-Gordon (SG) equation in (1 + 1) dimensions. Con
sider a J of the form 

_ ( cos ~</l e - 2ix sin ~</l) J- , 
- e2iX sin !</l cos !</l 

(1.4) 

where the field </l depends on y and t, but not on x. Then the 
field equation (1.1) with Va = (0,1,0) is equivalent to the 
SG equation for </l: 

</lit - </lyy + 4 sin </l = o. 
Furthermore, the energy density ( 1.3) becomes 

Po = !(</l; + </l;) + 4 sin2 !</l, 

( 1.5) 

( 1.6) 

which is precisely the energy density of the sine-Gordon 
theory. In other words, there are solutions that look like SG 
solitons living in the (1 + 1 )-dimensional subspace spanned 
by (y,t), but spatially extended along the x axis. Note that 
while the J of Eq. (1.4) depends explicitly on x, the corre
sponding energy density (1.6) does not. This illustrates a 
general feature of extended wave solutions: although Po only 
depends on time together with one spatial coordinate (along 
the direction of motion), J is necessarily a function of all 
three space-time coordinates. 

II. CONSTRUCTION OF SOLUTIONS 

This section summarizes the general method for con
structing multisoliton solutions of the field equation (1.1). 
The technique is a variation of the well-known "Riemann 
problem with zeros" (see, for example, Forgacs et al.3

), and 
full details are to be found in the paper by Ward. 2 

There are two ingredients to an n-soliton solution. First, 
asetofncomplexnumbersJLk (k taking values from 1 ton), 
which must all be different and nonreal; second, for each k, a 
meromorphic function"" of the linear combination 

(jJk =X+!JLk(t+y) +!JLk-1(t-y). (2.1) 

2072 J. Math. Phys. 30 (9), September 1989 0022-2488/89/092072-06$02.50 ® 1989 American Institute of Physics 2072 



                                                                                                                                    

Now form the two-component objects m~ = (1,Jk)' so 
that a takes values 1,2 with m~ = 1 and m~ = fk' Then (the 
inverse of) a matrix J, which satisfies the field equation, is 
given by 

(J-I)ab =-1-(Oab + I-1-(r-l)k'm~mZ), (2.2) ra k,l J-lk 

where 
2 

rkl = I (fik -J-lI)-lm~m~, 
0=1 

n fik 
a= II-, 

k~lJ-lk 

and an overbar denotes complex conjugation. 
Clearly, the expression for Jbecomes very complicated 

very quickly as n is increased. Fortunately, there is plenty of 
analysis that can be done while still taking n small. For the 
rest of this section, and the entire Sec. III, n will be equal to 
unity. Later on, a study of interactions (Secs. IV and V) will 
require n = 2. 

To get a feel for the physical picture, first we shall inves
tigate a simple family oflump solutions, very similar to those 
discussed by Ward. Consider n = 1, in which case solutions 
are specified by a complex number J-l and a meromorphic 
function f( w ). Equation (2.2) simplifies to give 

J = 1 (J-l + filfr (J-l- fit/"\. 
1J-l1(1 + lf12) (J-l-fi)f fi +J-llfI 2) (2.3) 

Writing J-l = meilJ
, the energy density becomes 

p _ 2( 1 + m2
)2 sin2 0 If'1 2 

0- m2 (1 + lf12)2 ' 
(2.4 ) 

where f' is the derivative off as a function of w. Keeping 
things simple, choosef(w) = aw + c, where aElR and CEiC. 
(One could generate a larger set of solutions by taking a also 
in C, but this is a little more tricky to analyze and an unneces
sary complication to introduce at this stage. ) The factor If'1 2 

in the numerator of (2.4) becomes just a2
• So it is seen that 

the solution looks like a single lump located at the point 
wheref = aw + c = O. From (2.1), its velocity is computed 
to be 

( ) = ( - 2m cos 0 1 - m2) 
Vx,Vy 2' 2 . 

1+m 1+m 
(2.5) 

The parameters J-l, a, and c have simple physical interpreta
tions: J-l specifies the soliton velocity via (2.5), c determines 

I 

The velocity may be readily calculated: 

the position of the peak at time t = 0 and, finally, a fixes the 
ratio of the height of the lump to its width. Note that in the 
static case (J-l = i) one may easily integrate Po over x and y to 
obtain the total energy E. The result is 

E= J: 00 J: 00 Po dx dy = 81T, (2.6) 

which is independent of a. 

III. EXTENDED WAVE SOLUTIONS 

Now we shall set out to construct a family of extended 
wave solutions. Ward showed that takingf to be rational of 
degree N leads to a configuration with N peaks, which in the 
static case has energy 8Nrr. An extended wave must have 
infinite energy and so no function of finite degree will do for 
f The next candidate is some sort of exponential. Specifical
ly, consider 

few) = exp(bw + c). (3.1 ) 

This leads to an energy density 

p _ 2(1 + m2)2sin2 0 Ib 12lfl2 
0- m2 (1 + lf12)2 

(3.2) 

Here J-l = me ilJ as before. Note that Po only depends on c 
through its real part and so, without loss of generality, we 
can take CElR. However, b is, in general, complex. To see that 
(3.2) does indeed look like a wave, rewrite it as 

Po = [( 1 + m2
)2 sin2 0 12m2 1lb 12 sech2(Re(bw) + c). 

(3.3 ) 

Note that Po is constant along each of the lines Re(bw) 
+ c = const. The wave front (i.e., the crest of the wave) lies 

along Re( bw) + c = O. For each value of t, this is the equa
tion of a straight line in the xy plane. As t varies, the wave 
maintains its shape and simply moves at constant velocity. 

To investigate this wave in more detail, write b = Ib leia
• 

Then the equation of the wave front may be written 

Ax + By = Ct + D, 

where 

A = 2m cos a, 

B = m 2 cos(O + a) - cos(O - a), 

C = - m 2 cos(O + a) - cos(O - a), 

D = - 2mc/lb I. 

(3.4 ) 

- 2m cos a(cos(O - a) + m2 cos(O + a») 
v = , 

x m4 cos2(O + a) + 2m2 (sin2 0 + cos2 a) + cos2(O - a) 

cos2(O - a) - m4 cos2(() + a) 
v =--~~------~--~~~----~~~~~------

y m4 cos2(O + a) + 2m2(sin2 0 + cos2 a) + cos2(O - a) 

(3.5) 

The speed v is given by 

(3.6) 
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and, although the integral of Po over all space is divergent, instead one can calculate the energy per unit length along the wave 
front, which turns out to be 

E = 4rlb IIsin3 0 1(1 + m 2
)2 

m 4 cos2(0 + a) + 2m2(sin2 0 + cos2 a) + cos2(0 - a) , 

where r = (1 - v2 ) -112. 

(3.7) 

The question of classification of these solutions now 
arises. Clearly, c determines the position of the wave at time 
t = o. On the face of it, there are four other real parameters 
(m, 0,1 b I, and a), which one might naively think could be 
chosen to fix the velocity (two parameters), the wave height, 
and wave width (one parameter each), all independently. If 
this were the case, it would support the conjecture of gener
alized Lorentz invariance. However, the following systemat
ic study of some special cases shows that things are not quite 
so simple. 

It is not difficult to pick out the solutions that look like 
static waves aligned along the coordinate axes. A wave lying 
on the x axis requires cos a = 0 and m = 1. Setting 
k = ib sin 0 leads to 

Po = 2k 2 sech2 ky, (3.8) 

which is (if one parametrizes the solution using k and 0, 
rather than Ib I and 0) independent of O. On the other hand, 
the conditions for a wave to lie on the y axis are cos 0 
= sin a = o. Setting k = Ib I leads to 

(3.9) 

In the latter case the height and width may be chosen inde
pendently, while in the former they are determined by a sin
gle parameter, with 0 playing the role of an "internal" degree 
of freedom. Although these observations do not necessarily 
rule out a generalized Lorentz invariance [there may be oth
er plane wave solutions, not generated by (3.1) ], they make 
it seem unlikely. 

The complete classification of waves generated by (3.1) 
appears to be difficult. Therefore it is useful to study subsets 
of solutions obtained by imposing some extra condition on 
the parameters. For example, if one requires 

(3.10) 

then the wave velocity (3.5) becomes 

(3.11 ) 

which matches the expression (2.5) for lump solutions, and 
the energy per unit length becomes 

E = 4rlb IIsin3 0 I. (3.12) 

In this scheme a physical interpretation becomes appar
ent: m and 0 specify the velocity and I b I determines both the 
height and width, with a fixed by (3.10). To make the situa
tion even more transparent, one can replace (m,lb 1,0) with 
new parameters (k,ifJ,A), defined by 
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m = [(1 - k sin ifJ ) / (1 + k sin ifJ) r /2 , 

cosO= -kcosifJ/(~I-k2sin2ifJ), 

Ibl =A~I-k2sin2ifJ· 

Then the energy density becomes 

(3.13 ) 

Po = [2A 2(1 - k 2)/(1 - k 2 sin2 ifJ) ]sech2 A (x cos ifJ 

+ysinifJ-kt). (3.14) 

Now it is seen that k is the wave speed, ifJ is the angle of the 
direction of motion relative to the x axis, and A is the width. 
The height is then a simple function of k, ifJ, and A. Taking 

ifJ = 1T/2andA = 2!~leadstotheextendedSGwaves 
mentioned earlier, namely, 

Po = [8/(1 - k 2)]sech2[2!(~)] (y - kt). (3.15) 

Note that in this case, Eq. (3.12) reduces to E = 8r, con
firming the relativistic behavior of SG solitons. 

IV. WAVE-WAVE INTERACTIONS 

It was seen in Sec. III that the classification of extended 
wave solutions is a far from trivial matter, and clearly a com
plete study of their interactions will be no simpler. Instead, 
we shall present an analysis of a few particular cases, point
ing out the main features. It seems likely that the general case 
will be very similar. 

For a two-soliton solution one takes n = 2 in the pre
scription of Sec. II. It turns out that the algebra is much 
simplified if f.Lk is restricted to be pure imaginary, i.e., 
Ok = 1T/2. So as an example of a solution containing two 
waves, WI and W2, consider 

f.Lk =iPk, Ik(OJk ) =exp(bkOJk +Ck ), (4.1) 

where k takes values 1,2; Pk is real and 

(4.2) 

Physically, ifJ k E [0, 1T] gives the direction of motion of each 
wave and the speed is sin ifJd 1 - p~ )/(1 + p~). The posi
tive real parameter Ak fixes the width and height. 

Even with the simplification oftakingf.Lk imaginary, the 
full expression for Po is rather complicated, but one can in
vestigate the asymptotic behavior in the following sense. Re
call that the equation of each wave front is Re(bkOJk) 
+ Ck = o. Taking the limits Re(bIOJ I) .... ± 00 corresponds 

to moving far away from wave WI on either side. If at the 
same time Re(b2OJ2 ) is kept finite, then roughly speaking we 
are keeping our eyes fixed on W2, but far away from WI. To 
keep things in terms oflk, note that Re(bkOJk) .... + 00 im-
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plies lfk I- 00 and Re(bkliJk ) - - 00 implies lfk I-D. 
Now let k' stand for "not k," so that l' = 2 and 2' = 1. 

I 

Then the asymptotics of the solution (4.1) may be summar
ized as follows: 

2(p~ - p~ )2(pi + 1)zA i((pi + 1)2 - (pi - 1 f sin2 tPkWk IZ 

p~(lfkI2(pl-Pz)z+ (PI +p2)zf 
(4.3 ) 

2(pi - p~ )z(pi + 1)2A U (pi + l)z - (pi - 1)z sin2 tPdlfk 12 
p~(lfkI2(pl +Pz)Z+ (PI_P2)Z)Z 

The crucial point is the difference of sign in the denomina
tors. It is not difficult to see that the essential behavior is 

lfk' I- 00, Po-sech2(Re(bkliJk ) + Ck - r), 
lfk,I-O, Po-sechZ(Re(bkliJk ) + Ck + r), 

where 

tanh r = 2pIP2/(p~ + p~). 

(4.4 ) 

(4.5) 

So the waves interact in a fairly simple way: each experiences 
a phase shift 2r. The SG waves are present in the above 
solutions as the special case tPk = 11'12, Ak = 1/IPk I. 

Figure 1 shows a snapshot of the energy density at time 
t = 0 for the following choice of parameters: (PI,A l,tPI) 
= (1,2,11'12), (P2,A2,tP2) = (2,1,11'14). The phase shift suf

fered by each wave is clearly visible. Note also the highly 
nonlinear superposition in the region of intersection. 

400 

3SO 

300 

250 

200 

150 

100 

50 

t4 
1.2 

1.0 
0.8 

0.6 
0.4 

0.2 
0.0 

-0.2 
-0.4 

-0.6 
-O.B 

One may ask whether internal parameters (which do 
not appear in the single wave energy density) can affect in
teractions. The answer is yes, as the following example will 
show. 

Consider WI and W2, both parallel to the x axis with W2 

stationary, i.e., tPl = tP2 = 11'12, pz = 1. Choose PI = 1/12. 
Then in the above scheme, tanh r = 21213. But now note 
that Wz is equally well described by 

f-t2 = exp(hr/4) , !z(liJz) = exp( - 2/iiA2liJ2 + c2). 

Repeating the calculation (although f-t2 is not now pure 
imaginary, the parameters have been chosen to make the 
algebra as tractable as possible) one finds precisely the same 
asymptotic behavior but with a new phase shift r' given by 
tanh r' =~. 
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FIG. I. A snapshot of the energy density for a two-wave interaction. The flatter wave is stationary along the x axis, and the taller one is moving across it at an 
angle of 45°. 
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FIG. 2. A series of snapshots of the energy density for a wave-lump interaction. The lump is stationary at the origin and the wave is travelling parallel to the y 
axis. Time runs down the page in intervals of 0.5, starting at t = - 1.0. 

2076 J. Math. Phys., Vol. 30. No.9. September 1989 Robert Leese 2076 



                                                                                                                                    

To sum up, as two waves interact, they do not change 
shape or velocity, but each has a phase shift across the region 
of intersection, which may be dependent upon internal pa
rameters. 

V. WAVE-LUMP INTERACTIONS 

For simplicity, we shall only consider the case of a plane 
wave WI incident on a stationary lump L 2 • In terms of the 
input to the two-soliton solution, take the same J-ll and./; as 
in Sec. IV, but now withJ-l2 = i andJ;(lU2) = A2lU2 (A2ER as 
in Sec. II). Again the effects of the interaction are revealed 
by the asymptotic behavior of Po. Note that to look far away 
from L2 in any direction, the relevant limit is lhl-+ 00. One 
finds the following: 

lhl-+oo, 

p. 2Ai(p~ -1)2((pi + 1)2_ (pi -1)2sin2tPtllfJI2 
0-

Pi(lfI1 2 (PI - 1)2 + (PI + 1)2)2 

The physical picture is this: the shape and velocity of the 
wave are the same long before and long after the collision, 
and it suffers no phase shift. The more remarkable feature is 
that the lump remains stationary, but changes its height by a 
factor 

(PI - 1)4/(PI + 1 )4. 

Again the crucial point is the difference of sign in the de
nominators. A little care is needed at this stage, since it is not 
immediately clear which limit of lfll corresponds to 
t -+ - 00 and which to t -+ + 00. The answer to this question 
depends on the size of PI: 

Forlpll<l, {t-+ - oo::::} lfll-+oo, 
t -+ + oo::::} lfll -+ 0; 

{t-+ - oo::::} lfll-+O, 
forlPll>l, 

t -+ + oo::::} lfl I -+ 00 • 

So for PI > 1 or - 1 <PI < 0 the lump decreases in height and 
for PI < - 1 or 0 <PI < 1 it increases in height. Figure 2 
shows a series of snapshots taken at time intervals of 0.5, 
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startmg at t = - 1.0, for the following parameters: tPI = rr/ 
2, A I = 0.1, A2 = 5, and PI = 10. In this case, WI is an SG 
wave. The lump decreases in height by a factor (9/11)4 
(:::::;0.45), but its total energy remains unchanged, equal to 
8rr. 

Perhaps the most puzzling feature is the transverse 
asymmetric kink acquired by the wave as it squashes the 
lump, and which then gradually dies away. It could be that 
this is due somehow to the absence of Lorentz invariance. 
Alternatively, internal parameters at work may provide the 
explanation. In any event, the interaction seems quite unlike 
any occurring in other integrable models. 

VI. CONCLUDING REMARKS 

The modified SU (2) chiral model and the Kadomtsev
Petviashvili (KP) equation have several features in com
mon. The latter also possesses "rational" solitons, which 
look like lumps and "exponential" solitons, which look like 
waves.4 In both models two lumps pass through each other 
without scattering and two waves interact with a phase shift. 
However, the wave-lump interaction of Sec. V seems to have 
no analog in KP; compare, for example, with Fig. 9 of Ref. 4. 

As a final remark, it might be interesting to consider 
letting the field J live in a noncom pact Lie group such as 
SL(2,R) or SL(2,C). This would mean that the energy den
sity is no longer positive definite, but should not rule out 
explicit construction of solutions. An SL(2,R) model is ex
pected to have embedded in it the KdV equation in (1 + 1) 
dimensions, while taking J in SL(2,C) will also include the 
nonlinear Schr6dinger equation.5 Maybe these models will 
exhibit a behavior closer to KP, since they are both, in some 
sense, generalizations of KdV, unlike the current 
SU (2) model. 
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The formulation of the uncertainty principle based on entropy is given with the 
(noncommuting) observables described via positive operator-valued measures. 

I. INTRODUCTION 

In previous papers, Deutsch I and Partovi2 have present
ed, as an alternative to the Heisenberg uncertainty relations, 
an analysis of uncertainty based on the semibounded nature 
of the sum of the entropies of a state f/;, relative to the mea
surement of two observables A,B with discrete spectra I (or 
with discrete partition of continuous spectra2

): 

U(A,B If/;) = SA(f/;) + SB(f/;), 

(1) 
a 

where {I a) } is an orthonormal set of eigenstates of spectral 
projectors of A forming a basis, and similarly for B. In both 
analyses, however, the expression for uncertainty does not 
represent any uncertainty having to do with simultaneous 
measurement of A and B, since in no case does a joint distri
bution for A and B enter their calculations. 

We present here an analysis of such joint measurements 
and the corresponding bounds on uncertainty, based on the 
positive operator-valued measure (POV) or effect formal
ism by means of which the joint distribution for (unsharp) 
measurement of (noncommuting) observables is known to 
be realizable3

-
s and necessary. This analysis simplifies and 

clarifies the essential points in the previous analysis, as well 
as being general enough to lessen the gap known to exist 
between the Deutsch-Partovi lower bound and the actual 
greatest lower bound.6 

II. GENERAL ANALYSIS 

Let (X,~) be a measurable space, and let JY denote the 
Hilbert space on which our quantum system is described. 
[We have in mind that X is the space of experimental out
comes. If one records data as points on a screen, then X ~ lR 2 , 

for example; X may either be a continuum or a discrete set, or 
a little of each.] A POV, or effect valued measure, is a func
tion A from ~ to the positive operators on JY such that 

(2a) 

{~i } any countable disjoint family of measurable sets; 

(b) A(X) = 1. (2b) 

One then has A (~) <;;; 1 for all ~E~. 
For any quantum (statistical) density operator p, 

tr(pA (~») represents the probability for obtaining an experi
mental result in ~. 

If (X,l:,JL) is a measure space [JL a measure on (X,l:)] 
then A will be said to be absolutely continuous with respect 
to JL in the uniform sense (which we denote by A ~JL) iff 
there exists some constant c> 0 such that 

(3) 

The covariant POV's for Weyl systems which describe 
the unsharp simultaneous measurement of position and mo
mentum3 and the covariant POV's for simultaneous mea
surement of different spin ! components3 satisfy absolute 
continuity since they are of the form 

(4) 

where Tx is a bounded operator-valued density. Further
more, these POV's are derived from (covariant) instru
ments in the Davies-Lewis sense,3,7 which from the analysis 
of Ozawa,8 has an interpretation in terms of an interaction 
with a measuring device, so that one might experimentally 
interpret the meaning of these POV's. The set of observables 
simultaneously measurable in terms of the instrument are 
constructed from these POV'S.3,9 In the Weyl case, for exam
ple, (all functions of) the momentum and position operators 
may be so constructed. 3 

Ignoring any physical motivation, one may construct a 
joint POV for any finite collection of observables, commut
ing or not. In fact, there are an uncountable family of such 
POV's; so the existence of joint POV's is not in question. 10 

We shall pursue the simplest case here: We perform a 
countable partition {(~ij) I (iJ)EN XN} of X such that 

A(Uj~ij) =EA.(~i)' ~i = Uj~ij' 
(5) 

define POV'~ dxscribing unsharp measurement of marginal 
observables A,B, respectively. The entropy for the entire 
measurement is then given by 

S(A,B Ip) = -l:ijPij InPij' (6a) 

where 

Pij = tr(A(~ij)p), 
and p is any density operator. Since, for each fixed i, 

l:jPij In Pij<;;;l:jPij In(l:IPlf )' 

we have 
A 

-l:ijPij In Pij> -l:iPi In Pi = S(A Ip), 

where 

Pi = l:jPij = tr(pEA.(~i»)' 
Similarly, 

AA A 

S(A,Blp»S(Blp) = -l:jPjlnPj, 

Pi =tr(pEB(~j»). 

(6b) 
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Thus 
AA A A 

S(A.B Ip»HS(A Ip) + S(B Ip)]· (7) 

But. by the same reasoning. any convex combination of 
A A AA 

SeA Ip) andS(B Ip) gives a lower bound toS(A.B Ip). 
Also. from In(x) <x - 1. we have. for ~;j the sum over 

iJ such that P ij # o. 
- ~ijP ij In Pij + ~ijPij In(PiP;) 

=~;jPij In(PiP;/Pij)<~;jPij(PiP;/Pij -1) 

= ~;j(PiP; -Pij) = 1-1 =0. 

Now 

SeA Ip) +S(E Ip) = - ~i(Pi)lnPi - ~jP; InP; 

= - ~i(~jPij)lnPi - ~i(~jPij)lnP; 

(8) 

From the previous inequality. then. 

seA Ip) + S(E Ip» - ~ijPij In Pij = S(A.E Ip). 

In summary. we have 
A A. A A 

SeA Ip) + S(B Ip»S(A.B Ip) 
A A 

>AS(A Ip) + (1-A)S(B Ip). AE[O.I]. (7') 

For A = ~. this shows the entire relevance of the Deutsch
Partovi functional to the complete expression for entropy for 
joint measurement. The difference between 

A A AA 

SeA Ip) + S(B Ip) and S(A.B Ip) is termed the "correlation 
information." 11 

An alternative derivation of (7) may be made by begin
ning on the right-hand side of (7) and using. for each 
(ioJo)ENXN. 

In[(~.P .. )(~.p .. )]>In[p 2
. ] 

J 'Ii I 1)0 'eJo 

or diagrammatically. the probability squared of falling in the 
intersection of vertical and horizontal slices of X space is 
smaller than the product of the probabilities offalling in the 
slices. Now. 

PiP;<![Pi + Pil 2 

= Htr(p[EA(ai ) +EB(a;>]W 

<l{tr(p[ EA(ai ) + EB(a;>] 2)} 

<lIIEA(ai ) + EB(a;> 112 

= llIA( uja il ) +A( U,-a'-j)112 

= lllA( [uNja ij ] U [u,-a'-j]) +A(aij)11 2 

<lIlA(X) +A(aij)1I2 

<!lIl +A(aij)1I 2 

<!(l + IIA(aij)IW. (9) 

the second inequality coming from a convexity argument. 12 
and the fourth inequality coming from the comparison of the 
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union of a horizontal and a vertical slice of X with all of X. 
Thus. using (8). (9). 

AA A A 

S(A.B Ip»HS(A Ip) + S(B Ip)] 

= - ~~ijPiP; In(PiP;> 

> - ~~ijPiP; In[!(1 + IIA(aij)IWl 

= ~ijPiP;ln[2/(1 + IIA(aij)IIl]· 

In the absolutely continuous case A ~f.L. then 

IIA (aij) II <min{l.cf.L(aij) }=Mij' 

and we obtain 
A A A. A 

S(A.B Ip»HS(A Ip) + S(B Ip)] 

>~ijPiP;ln(2/(1 + Mij»)' 

(10) 

(11 ) 

We state. for emphasis. that so far in the derivation. it 
has not mattered whether A was projection valued or only a 
POV. What is important is that we are dealing explicitly 

with a description of joint measurement of A and E from the 
very begining. and this gives the simple inequality (9). from 
which (11) follows. Furthermore. in the special case that 
A.E commute. all of our results apply. In the case in which 
A.E do not commute. the difference between (10) computed 
with projection-valued measures and (6) computed with the 
true POV measure. the correlation information could be la
belled the "missing information." due to the joint measure
ment. This is interpreted as the loss of information due to the 
unsharpness of the POV measurement. However. since any 
single instrument yields only one measure A. either A is pro
jection valued or not. but not both simultaneously. The miss
ing information seems to be an idealization. not experimen
tally accessible. 

III. COMPARATIVE EXAMPLES 

Next we show that in the examples considered by Par
tovi. (11) provides a higher state independent lower bound 
than in the Partovi analysis. 

The first example is for a measurement of angle and z 
component of angular momentum. Partovi is unclear on 
what (range of) total angular momentum value is being con
sidered. We assume that Jz takes values only in 
{ - m. - m + 1 ..... m}. We also do not know in which sense 
"angle" is an observable. so there may be no physics in this. 
Assuming that there is some angle observable with spectrum 
on the circle. we then take the instrument measure space to 
be 

X = circle X {- m. - m + 1 ..... m}. 

partition the circle into equal segments of angle atjJ: 

f.L(a i ) = atjJ/2II. 

and. in order to be able to resolve down to a single value of 
the angular momentum. 

f.L(a') = (2m + 1)-1, 

a; = circle X {j}, jE{ - m, ... ,m}. 

Then 

Cf.L(aij) = (atjJ/2II)(2m + 1)-1. 
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Choosing Arp so this is < 1, (11) becomes 
AA A A 

S(A,Blp»! [SeA Ip) +S(Blp)] 

>~ .. PP~~( 2 ) 
I.) I) 1 + (ArpI2II)(2m + 1)-1 

= In ( 1 + (ArpI2II~ (2m + 1) -I). (12) 

For (ArpI2II) 1/2 > (ArpI2II)(2m + 1)-1, (12) provides a 
largerlower bound that Partovi's lower bound "( 6 ) ." These 
constraints may be rewritten 

(2m + 1)2> ArpI2II, 

which is always satisfied if (ArpI2II) (2m + 1) -I < 1, which 
we assumed in order to derive (11). Furthermore, in the 
situation in which these constraints on Arp are not satisfied, 
we may use instead 

IIA(ArpXAm) 11<1 
AA A A 

to obtain S(A,B Ip) >~ [SeA Ip) + S(B Ip) ] >0. 
The second example of Partovi was for position X, and 

momentum P. He specified "bins" to be uniformly of size 
AX,AP, respectively. From Ref. 3, we have (for one dimen
sion) 

J.L(AXXAP) = (2IIIi)-IAXAP, c= 1. 

Hence (11) reads 
AA A A 

S(A,Blp»! [SeA Ip) +S(Blp)] 

>~ . .P.P'.ln [ 2 ] 
I.) I) 1 + max{AXAP 12IIIi,l} 

{

I 2 AXAP 1 
= n 1 + AXAP 12IIIi' 2IIIi < 

0, otherwise. 
(13) 

Comparing with Partovi's equation (7), we again have 
achieved a higher lower bound whenever AXAP /2 II Ii < 1. 
Furthermore, the bin widths AX,AP here represent the true 
instrument bin widths, not theoretical estimates, variances, 
etc. 

An analysis of (1) under joint measurement of mom en
tum and position in the stochastic quantum mechanics for
malism has been carried out by Grabowski 13 and Busch and 
Lahti. 14 The more general idea of using the POV formalism 
to describe entropy and information was proposed by Ingar
den. 15 What is being presented here is a realization of the 
general ideas presented by Ingarden, and an extension of the 
analysis of Grabowski, Busch, and Lahti. 

IV. OBTAINING NEW LOWER BOUNDS 

The results (10), (11) were obtained in a derivation 
parallel to the analysis of Partovi so that (12) and (13) 
could be derived for comparison. Even at this level, the re
sults obtained from absolutely continuous POV's are better 
and more easily derived since no eigenstates and eigenvalues 
need be constructed. Since, however, S(A,E Ip) defined by 
(6) is the quantum entropy for joint measurement of A,E 
and not (1), we should and will analyze (6) directly. We 
may, for given A,E (a) find a lower bound for S(A,B Ip), 
which is p independent and test to see if this lower bound is 
attainable; (b) find, by variational calculus, p, which opti-
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mizes S(A,E Ip) and find the minimum value if desired; (c) 
vary the POV (the instrument), which givesA,Eas margin
als, and for fixed p find a p dependent lower bound; (d) other 
procedures. 

We shall consider (a), (b) only. For (a) we have simply 

S(A,E Ip) >~i.jPij In [(sup;, j'Pi' j' ) -I] 

= In (SUPiJPiJ)-I, (14) 
which is a state-dependent lower bound. [One could ask 
which states achieve equality in this inequality.] 

For A <J.L we have, for cJ.L(Ai}) < 1, 

Pi} = tr(pA (Ai) ) )<tr(pcJ.L (Aij ») = CJ.L (Aij ); 

so (14) becomes 
AA I 

S(A,B Ip»ln(suPi.jCJ.L(Aij »)- , (15) 

a state-independent lower bound. For a uniform partition 
J.L(Ai}) = constant = K of the instrument indicator space X, 
this becomes 

AA 

S(A,B Ip»ln(cK)-I. (16) 

For an example of (16), for the position-momentum 
joint POV with bins of size AX,AP, this reads, for 
AXAP<2IIIi, 

S(X,P Ip»ln [2IIliIAXAP]. (17) 

We see from (17) that for choices AXAP chosen arbi
trary small, In (2IIlil AXAP) becomes arbitrarily large. 
Likewise in (16) choosing K arbitrarily small. 

For nonuniform partitions of the instrument indicator 
space, we could use Pi} <cJ.L (Aij ) in (6) to obtain the state
independent bound 

S(A,E Ip» - ~ij'cJ.L(Aij)ln(cJ.L(Aij»)' (18) 

which does not seem to have appeared in the literature. 
AA 

Turning to process (b), we shall optimize S(A,B Ip) by 
variations inp. The general theory l6.17 for this process then 
lea.5!s to equ~tions for p. [The corresponding case for 
SeA Ip) + S(B Ip) has already been solved and ana
lyzed. 13,15 ] We shall treat only one simple case, one in which 

A A 

the ranges of A and B are both doubletons, namely (un-
sharp) spin 1/2 observables oriented in different directions. 

V. AN EXAMPLE 

Let a- = (0"1,0"2,0"3) be a set of (Pauli) spin matrices and 
xER3. Set x·a- = XIO"I + XzO"2 + X 30"3' Then for Ilxll = 1, 
Tx =!( 1 + x·a-) is a projection operator having eigenstates 
of spin in direction X. The covariant POV for such a system 
under the group of rotations of the sphere is given by 

A(A) = 1 TxdJ.L(x), (19) 

where J.L is the rotation invariant measure on the Stokes 
sphere normalized by J.L (sphere) = 2. Hence 

A(A) = !(.u(A) 1 + NT), 

where 

r= lXdJ.L(X). (20) 

Let us now cut the Stokes sphere into four regions by 
equatorial planes with normals NI ,N2, respectively, 
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NI·N2 = cos (J. Label the four regions counterclockwise by 
a l ,a2,a3,a4, with a l ,a3 "the rind of watermelon slices" of 
angular opening (J, and a 2,a4 of angular opening n - (J. By 
symmetry of the measure /l, then from (19), the A (a;) are 
of the form 

and by direct integration 

I ~ I 1. (J r l =-Sln-, 
2 2 

I~ I 1. ( n - (J) 1 (J r2 =-Sln --- =-cos-. 
2 2 2 2 

(2Ia) 

(2Ib) 

(21c) 

(This is most easily comRuted)n the coordinate system in 
which z is in the direction NI X N2 , and the x and y axes are in 

A A 

planes bisecting the angles formed by N I ,N2.) By symmetry, 
one also has/l(a l ) =/l(a3 ),/l(a2 ) =/l(a4 ), "i./l(a;) = 2, 
/l(a l )I/l(a2 ) = (J I(n - (J). Thus 

/l(a l ) = (J/n, 

/l(a 2 ) = (n - (J)/IT. 

We therefore obtain the POV: 

A( A) (J 1 1. (J A ~ 
~I =- +-slO-rl·O" 

2IT 4 2 

A( A) IT-(Jl 1 (JA~ 
~2 = --- + - cos - r2·0" 

2n 4 2 

A A (Jl 1. (JA~ 
(22) 

(~3) =- --SlO-rl·O" 
2IT 4 2 

A
A IT-(Jl 1 (JA~ 

(~4) = --- - - cos - r2·0" 
2n 4 2 

with 71072 = O. 
The marginal observables corresponding to adjacent 

slices are 

{ 

EA(Up) =A(a l ) +A(a2 ) =~(1+!NI.u) } 
EA(down) =A(a3 ) +A(a4 ) =!(1-~NI.u) 

EB(Up) =A(a2 ) +A(a3 ) =!(1+!N2.u) , 

EB(down) =A(a4 ) +A(a l ) =!(1-!N2.u) 
(23) 

the desired o~er.xables for measurement of (unsharp) spin 
in directions N I ,N2, respectively. 

We now optimize the entropy for the POV A. In gen
eral,15 ifJis any differentiable function of n real variables, if 
A; are bounded, self-adjoint operators, if p is any quantum 
density, and 

F(p) = J( (AI) p, ... , (An) p), 

(Aj)p = Tr(pA j ), 

then F is locally extremal only on states satisfying 
n 

L aJ( (AI)p, ... ,(An)p )(A; - (A;)pl)p = O. 
;=1 

Furthermore, the following must also hold: 
n 

L aJ«AI)p, ... ,(An)p)«Ak - (Ak)pl) 
;=1 

X(A j - (Aj)pl»p =0, 

where either all aJvanish or else 
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(24) 

(25) 

(26) 

det( «Ak - (A k) pl)(A; - (A;) p 1» p) = O. (27) 

Extrema of F may also occur at the extrema of the numerical 
range of the AI, ... ,An. 

For us here, A; = A(a;), and 

AA 4 

F(p) = S(A,B Ip) = - L Pk In Pk , (28) 
k=1 

where we have abbreviated Pk = (A (a k » p' Thus local ex
trema may occur under the condition 

4 

L (1 +lnPk)[A(ad -Pkl]p=O. (29a) 
k=1 

Since 1:t = I A (a k ) = 1, then "i.t = 1 Pk = 1, and (29a) re
duces to 

(29b) 

As pointed out in Ref. 15, this is equivalent to solving 
4 

L [bkA(ak ) -Al]p=O, (30) 
k=1 

where { bk } and A are constants, since these constants are 
then determined as functions of the covariances of the 
A (a k ) in statep as long as the determinant of the covariance 
matrix vanishes. Alternatively, we can check that 

where 

Pk = Tr(A(ak)p)· 

From (22), (30) becomes 

[col + CIO"I + C20"2] p = 0, 

where 

(31) 

(32) 

(33) 

Co = (b l - b2 + b3 - b4) «(J 12n) + !(b2 + b4) - A, 

(34a) 

C1 = !(b l - b3 )sin «(J 12), (34b) 

C2 = !(b2 - b4 )cos «(J 12), 

0"1 = 'I'U, 0"2 = '2·U. 

Solutions to (33) are given byl7 

p = ! [1 _.s. 0"1 - C2 0"2] 
Co Co 

under the necessary condition 

c6=ci+ci, 

since under this constraint, (33) reads 

(34c) 

(35) 

(36) 

(37) 

[1 ± (cI/~ci + c~ )0"1 + (c2/~ci + c~ )0"2] p = O. (33') 

This is equivalent to 

T ±zP=O, 

where 

z = (cI/~ci + c~ )'1 + (c2/~ci + d );'2; 

so 

p= T =+,z' 
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Thus local optimization occurs on a pure state. 
From (22), (31), (32), and (36) we have 

b P e _ CI . e e- '= I =-+-sm-, 
2n 4co 2 

_ b (n - e) _ C2 e 
e '=P2 = +-cos-, 

2n 4co 2 

e - b, = P3 = ~ ± ~ sin ~, 
2n 4co 2 

(38) 

_ b (n - e) c2 e 
e 4=P4 = ±-cos-, 

2n 4co 2 
which along with (31), (34), and (37) are to be solved si
multaneously. Division of the first and third, and ofthe sec
ond and fourth equations in (38), and using (34) decouples 
these equations modulo equation (37). These two equations, 
after change of variables, may be put in the form 

exp(C;I) = (1 + 1)/(1 - I), i = 1,2, 

or equivalently 

tan2 '" = exp( - C; cos (2",)}. 

Equation (37) constrains the two resulting I; to lie on an 
ellipse, but the problem is now susceptible to numerical solu
tion, given e. 

Alternatively, we may use the procedure outlined in 
Ref. 16, namely, multiply (30) by (A(il;) -P;1} and take 
the trace. This yields four equations in bk with coefficients 
given by covariances: 

Cijb;=O, 

Cij = Tr([A(il;) - P;l] [A(ilj ) - Pjl] pl. 
From (33), (34) we see that Cij involves the bk ; the resulting 
equations are again transcendental. 

In the case e = n/2 by symmetry C I = ± C2 and z be
comes simply 

(33"') 

From this everything can be computed easily, for this special 
case. 

The remaining extremal solutions occur on states corre
sponding to the boundary of the numerical range of the 
A(il;). Now 

A( A ) ell. e ~ ~ 
loll = - + - sm - rl'u 

2n 4 2 

= ~ (T + T ) + ~ sin ~ (T - T ) 2n r, - r, 4 2 r, - r, 

[ e 1. e]T = -+-sm-
2n 4 2 r, 

+ [ ~ - ~ sin~] T _ . 
2n 4 2 r, 

Since any state p may be written in the form 

p=!(1+z.cT), Ilzll<l, 

and, for T" a projection, 

Tr( pT,,) = Tr( T" pT,,) =!(1 + z'u)Tr( T,,) 

=!(1 + z'u), 
we obtain 
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(A(il l » = [~+ ~ (Sin ~)] Tr( pTr ) 
2n 4 2 ' 

+ [ ~ - ~ (sin ~)] Tr( pT _ ) 
2n 4 2 ~ 

Similarly, 

(A(il2 »p= n-e +~(cos~)z.r2' 
2n 4 2 

(A(il 3 »p = ~ - ~ (sin~) z'rl , 
2n 4 2 

(A (il4 »p = n-e -~(cos~)z.r2' 
2n 4 2 

We may compute S as a function of z and optimize in the 
usual R3 form. For our present purposes, we see that the 
boundary of the numerical range of the A (il;) is obtained 
only if Ilzll = 1; i.e., p is again a pure state. Optimizing sub
ject to this constraint leads to precisely the same transcen
dental equations obtained previously when one chooses a 
coordinate system such that ZI = z'r l , Z2 = z·r2• (Recall 
rl 'r2 = 0.) In this system, Z3 must vanish in order to satisfy 
the optimization and the problem is a constrained two-di
mensional problem, which we also leave for numerical com
putation once e is given. The special case e = n/2 can again 
be solved with ease. 
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Bounds are proved for the C*-algebraic transition probability PA (m,v) between the abstract 
ground state v with respect to a symmetric subspace N of a unital C * algebra A and a state m 
with the restriction miN = O"IN to N for an arbitrarily given, but fixed state 0". A is assumed to 
be the unital C * -algebra generated by N. The results are specified in the case where A is a 
subalgebra of a uN algebra in standard form and N is dimensionally finite. Under these 
assumptions, the relationships of the algebraic transition probability to the notion of the 
(square of the) overlap integral known in quantum physics are clearly established. The general 
results are used to treat the standard problem of finding upper and lower bounds to the overlap 
in a quantum mechanical context. The best bounds are found and their properties discussed. 

I. INTRODUCTION 

Let A be a C * algebra with unit 1 and topological dual 
space A * and a set of states SeA) = {mEA *: m(x*x);;;,O, 
'it ~EA, m (l) = I}. There exists a generalization of the no
tion of the quantum mechanical transition probability 
I ('I', <1» 12 between the state vectors '1', <l>EH to a general situ
ation with two mixed states over some C * algebra of observa
bles [H is the Hilbert space of the quantum system consid
ered and ( , ) is the scalar product; scalar products are linear 
in the second argument throughout this paper] . 

The C *-algebraic transition probability in question was 
proposed by Uhlmann 1 and its definition is as follows. Let 
{1T,H} be a unital * representation of A on a Hilbert space H. 
For mES(A) we define a set S( 1T,m) as S( 1T,m) = {'I'EH: 
m(x) = ('I',1T(X) '1'), 'itxEA}. The representation 1T is called 
m,O" admissible if both S( 1T,m) and S( 1T,0") are non void. The 
C *-algebraic transition probability PA (m,O") between m, 
uES(A) is now given by 

PA (m,O") = sup{ 1('1',<1> W:'I'ES( 1T,m ),<I>ES( 1T,0"), 

m,O" admissible 1T}. 

Here P is a mathematically well-investigated object; many 
important properties of the functor P are known. Especially, 
for the vector states m'l' = ('1',(. )'1') and m<l> = (<1>,(' )<1» 
over A = B(H) (the algebra of bounded linear operators 
over the Hilbert space H), one finds that 
PB(H) (m'l' ,m<l» = 1('1',<1» 12, where the latter gives support 
to a heuristic interpretation of P as a "generalized" transi
tion probability if seen in the context of the algebraic ap
proach to quantum statistical physics and quantum field the
ory. We note that P is only one of the possible 
generalizations; however, the functor P plays some distin
guished role among all the other possible functor provided 
certain additional (but sound) conditions are imposed on a 
transition probability, cf. Refs. 2 and 3. For a short survey on 
generalized transition probabilities and the problems related 
to them we refer to Ref. 4 and the references therein. 

The aim of this article is twofold. First, we shall derive 
some new formulas for P in a particular situation of states 

over a C * algebra. Second, in specializing the context, the 
formulas derived are used in favor of thoroughly analyzing a 
standard exercise in quantum mechanics once again, al
though from a possibly new point of view. The class of prob
lems under discussion is described best by one of the charac
teristic questions or exercises to be raised in this field: Give 
an evaluation of the accuracy with which a trial function 'I' 
approximates the wavefunction <I> (i.e., an eigenfunction to a 
nondegenerate eigenvalue of the Hamiltonian, e.g., the 
ground state) if only certain information on the system is 
available. 

Characteristic examples of such information are the 
spectrum of the Hamiltonian (the energy spectrum, which is 
known by experience) and the expectation value and vari
ance of the energy in the trial state (provided by a series of 
experiments when the system is prepared into the trial 
state). Note that the problem occurs since the true wave
function <I> is not (exactly) known in many cases. Quantita
tively, the overlap integral S = I ('1',<1» I provides a criterion 
of accuracy. Hence, the problem is to find upper and lower 
bounds to S which read in terms of the information available. 
In this context, it is also of interest whether or not the possi
bly derived bounds appear to be the best ones under the suit
able conditions to be imposed, etc. At this moment, let us be 
content with giving these few explanations. We no longer 
discuss the physical context; instead, for more details on this 
field of application the reader is referred to a quite detailed 
survey paper by Weinhold5 and the textbook of Thirring6 
(Sec. 3.5 of Ref. 6). Especially, the references listed in Ref. 5 
provide a good source to the background of the problem 
before 1970. The paper,5 the textbook,6 and a more recent 
research paper7 demonstrate characteristic methods of at
tacking this interesting problem and provide some feeling for 
the widespread tools common in this field. The question as to 
whether or not generalized transition probabilities could 
provide some new insights into the accuracy problem was 
first raised by ThirringB in 1983 and then was forgotten for 
almost five years. In some sense; the applicative part of this 
paper might be taken as an answer (very late, indeed) to this 
question. 
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II. SOME FACTS ON GENERALIZED TRANSITION 
PROBABILITIES 

In this section, we start placing at our disposal some 
facts about P which will be widely used throughout this in
vestigation. Assume liJ, aES(A) and {1T,H} to be an liJ,U
admissible * representation of the C * algebra A over the Hil
bert space H. 

(i) For any <l>ES( 1T,U) we have PA (liJ,u) 
= sup{1 ('1',<1»12: 'l'ES(1T,liJ)}. 

(ii) PA (liJ,U) = inf{w(x)u(x- I ): xEA, x>O, invert
ible}. 

(iii) When B C A is a unital C * subalgebra of A we find 
that PB (liJIB,ulE»PA (liJ,u) [riB is the restriction of 
7ES(A) onto B]. 

(iv) When u: A ..... B is a * isomorphism of A onto the C * 
algebra B and if liJ', u' are those states in S(E) such that 
liJ = liJ'· U and u = u'· u, we have PA (liJ,u) = PB (liJ',u'). 

(v) Suppose A is a C * algebra of bounded linear opera
tors over some Hilbert space K. Assume liJ, u are states that 
have the normal extensions liJ', u' onto the vN algebra M 
generated by A,M = A" [doublecommutant withinB(K)]. 
Then PM (liJ', u') = PA (liJ,u). 

(vi) Let pEA be a minimal orthoprojection, i.e., 
pAp = Cpo Let pxp = v(x)p, with V(X)EC. Then the map 
v: x ..... vex )EC defines a state vES(A) with v(p) = 1 and we 
have PA (liJ,v) = liJ(p) for any state liJES(A). 

The crucial assertions are (i) and (ii) and the remaining 
ones are more or less direct consequences of them. For 
proofs we refer to Corollary 1, Corollary 2, and Theorem 3 of 
Ref. 9. Especially, (vi) is a special case of a situation dealt 
with in Ref. 9 [cf. Eq. (8) of Ref. 9]. Since (vi) is a key result 
for all that follows, we shall include a derivation of this use
ful fact. 

Proof of {vi}: Suppose A,p, and v as in the premises of 
(vi) and let Xn EA be defined as Xn = P + npl for any natu
ral n. Thenxn is positive and invertible for any n. Hence, (ii) 
tells us that PA (liJ,v)';;;;liJ(xn-1)v(xn ) = liJ(xn-

l ) = liJ(p) 

+ (liJ(pl)/nl, 'iln, i.e., PA (liJ,v)';;;;liJ(p) follows. Especially, 
whenever liJ(p) = 0, PA (liJ,v) = liJ(p) = 0 also follows. In 
order to prove (vi), what remains is to show that 
PA (liJ,v»liJ(p) in the case of liJ(p) #0. Assume liJ(p) #0 
and let {1T,H,O} be the liJ-GNS (Gelfand-Naimark-Segal) 
representation of A, i.e., a cyclic representation 1T with 
1T(A)O dense in Hand liJ(x) = (O,1T(x)OI, 'ilxEA. We de
fine <I> as <I> = liJ (p) - 1/21T(p) O. Then <I> is a unit vector of H 
and (<I>,1T(x)<I>1 = liJ(p) -1(O,1T(pxp)OI = liJ(p) -lliJ(pXp) 
=liJ(p)-IV(X)liJ(p) = vex) for 'ilxEA. Hence, <l>ES(1T,V). 

Since OES(1T,liJ), (i) tells us that PA (liJ,v»I(O,<I»1 2 

= I(O,1T(p ) °lliJ (p ) -1/21 2 = IliJ(p) 1/212 = liJ(p) and the 
proof is complete. 0 

III. ALGEBRAIC CONSIDERATIONS 

In this section we begin setting up the kinds of problems 
upon which the explained application will be based. Let Nbe 
a symmetric subspace of our unital C * algebra A, i.e., when
ever xEN, x*EN also. Henceforth it is assumed that A is gen
erated by Nand 1 as a C * algebra, i.e., A = C * ({ I,N}) is 
supposed. In case A is a C * algebra of bounded linear opera
tors over some Hilbert space H, the enveloping vN algebra M 
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of A , which isM = A" = {N}" CB(H), will also be of inter
est. A state vES(A) is said to be a ground state (of N) if 
v(x*x) = 0, 'ilxEN and in case we are over some Hilbert 
space a ground state v is called normal ground state if v has a 
normal extension onto M. In the latter case, the (uniquely 
determined) normal extension tacitly will also be named V. 

Lemma 3.1: For a given linear subspace of A there exists 
at most one ground state V. If a ground state exists it is a 
multiplicative state, i.e., v(xy) = v(x)v(y), 'ilx, yEA. 

Proof Suppose a ground state v to exist. Then Iv 
= {xEA: v(x*x) = O} is a uniformly closed left ideal in A. 

Let F(N) be the algebra of finite, complex linear combina
tions of products of finitely many elements of N. Clearly, the 
subset B = CI + F(N) is a unital * subalgebra of A being 
uniformly dense in A. Moreover, F(N) Clv' Let xEA and let 
AnEC, YnEF(N) be chosen in such a way that x = limn 
X (An 1 + Yn ). Then vex) = limn (An + v(Yn ) I = limn An 
since Yn EF(N) and v is a ground state. Hence, Un} is a 
sequence of elements with the limit Y 
= limn (xn -An I) = x - vex) I. 

Therefore,A = CI + F(N)eI' withF(N)eI = normclo
sure of F(N), and each xEA decomposes as x = vex) 1 + Y 
for some yEF(N)eI' Suppose yEiv; Y = v(y) 1 + y' is a de
composition of y, as previously explained. Since Iv C ker ( v), 

Y = y'EF(N)eI' i.e., Iv CF(N)eI' According to the above 
mentioned F(N)Clv, Iv being closed gives F(N)eI Clv' 
Hence, Iv = F(N)c!' The latter also has to hold for any pos
sibly existing ground state v'; hence, Iv = Iv" For xEA, 
which decomposes asx = v(x)l + yfor someyEiv, we thus 
obtain v'(x) = vex) + v'(y) = vex) since yEiv' as well. 
The latter is true for any xEA; hence, v = v' has to be fol
lowed. Thus the ground state is unique if it exists. Finally, 
since Iv is symmetric, it is even a two-sided ideal in A. Ac
cording to A = Cl + Iv, we have C~A /Iv and since 
Iv = ker (v) the multiplicative behavior finally becomes ob
vious. 0 

Let us now raise the main question of this paper. Sup
pose N has a ground state v (which then is unique by Lemma 
4.1) and assume another state uES(A) is given. What can be 
said about the transition probability PA (liJ, v) between v and 
another state liJ if it is known to us only that liJlN = ulN? 
Obviously, the problem formulated is an algebraic carica
ture of the sort of questions we have discussed briefly in Sec. 
n in a quantum mechanical context. A first answer to the 
question is given in the following form. 

Theorem 3.2: Let v be the ground state of N. For any 
uES(A) the following formula holds: 

sup{PA (liJ,v):liJES(A), liJlN = ulN} 

= inf{1 + u(x):x> - 1,xEN}. (1) 

Proof From the proof of Lemma 4.1 we know that 
A = Cl + F(N)eI' Let {1T,H} be the universal representa
tion of A over the Hilbert space H. Denote by v' the unique 
normal state over the universal enveloping vN algebra 
A ** = 1T(A)" such that V"1T = V. Obviously, v' 11T(A) is the 
ground state for 1T(N) over 1T(A). Let p be the support pro
jection of v' within A **. Since 1T is an * isometry, we have 
1T(A) = Cl + F(1T(N) lei' LetF** betheclosureofF(1T(N) I 
with respect to the weak or strong operator topology within 
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B(H). Then it is easily seen that A ** = CI + F ** and every 
xEA ** decomposes as x = v'(x)l + y with yEF**. Since 
v'(x*x) = 0 for any XE1T(N), px*xp = 0 has to hold. Since 
1T(N) is symmetric,px = xp = 0, 'lifxE1T(N). The latter im
plies thatpF(1T(N») = F(1T(N»)P = {O}. By closure we have 
pF** = F**p = {o}; hence,pis a central projection of A ** 
and A ** decomposes as A ** = Cp + A **p\ i.e., 

A ** = Cp + F**, (2) 

wherep is a minimal projection of A ** withpxp = v'(x)p, 
'lifxEA **. We are allowed to apply (vi), thus obtaining 

PA**(r,v') =r(p), 'lif7ES(A**). (3) 

Let us look at the symmetric linear subspace R of 
1T(A) eA ** which is spanned by I and 1T(N). Then, because 
IER is an inner point of the positive cone with respect to the 
Hermitian part of A ** and since o'IR, with 0' the unique 
normal state of A ** with U"1T = U, is a positive linear form 
on R, the well-known Krein extension theorem (cf., e.g., 
Ref. 10) for the extension of positive linear forms applies in 
our situation, with the result that 

sup{P(p):,uES(A **),,uIR = o'IR} 

= inf{u'(x):p<x, xER}. (4) 

Let x = x* be an element of R. Then x = Al + y for some 
AER and y = y*, yE1T(N). It is easily recognized that 
p<Al + y iff A;;d and 0<..1,1 + y, i.e., p<AI + y iff (y/ 
A) > - 1 and A> 1. Our conclusion is now as follows: 

inf{u'(x): p<x,xER} 

=infA{1 +u'(x): XE1T(N),x> -I,A>}} 

= inf{1 + o'(x): x> - 1, XE1T(N)} 

= inf{1 + u(y): yEN,y> -I}, (5) 

where we used that 1Tis an * isometry. Now, by (iii) and (iv) 
we infer for 'Iif 7ES(A **) that 

PA (7"1T,V) = P1T(A) (rl1T(A), V'I1T(A»)>P~*(r,v'). (6) 

For each wES(A) with wiN = ulN we have W'I1T(N) 
= U'I1T(N), with w' the unique normal state on A ** such 

that w = W' '1T. On the other hand, for any 7ES(A **) with 
rl1T(N) = U'I1T(N) we have 7"trES(A) with 7"1TIN = uiN. 
Therefore, we conclude from (3)-(6) that, 

sup{PA (w,v): wES(A),wIN = ulN} 

>inf{1 + u(y):yEN,y> -I}. (7) 

LetyEN,y> -1. Thenx(E) = I + (1- E)yis positive and 
invertible in A for any E with 0 < E < 1. From Lemma 3.1 we 
learned that a ground state is multiplicative; hence, 
v(X(E) -1) = v(X(E) )-1 = 1 as a result of v(y) = O. It fol
lows that W(X(E) )v(X(E) -1) = 1 + (1 - E)W(y), 'lifE with 0 
< E < 1. Hence, limElo W(X(E) )v(X(E) -1) = 1 + w(y) and 
(ii) proves that P A (w, v) < 1 + w (y). Since the latter is true 
foranyyEN,y> -I,weinferPA(w,v)<inf{1 +u(y):yEN, 
y> - I} provided that wiN = ulN is fulfilled. Hence, 

sup{PA (w,v): wES(A),wIN = ulN} 

<inf{1 + u(y):yEN, y> - n. 
According to the above equation and (7) we see that (1) is 
true. 0 
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Let us assume now that N is a subspace of bounded lin
ear operators over some Hilbert space. Then let us adopt the 
additional notions and notations concerning such a situa
tion, as outlined at the beginning of this section. In line with 
this, we assume that a ground state v exists and we suppose v 
is normal. Then a support of v within M exists. We call this 
projection p. Now, the relationships between N, v, p, A, 
M = A " are exactly the same as those we have seen between 
1T(N), v', p, 1T(A), and A ** in the last proof. Hence, we 
might take the latter as a model. Then by literally translating 
all formulas into the new situation, the repetition of the argu
ments successfully applied in the last proof will also work in 
the new situation at hand. The result is that p appears to be a 
central projection of M which is minimal in M, i.e., 
M = Cp + Mpl , and Mpl is the weak or strong closure of 
F(N) in B(H). Moreover, pxp = v(x)p for xEM and (vi) 
becomes applicable. Thus extension arguments may be ap
plied in the same manner and at the end an analogon of ( 4 ) is 
obtained by saying that 

sup {PM (w,v): wES(M) , wiN = ulN} 

= inf{1 + u(y):y> -1, yEN}, (8) 

where u might be thought of as a fixed state of A as well as a 
state over M. This follows since NeA eM: only the restric
tion onto N of u figures in all the relevant formulas. Finally, 
Eq. (8), in view of Theorem 3.2, results in the following 
Corollary. 

Corollary 3.3: For a normal ground state v we have that 

sup{PM (w,v): wES(M) , wiN = ulN} 

= inf{1 + u(y):y> - I,yEN} 

= SUP{PA (w,v): wES(A), wiN = uIN}, 

for any uES(M). 

Now we are going to establish an assertion which is in 
some sense complementary to the preceding one, i.e., our 
basic assumption that v be a normal ground state of N with 
support p in M. Let us define the set r(N) = {yEN: 
spec(y) \ {o} e [1,00 ),y has full support inN}U{I}, where 
the support of N is the minimal projection q of the vN algebra 
M such that qy = y for any yEN. Hence, yEN has full support 
iff the support of the individual y equals this q. 

Corollary 3.4: For each uES(M) the following formula 
holds: 

inf{PM(w,v): wES(M),wIN = ulN} 

= sup{1 - u(Y):yEr(N)}. (9) 

Proof' Proceeding further in accordance with the re
marks we made in preparing the arguments for Corollary 
3.3, we note that the consequences of the extension theorem 
have not been used exhaustively. Until now, we have been 
using the information on the maximal value,u (p), which can 
be attained on the support p of v by a linear form ,uES(M) 
with ,u I N = ul N. Another direction of application provides 
the minimal value a positive linear form, with the same re
striction on N as u can take on p. This information reads as 

inf{p(p): ,uES(M),,u IN = ulN} 
= sup{u(x) :p>x, xER}, 

P. M. Alberti and V. Heinemann 
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with R = [I,N]. Now, let x = x*ER and x = Al + y, with 
AeR and y = y*eN. Then x<.p iff ..1<.1 and y<. - ApI. Sup
pose first that ..1<.0. Thena(y)<.IA I and a(x) <...1 + 1..1 I =0 
follows. Note that for yeN with y>pl we see 
..1(1 - y) <'Ap<p for any Ae [0,1 ]. Therefore, in the case 
where 

{yeN: y offull support, spec(y)\ {ole [1,00 )} 

is non void we may write that sup{a(x): p>x,xER} 
= supA{l - a(y): y>p\ 0<...1<. 1 ,yeN} = sup{l -a(y):ye 
r(N)}. Referring to the definition of r(N) above, we re
mark that pI is the support of N in M [since Mpi = weak 
closure of F(N)]. We note that I has been included into the 
definition in order to deal with the case where the set {yeN: y 
has full support, spec(y) \. {ole [l,oo)} is void. In the latter 
case, sup{a(x): p>x, xER} amounts to zero, necessarily; 
this case can now be included formally by realizing 
o = 1 - a( I). Taking into account all these facts and re
specting (vi), (10) will imply the asserted equation (9). 0 

IV. MINIMAX FORMULAS FOR THE "TRANSITION" 
INTO A NORMAL GROUND STATE OVER A FINITE
DIMENSIONAL SUBSPACE 

In this section we wish to derive some consequences of 
the results obtained in the particularly important case when 
N is of finite dimension. In doing so we prepare for the appli
cations we have in mind. Throughout this section we shall 
suppose that HI, ... ,HneB(H) are bounded, self-adjoint lin
ear operators (#0) over the Hilbert space H. We suppose 
that N = [{Hk }] has a normal ground state v with the sup
port projection p. We note that for f-l to be a ground state for 
N in this case it is sufficient to have f-l(Hi) = 0, Vk. The 
normal state space over the uN algebra M = {HI, ... ,Hn}" be 
So(M). We define the numerical range r of states with re
spect to the N generating family of operators as 
r = {teRn :3aeS(M) witha(Hk ) = tk,Vk}. Moreover, we 
define a function / on r by Jet) =inf{l +~rktk: 
~rkHk > - I}. The set of all reRn such that ~rkHk > - 1 
will be named A. 

Proposition 4.1: For any ter we have 

infE>o sup {PM (w,v):weSo(M),lw(Hk ) - tk I<.E} =/(t). 
(11 ) 

Proof Let ter be given and let aeS(M) be such that 
tk = a(Hk ) for all k. Suppose E> 0 is fixed. Then we may 
choose reA and 0 (E) > 0, with E> 0 (E) such that 

ISk - tk I <.O(E), Vk implies 1 + ~rksk <./(t) + E. (12) 

The set of all states r such that r(Hk ) = tk for any k is non 
void by assumption on t and w* compact. Hence, we find 
such r with rep) = sup{w(p):wIN = aIN}. As a result of 
Corollary 3.3 and (vi) we have 

rep) = PM (r,v) =/(t) =/(r(HI),··.,r(Hn »). (13) 

For a > 0, let Ka = -(ueSo(M): If-l (Hk ) - tk I <.a}. The nor
mal state space is w* dense within all states. Thus there is 
weSo(M) such that 

(14) 

ForleA we always have p<. I + ~lkHk' Hence, by (12), 
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a(p)<.l + ~rka(Hk ) <./(t) + E, VaeK{j(E)' (15) 

In view of ( 13 )-(15) we see that 

Jet) - E<.r(p) - E<'W(p) <.sup{a(p): aeK{j(E) }<./(t) + E. 
(16) 

We define a function Z over R+ \. {o} by z(r) = sup{a(p): 
aeKr }. Obviously, z decreases when r is tending to zero. 
From (16) we infer Vet) - z(o(E»)1<.2E and since for EW, 
O(E) !O,f(t) = infE>oz(E) has to be followed. However, the 
latter, with regard to (vi) and the definition of z, yields 
(11). 0 

Now, let a set Il. be given by 

Il. = {reRn: ~rkHk has full support, 

spec(~rkHk)\ {ole [1,00 )}. 
In the case where Il. is non void, we define a function u on r 
by setting u (t) = sup{ 1 - ~t k rk: rell.} for any ter and let 
g = max{u,O}. In the case where Il. is void, g = 0 is set on r. 
Then for aeS(M), we see that 

sup{l-a(y):yer(N)}=g(t), withtk =a(Hk ), Vk. 
(17) 

Proposition 4.2: For any ter we have 

SUPE>O inf{PM (w,v): weSo(M),lw(Hk ) - tk I <.E} = get). 
(18) 

Proof In the case whereg = 0 the assertion follows from 
( 17) and (9). Thus we may suppose henceforth that Il. is 
nonvoid. We will treat the case of ter with u(t) > O. By 
Corollary 3.4 and (vi) we have 

inf{PM (w,v): weS(M),wIN = alN} 
= inf{w(p): weS(M) , wiN = alN} = u(t). 

Let E> 0 be fixed. We can choose 0 (E) > 0 and rell. such that 
E> O(E) and 1 - ~rksk >u(t) - E for any s with 
ISk - tk I <.O(E). Let r be a state such that rep) = u(t) with 
tk = r(Hk ), Vk. Take a normal state w such that WeK{j(E) 
(whose set is defined as in the proof of Proposition 4.1) and 
Iw(p) - r(p)l<.o(E).1t follows that w(p»u(s»u(t) - E 
with Sk = w(Hk ). On the other hand, f-l(p) 
>u{Jt (HI) , ... ,f-l (Hn ») holds for every state f-l by (9) and the 
fact that sup{l - f-l(y): yer(N)}>u{f..t(H1), ... ,f-l(Hn ». 
Thus 

u(t) + E = rep) + E>w(p»inf{p(p):f-leK{j(E)} 

>u(t) - E. (19) 

Let z(r) = inf{p(p): f-leK,}. Here z(r) increases when r 
tends to zero. Since (19) can be derived for any E> 0 and 
O(E) W can be derived for E!O, we see that sUPE> 0 inf{p(p): 
f-leKE} = u(t) =g(t) in this case. According to (vi) this 
will imply (18). In the remaining case with g( t) = 0, by the 
definition of g, Corollary 3.4, and (17) we have 

inf{PM (w,v): weS(M) , wiN = alN} 
= inf{w(p):weS(M),wIN = alN} = O. 

Hence, we find TeS(M) with r(Hk ) = tk forany ksuch that 
rep) = O. Since the normal state space is w* dense in SCM), 
obviously inf{p(p): f-leKE} = O. Thus according to (vi), 
( 18) follows in this case as well. 0 
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V. PREPARATIONS FOR A PHYSICALLY RELEVANT 
SITUATION: BOUNDS FOR THE TRANSITION INTO A 
JOINT EIGENSTATE 

Throughout this section we suppose Mo to be a uN alge
bra over a Hilbert space H, with a cyclic and separating vec
tor, i.e., Mo is assumed to be of standard form. Let 
H1, ... ,HnEMo be self-adjoint operators such that et>Ell, 
11et>11 = 1 existswithHket> = 0, Vk. Let r({Hk }) be the joint 
numerical range of the family {Hk }, i.e., {tERn :3'1'Ell, with 
11'1'11 = 1, tk = ('I',Hk '1'), Vk}. By the assumptions on M o, 

the r of Sec. V is obviously the closure of r ( {H k } ). 

Subsequently, the expectation value of an operator T 
with respect to the state vector 'l'Ell, ('I', 1'11) will be abbre
viated as (T) ",. Then we have the following results. 

Theorem 5.1: For any tEr({Hk }), 

infE>o sup{1 ('I',et» 12: 'l'Ell, 11'1'11 

= 1,1 (Hk )", - tk Io;;;;€} =f(t), (20) 

with the function f defined on the numerical range of the 
family {H k } by 

f(t) = inf{ 1 + Irktk: IrkHk> - I}. (21) 

Proof: Because of M = {H1, ... ,Hn}" CMo and since Mo 
is in standard form, every normal state over M can be real
ized by some vector of H, i.e., we have S(id,w) i=f/J for any 
wESo(M) (where id is the identical representation of M). By 
(i) it follows that for a normal state w, PM(w,v) 
= sup{1 ('I',et» 12:'I'Ell, with ('I',x'l') = w(x), VxEM} for 

the normal state v defined by v(x) = (et>,xet», xEM. This 
then implies that sup{PM(w,v): wESo(M) , 
Iw(Hd - tk I o;;;;d = sup{1 ('I',et>W:'I'Ell, 11'1'11 = 1, with 
I (Hk )", - tk I o;;;;€, V k}. Since, by assumption on et>, v is the 
ground state of N = [H1, ... ,Hn ] and is normal onM, Propo
sition 4.1 can be applied and (20) and (21) follow. D 

As usual, let p be the support projection of v in M. Two 
cases may occur: p is either a one-dimensional orthoprojec
tion [the dimension refers to the standard dimension within 
B(H)] or not. In the latter case there is 'l'let> with 'l'epH, 
11'1'11 = 1. Assume that S is a unit vector of H. We associate 
with S another unit vector S' = pi S + IIPSII'I'. By con
struction and according to our assumptions, we then have to 
take notice of the facts that (H k ) e' = (H k ) e' V k and 
(S',et» = O. Hence, in the situation with dim(p) > 1 we 
have 

SUPE>O inf{1 ('I',et» 12: 'l'Ell, 11'1'11 = 1, 

I (Hk )", -tklo;;;;d=o (22) 

for any tEr({Hk }). 
Assume now dim (p) = 1. Then by (vi) and according 

to the assumptions of this section (note that p is the ortho
projection onto the one-dimensional subspace [et>] ), 

(23) 

for any wESo(M) , where 'l'ES(id,w). 
Since v is a normal ground state of N, (22), (23), and 

Proposition 5.2 can be taken together to find the following 
result. 

Theorem 5.2: For any tEr({Hk }) one has 
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sUPE>O inf{1 ('I',et» 12: 'l'Ell, 11'1'11 = 1, 

I (Hk )", -tklo;;;;d=g(t), (24) 

with the function g defined on the numerical range of the 
family of operators {Hk } by 

g(t) = max{O,u(t)}, (25) 

with u = 0 provided that the set 

ll. = {rERn
: specC~rkHk) \ {O}C [1,00), 

supp(~rkHk) max} 

is void or dim(p) > 1 and u(t) = sup{1 -l:rktk: rEll.} oth
erwise. 

Note that the definition of u and thus, also, of gin (25) 
differs slightly from that introduced in Sec. V. 

Remark 5.3: Let H1, ... ,Hn be self-adjoint operators of a 
uN algebra in standard form and suppose 3et>Ell, 1Iet>1I = 1, 
with Hk et> = 0, V k, i.e., et> is ajoint eigenvector to the eigen
value 0 of all the given operators. Then Theorems 5.1 and 5.2 
tell us something about the accuracy within which a state 
'l'Ell, 11'1'11 = 1 approximates the joint eigenvector et> : 

g( (HI)'" ,. .. , (Hn )", ) 0;;;; I ('I',et» 12<f( (HI)'" , ... , (Hn )",) • 

(26) 

The bounds are functions over the joint numerical range of 
the family {Hk } and (26) arises from Theorems 5.1 and 5.2 
by specializing tk = (Hk )"" Vk. Moreover, Theorems 5.1 
and 5.2, by their very structure, also say in which sense/, g 
are the best possible (global) bounds one can find. In fact, by 
definition, f (resp., g) is upper (resp., lower) semicontin
uously depending on t with respect to the relative R n topol
ogy induced on the joint numerical range. This is easily seen 
since f (resp., g) appears to be an infimum (resp., supre
mum) of continuous functions over r({Hk }), which is 
clearly shown by (21) and (25). 

Assumef' is another (global) upper bound, i.e., 

I (S,et»1 2<f'(t) , (27) 

V SEll, IISII = 1, with tk = (Hk)e, Vk. Suppose/,<fand 
let/' be upper semicontinuous. Then if there are t such that 
/,(t) <f(t), we could find £5 > 0 for given E <f(t) - f'(t), 
with 

ISk - tk 1<£5 implies/,(s) <f(t) - €. (28) 

Then for some £5' < £5 we have 

sup{1 (S,f/J) 12: SEll, IISII = 1, I(Hk)e - tk I0;;;;8'}>f(t). 

Hence, there are SEll, IISII = 1 such that 
I (S,et» 1

2>f(t) - E, with I (Hk)e - tk 10;;;;£5' < £5. Putting 
Sk = (Hk)e, by (28) it follows that 
/'(8) <f(t) - €o;;;; I (S,et» 12, which contradicts (27). Hence, 
/' = f has to hold, necessarily, whenever upper semicontin
uity for an upper bound is imposed in the sense explained. 
Analogously, we might argue for the case of a lower semi
continuous lower (global) bound. 

Remark 5.4: Note that the results of this section apply 
via a simple modification to any common eigenvector of a 
family {H k} of self-adjoint operators. In fact, if 
Hket> = Aket>, Vk, then we might draw our conclusions for 
the family {Hk - Ak I}. 
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Remark 5.5: We remark that the difficult part in estab
lishing the best (global) bounds J, g in explicit form is the 
exercise to find, for given {H k }, the sets 
{rERn

: ~rkHk> - I} and {rERn
: spec(~rkHk) \. {o} 

C [1, 00 ),supp(~rkHk) max }, respectively. In fact, in most 
cases of practical importance we have little information on 
the relative geometry of the set {H k }. Hence, in many cases 
only subsets of the two sets mentioned can be isolated, 
strongly depending on the availability of the information on 
the set {Hk }. Thus we have to be satisfied with "bounds for 
the best bounds" in any situations. However, we note that 
there are also importaat cases where J, g can be calculated 
exactly (cf. the example given in Sec. VII A). 

VI. APPLICATIONS AND DISCUSSION: BOUNDS TO THE 
OVERLAP 

In this section, we wish to apply the results of Sec. VI in 
the sense explained in Sec. II. First, let us discuss briefly the 
relevance in applications of the assumption that HI, ... ,Hn be 
operators of a uN algebra in standard form. 

One point of view in the algebraic approach to quantum 
physics says that in order to describe mathematically certain 
aspects of the system under consideration, the main object to 
start and deal with is an appropriately chosen quantum dy
namical system with an invariant state, i.e., we are given 
{A,G,T,w}, where A is a unital C· algebra; G is a (locally 
compact) group; T is a strongly continuous action of G as a 
group of· automorphisms on A; and w is a faithful state on A 
which is invariant under the action of G via T, i.e., W'Tg = W 

for any gEG. Then usually one considers the UJ-GNS con
struction {1T,H,n}. There is an implementation of T by a 
strongly continuous group of unitary operators {ug } such 
that 1T{Tg (x») = ug 1T(X)U; for VgEG, xEA, and ugn = n. Of 
course, the choice of the dynamical system one starts with 
depends on the aspects to be dealt with. 

As an example, let G be a one-parameter group, say 
G = R, and let T be the time evolution, e.g., then the gener
ator of {uJ CB(H) should be interpretable as the Hamilto
nian of the system. Of course, the most desirable case is the 
one where {uJ belongs to the uN algebra 1T(A)", which is of 
standard form. For physical reasons, the Hamiltonian 
(which is a self-adjoint, unbounded linear operator over H, 
in general) should have a spectrum bounded below (in order 
to assure stability of the system described), with a stationary 
state of smallest energy (i.e., the ground state should be an 
eigenstate). However, just imposing the boundedness of the 
energy spectrum from below assures that even {u t } C 1T(A)" 
for the implementation of T could have been chosen, via the 
Borchers-Arveson theorem (cf. Ref. 11), and the Hamilto
nian might be thought of as a positive, linear, self-adjoint 
operator which is affiliated to 1T(A)" and is the generator of 
{u t }. This might justify the belief that the uN algebra in 
standard form, Mo = 1T(A ) " , is of some relevance as an alge
bra of certain (bounded) observables associated to the sys
tem under consideration. Adopting such a point of view, the 
results Sec. VI evidently should become applicable within 
1T(A)" in a natural manner. 

2088 J. Math. Phys., Vol. 30, No.9, September 1989 

A.Example 

As an example, let us assume h is the Hamiltonian. Here 
h is affiliated with Mo, and we suppose, as above, that h>O 
and hn = 0, i.e., n is supposed as a ground state of h for 
simplicity. Suppose for the moment that h is bounded. Then 
hEMo. We assume now that HI = h andH2 = h 2. n yields a 
normal ground state for the linear space [h,h 2] in the sense 
of Sec. VI. Hence, we might ask for J, g. We suppose the 
spectrum of h, spec(h) to be known. According to Sec. V, 
what we have to do is locate the sets A = {rER2: ~rkHk 
> - I} and t1 = {rER2: spec(~rkHk}\. {O}C [1,00), 
supp(~rkHk) max}, respectively. 

It is easy to see that rER2 belongs to A iff P(r,A) 
= r2A, 2 + riA, + 1>0 for any A,E spec (h). Now, spec 
(h) = R+ \. UIn with In = (Un' on) for n = 0,1,2" ... , de
noting the holes in the spectrum [ we suppose 
10 = (11h 11,00 )]. Note that a hole in the spectrum is a maxi
mal open interval of the resolvent set and there is at most a 
countable number of such holes in a spectrum. The above 
condition amounts to the fact that rEA iff either P (r, ( . ) »0 
on the whole R + (and then the polynomial has either no real 
root, a real double root, or both real roots are in the negative 
part of the reals), or both the real roots of the polynomial 
P(r,('») belong to the same hole In. We omit the details of 
the calculations (which have been carried out in Ref. 12), 
but give instead the result for f 

1(lI,t2) = 1 - [(un + On )/unon ]tl 

+ (llunon )t2, for (l2Itl)Eln, (29) 

1(lI,t2 ) = 1, for II = 0 (which occurs iff t2 = 0), (30) 

(31) 

with II = (h), t2 = (h 2). 

Note that incase there is an index such that Un = 0, then 
for II #0, automatically (l2Itl) >on [in fact, then zero is iso
lated and (h 2) >On (h ) since On has to be the smallest non
zero spectral value of spec (h) in this case]. Hence, this 
index n, if it exists, cannot interfere in the definition of 1 via 
(29). We remark that the function/, given by 

/'(lI,t2) = 1, for tl = 0 (which occurs iff t2 = 0), (32) 

/'(lI,t2 ) = 1 - (lUt2), otherwise (33) 

on the numerical range is an upper bound which is known as 
the Cambet-Farnoux-Allard bound (cf. Refs. 5 and 6 for 
the derivation and original references). In the sense of Re
mark 6.3, (29)-(31) give the best global upper bound for S2 
if we know the full spectrum. The bound given by (32) and 
(33) gives the best upper bound if we have no information on 
the spectrum (besides the fact zero is an eigenvalue). In 
between these two extreme cases we find intermediate cases 
of approximations from above of the best bound via bounds 
constructed by means of inserting only the partial informa
tion we have (say, e.g., we know some gaps or holes) in the 
sense of Remark 5.5. Thebound/givenby (29)-(31) seems 
to be new. Wenoticethatl depends on the norm ofh in quite 
a weak sense only (there exists a hole with the lower bound 
IIh II and an upper bound 00). Therefore, the formulas for the 
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upper bound can be also used for a densely defined, positive, 
self-adjoint operator h having zero as an eigenvalue provided 
that the test functions are taken from the domain of h 2. This, 
then, corresponds to the case with which we started (where 
h is unbounded, but affiliated with Mo). 

Concerning the lower bound g, we remark that ll. is void 
if zero is not isolated point of the spectrum. Hence, by defini
tion of g, in this case g = O. The latter also occurs if the 
eigenvalue zero is degenerated (cf. Theorem 6.2). Hence, we 
might hope for a nontrivial bound to exist only in the case 
where zero is an isolated spectral value which corresponds to 
a nondegenerated eigenvalue. Suppose this case and let E be 
the first spectral value of h that is different from zero (i.e., we 
have a gap of size E). According to the result of some of the 
calculations in Ref. 12 we obtain the best lower bound g (cf. 
Remark 6.5) as 

g = max{O,u}, with U(tI,t2) 

(34) 

The structure of g shows that for the lower bound the knowl
edge of the spectrum is of relevance only insofar as we have 
to know the gap and spectral radius. Hence, the details in the 
spectrum do not enter at all. Therefore, this bound is also the 
best bound if only E and Ilh II are known. Just as in the case of 
the upper bound, we might also draw some conclusion for 
the unbounded case: Then g'(t) = max{O,1 - (tIlE)} is 
the best one can do. The same result also holds if h is bound
ed, but nothing is known about the spectral radius. Note that 
since t2>Et I holds for any t of the numerical range, (34) 
shows that g is really better than the bound g'. The bound g' 
is well-known and was derived in 1930 by Eckart (cf. Refs. 5 
and 7 for detailed references). 

B. Remark 

Note that the assumptions of Sec. V can be taken for 
granted in each case of a family {H k } of mutually commut
ing bounded operators over some Hilbert space H. In fact, 
such a family can be thought of as being part of a maximally 
Abelian uN algebra over H. Such an algebra possesses a cy
clic vector in any case, which by the maximality condition is 
also separating: The case we dealt with in Sec. VI A numbers 
among this particular class. Hence, the discussion at the be
ginning of this section is of relevance when {Hk } does not 
consist of mutually commuting operators exclusively. In 
such a case, the task oflocating ll. and A seems to be a rather 
big challenge and for the most part one should aim to calcu
late approximations for the best bounds (cf. the discussion of 
Remark 5.5). In contrast, in the commutative case it seems 
possible to make an atlas of the exact bounds f, g for many 
cases provided that the Hk'S are given as the functions 
Fk (Ho) of some (maybe, auxiliary) operator Ho. Once 
again, Sec. VI A can serve as an example in this direction 
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[Ho = h,FI (x) = x, andF2 (x) = x 2
], atthe same time indi

cating the line of action. Finally, we note that the case of 
densely defined, unbounded positive self-adjoint linear oper
ators affiliated to some Abelian uN algebra might also be 
dealt with in this way. 

VII. CONCLUDING REMARK 

In Ref. 12, we have dealt with the special example found 
in Sec. VII A. Parameter-dependent bounds for S 2 in terms 
of (h ) and (h 2) have been derived in Sec. VI A by using 
estimations and tools based on the methods demonstrated in 
Ref. 5. These bounds were optimized by suitably fitting the 
parameters in question. The result of this process was shown 
in (29)-(31) and (34), respectively. Consequently, in the 
context of Ref. 12 the final bounds seem to be best only with 
respect to the underlying basic assumptions. 

ACKNOWLEDGMENTS 

We acknowledge gratefully the discussions (relating 
upper bounds) in the Leipzig Seminar on Mathematical 
Physics, particularly those with J. Friedrich (KMU) in the 
spring of 1988. The arguments discussed at that time gave 
some evidence as to why the upper bound of the example 
should nevertheless be the best possible (provided that the 
spectrum of h is known). The idea to look at the accuracy 
problem from the point of view of generalized transition pro
babilities was suggested by W. Thirring in 1983. However, 
the results derived on the generalized transition probability 
(cf. Sec. III and Propositions 4.1 and 4.2) are of interest on 
their own, independent of this special application. We wish 
to thank H. Grosse (Vienna) for giving us some hints as to 
the relevant literature. 

'A. Uhlmann, Rep. Math. Phys. 9, 273 (1976). 
2A. Uhlmann, Ann. Phys. (Leipzig) 42, 524 (1985). 
'P. M. Alberti, Wiss. Z. Karl-Marx-Univ. Leipzig MNR 34,572 (1985). 
4p. M. Alberti and A. Uhlmann, in Proceedings of the International Confer
ence on Operator Algebras, Ideals and their Applications in Theoretical 
Physics, edited by H. Baumgaertel, G. Lassner, A. Pietsch, and A. Uhl
mann (Teubner, Leipzig, 1984), pp. 5-11. 

'F. Weinhold, I. Math. Phys. 11, 2127 (1970). 
6W. Thirring, Lehrbuch der Mathematischen Physik (Springer, Wien, New 
York, 1979), Yol. 3. 

7T. Hoffmann-Ostenhoff, M. Hoffmann-Ostenhoff, and G. Olbricht, I. 
Phys. A 9, 27 (1976). 

8W. Thirring, private communicatoin to PMA (Leipzig, 1983). 
9p. M. Alberti, Lett. Math. Phys. 7, 25 (1983). 
10M. A. Neumark, Normierte Algebren (YEB Deutscher, Berlin, 1959). 
"0. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statisti-

cal Mechanics (Springer, New York, 1979, 1981), Yois. 1 and 2. 
l2y. Heinemann, Geutekriterienfuerapproximierte Wellenfunktionen (Di

plomarbeit, Leipzig, 1988). 

P. M. Alberti and V. Heinemann 2089 



                                                                                                                                    

On the structure of spatial infinity. I. The Geroch structure 
Piotr T. Chrusciel8

) 

Physics Department, Yale University, New Haven, Connecticut 06511 

(Received 12 January 1989; accepted for publication 5 April 1989) 

Theorems on uniqueness and "quasi-uniqueness" of the differentiable structure of pointwise 
singular conformal structures are derived. This allows the classification of all ambiguities in 
the differentiable structure of conformally completed asymptotic three-dimensional ends. 

I. INTRODUCTION 

A considerable amount of work on the behavior of the 
gravitational field at spatial infinity has been done by several 
authors 1-5 in order to understand how to overcome the ap
parent lack of definitional uniqueness off our-momentum in 
general relativity. An interesting framework has been devel
oped by Geroch,2,6 who adapted the conformal completion 
technique used in the description of null infinity to the spa
tial setting, the main idea underlying the construction being 
to replace "coordinate conditions" by "local differential ge
ometry." In Geroch's framework, the problem ofa possibly 
ill-defined energy momentum reappears in the possibility of 
existence of inequivalent conformal completions of spatial 
infinity. In this paper we show that there exists only the well
known three-parameter family of inequivalent-in a sense to 
be made precise-completions of a three-dimensional as
ymptotically flat end. The proof we give is almost a filling-in 
of necessary technicalities in the proof outlined in the Ap
pendix of Ref. 7, the (mild) difficulties arising from the fact 
that standard results of the PDE theory do not apply here in 
such a simple manner as in Ref. 7, as a result of the essential
ly singular character of the conformally rescaled metric at io. 

We shall use two sets of conditions to be satisfied by the 
conformal completions, the first under which uniqueness of 
the structure holds, the second in which the three-parameter 
(n parameter in n dimensions) family of inequivalent com
pletions appears. The conditions we shall use are in spirit 
those of Geroch,2,6 though our conditions are (slightly) 
stronger than those originally introduced. It would be inter
esting to find out whether the results obtained here can be 
reproduced under the conditions of Ref. 2. It should be 
stressed that here we establish uniqueness or quasi-unique
ness of pointwise singular conformal structures rather than 
of conformal compactifications; a simpler proof of the latter 
problem, under slightly different conditions, can be obtained 
using the results of Refs. 4 or 5 (cf., e.g., Ref. 8). To be 
specific only the three-dimensional problem is considered; 
similar results hold in any dimension. 

II. UNIQUE POINTWISE SINGULAR CONFORMAL 
STRUCTURES 

Following Geroch we shall consider a one-point com
pactification ~ = ~ U Do} of the initial data (three-dimen-

a) On leave of absence from the Institute of Mathematics, Polish Academy 
of Sciences, Warsaw, Poland. 

sional Riemannian) slice~, giving ~ the standard topology. 
Specifically, such a compactification will be obtained, e.g., 
by performing the inversion x i-->yi=xi/r(x)2 in some 
asymptotically flat coordinate system and adding the origin 
yi = ° to the set so obtained. This allows one to use the co
ordinates yi to define the differentiable structure of ~ in a 
neighborhood of io. If one applies this procedure to a metric 
of the form 

(2.1) 

the resulting conformally rescaled metric in coordinates yi 
will only be Lipschitz continuous at io rather than differen
tiable, therefore a natural procedure is to include in the atlas 
those coordinate transformations, the derivatives of which 
are merely Lipschitz continuous at io. (If one does not en
large the, say C k' atlas fixed by the coordinates y to the A k,a 

atlas, as described below, one will end up with infinitely 
many conformally inequivalent completions of any asymp
totically flat space-time, which seems to be quite a luxury. 
Another way of looking at this issue is that none of the A k,a 

coordinate systems is singled out by physics, so that an Ak,a 

rather than a C k structure on ~ U Vo} is physically appropri
ate.) To make things precise, let B(R) be a ball of radius R 
and let us define the set Ak,a (B(R»), k> 1, aE(O,I], offunc
tions onB(R), such thatfEC1(B(R»),Jis Ck on B(R)\. {oJ 
and f satisfies 

IJJ( y) - JJ(O) 1 

<Cr( y)U, ... ,IJi, .. 'Jikfl<C,u- k+ I, (2.2) 

for some constant C. An Ak,a differentiable structure on ~ 
will be defined by a maximal atlas on ~ such that (a) ~ \ Do} 
is a Ck manifold and (b) in local coordinates, in a neighbor
hood of io = 0, the transition functions are in Ak,a (B(R»). 

TheA ka (~,io) functions on ~ are defined in an obvious 
manner. We shall write Aka rather than Aka (~,io), since , , 

confusion is unlikely to occur. A tensor field will be called of 
class Bt,a (~,io) (Bt,u)' 1>0, if its components tl in a map 
belonging to the Ak,a atlas, k>1 + 1, where I is a set of cor
variant and contravariant indices, are Ct on ~ and satisfy 

'VyEO'\{o}ltl(y) -tl(O)1 

<C'r( y)U, ... ,IJi, .. 'Ji/II<C',u-t (2.3 ) 

for some constant C " where 0' is a coordinate neighborhood 
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of 0 = io. (It is simple to check that if such a constant exists 
for one map, there will be some constant for any map from 
the A k,a atlas. ) We shall say that a Riemannian manifold 
(~,g) is asymptotically flat ifthere exists an Ak,a, k;;.3, Rie
mannian manifold ~ = ~ U {io} with B k _ I a metric g and a 
function 0.: ~ ...... R+U{O}, such that (1)' on ~ we have 
gij = o.-Zgij and (2) o.Uo) = 0, Vo.Uo) = 0, Vi aio.EAI,a' 
and ai ajo.uo) = 2gijUo)' 

To prove our uniqueness results we shall need two auxil
iary lemmas. 

Lemma 2.1: Let aE(O,I], let g be a metric in B(ro) 
( = ball of radius ro), satisfying 

I;;. 1, and let c: B(ro) '\ {O} ...... R satisfy 

Icl<C~-2, laiCI<c~-3,···,lail ···aikcl 

<C~-2-\ 

(2.4) 

(2.5 ) 

k>O. There exists O<rl<ro and a function 
f B(r l ) '\ {o} ...... R, a weak solution of 

(2.6) 

in B(rl },\ {a}, satisfying !<i<4. 
Proof Equation (2.6) for fis equivalent to the equation 

(2.7) 

where gij = u4/(n - 2)gij' l = f /u, and c = cu - 4/(n - 2) 

+ u - (n+ 2)/(n- 2)a
g

u (in dimension n). Let u = 1 - a~, 

aER +. For r < r I' small enough, one finds 

so that increasing a and decreasing r I if necessary one has 
(for r<rl ) C<O and u>!, and the metric g satisfies inequal
ities of the form (2.4). The same calculation shows that for 
positive C I and Czlarge enough, again decreasing r I if neces
sary, the functions u+ = 2 - CI~ and u- = ! + Cz~ are 
supersolutions and subsolutions, respectively, for Eq. (2.7), 
and we have u+ IS(r,) > 1, .,!I-IS(r,) < 1, where S(r l ) denotes a 
sphere of radius r I' Let fk be the sequence of solutions of 
(2.7) inB(rl},\B(rl/k) satisfyinglkIY(r,)_=lkIY(r,/k) = 1. 
By the comparison principle we have u- <ik <u+, wherever 
defined. By CI,E estimates, as given, e.g., in Ref. 9 and a 
standard diagonalization procedure one can extract a se
quence /; converging to a function l = loo , a weak solution k _ 

of (2.7) in B(rl },\ {a}, satisfying 1/2<f<2. fis defined by 
f=.ul 

Lemma 2.2: Under the hypotheses of Lemma 2.1, let 
f B(rl },\ {O} ...... R be a weak solution of (2.6) in B(r!},\ {O} 
satisfying co<f<c!, Co, c!ER. Thenfsatisfies (2.6) in B(rl ) 
in a weak sense, and there exist constantsf (0) and Cz, such 
that 
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(a) If(x) -f(O)I<Cz~' 

lafl<cz~- \ ... ,Iail .. ·aimfICzra-m, 

ifO<a< 1, 
(b) If(x) -f(O)I<Czrlnr, 

lafl <Czln r, ... ,lai, .. ·aimflCzr a- m In r, 
if a = 1, 

where m = min (/,k + 1). 
Proof Because f is bounded from above and below the 

removable singularity theorem ofSerrin!O (Theorem 1) im
plies thatfis a weak solution in B(r!) so that by Theorem 8 
of Ref. 11 ,fis Hoelder continuous at 0 with some exponent E. 

Performing an inversion, r ...... p = 1/r, f ...... l = rJ, one finds 
thatlsatisfies the following equation (It is not too difficult, 
using, e.g., the methods of Ref. 13, to prove the desired esti
mates directly without performing an inversion. We use the 
inversion argument for simplicity, to be able to use the classi
cal results of Ref. 12): 

agl = O( p - 3 - E), in Rn'\B( 1/rl ), 

where g is the conformally rescaled metric in R n'\B(1/rl ), 

gij = p4gij . An iterative application of the estimates of 
Meyers (Ref. 12, Lemma 5) (cf. also, e.g., Ref. 13) implies 
l = D( p - 1 - a) for 0 < a < 1 or l = O( p-zln p) for a = 1, 
a standard scaling argument (cf., e.g., Ref. 12) gives the 
derivatives estimates, inverting back to the original variables 
our claims follow. 

The idea of the proof of Proposition 2.3, which is the key 
result to prove our theorems, is due to Geroch (cf. the Ap
pendix in Ref. 7). 

Proposition 2.3: Let 0 < a < 1, and let gl and g2 be two 
metrics in neighborhoods 0. 1 and o.z of the origin conformal
ly related to each other in o.i '\ {o}: 

aka l 
for x¥=O, g~ (x) = t,6z(X)ri/( y(x») ~ L, t,6(x) > 0; 

ax' ax' 

y(x) continuous in o.!,y(O) = 0, andy(x)CI for x different 
from 0, and let the metrics ~ satisfy the inequalities (2.4) 
with 1>2. The function t,6 can be extended to a continuous 
strictly positive function on 0. 1, satisfying 

lat,6l<c~-I, 

for some constant C. 
Proof Suppose first that 1>3. Lemma 2.1 implies the 

existence off unctions t,61 and t,6z, 0 <! < t,6a < 4, such that 

(ag" - Ra/8)t,6a = 0 (2.8) 

in suitable neighborhoods of the origins, where Ra denotes 
the Ricci scalar of~. (2.8) implies It = 0, where Ra is the 
Ricci scalar of the conformally rescaled metric gij = t,6!tij, 
and the estimates of Lemma 2.2 show that the rescaled met
rics gij also satisfy inequalities of the form (2.4) with 1= 2. 
Let t/J = t,62- 1t,6I/Zt,6I' Ra = 0 and g~ = t/J4fij imply 

VXEo. l '\ {o}(ag, - R I/8)t/J = a g, t/J = 0, 
(2.9) 

VyEo.z'\ {O}(ag' - R z/8)(t/J-I) = ag' (t/J-I) = O. 

Since t/J>O, a theorem by Serrin (Theorem 2, Ref. 10) im
plies that either t/J behaves as 1/ r or t/J is bounded and satisfies 
(2.9) throughout 0. I-whichever case occurs the maximum 
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principle applies and if; is bounded in n 1\ {O} from below by 
the minimum of its values on ani' which is strictly positive 
by construction of <Pa and by the hypothesis on <p. Similarly, 
if;-I either blows up as l/r or is bounded from above and is 
bounded from below by a strictly positive constant. If if; be
haves like l/r then if;-I must vanish at the origin, which 
leads to a contradiction; therefore both if; and if;-I are 
bounded and Lemma 2.2 gives derivative estimates for if;. 
Since gl is conformally equivalent to Ef with a bounded con
formal factor, a standard argument (cf., e.g., the proof of 
Lemma 1 in Ref. 5) implies c-Ir(x).;;;r(y(x»).;;;cr(x) for 
some constant c, so that from IV<pIlg,.;;;Cr(x)a-1, 
IV<p2Ig, .;;;Cr( y)a - I and <p = ~<PI- 2<p~ one obtains the de
rivatives estimate for <p. The case I = 2 is obtained by an 
approximation argument. 

Theorem 2.4 (Uniqueness of conformal A k,a structure): 
Let (~I,il,gl)' (~2,i2,g2) be Ak,a manifolds with Bk-I,a 
metrics, aE(O,l), k-;;.3; let \{I be a continuous conformal 
mapping from ~ I to ~2' \{I U I) = i 2, \{I differentiable in 
~I \ {il}· Then \{I isAk,a' 

Proof' In local coordinates in neighborhoods of il and i2 
the hypotheses of Proposition 2,3 are satisfied, therefore the 
metricg~ = <p-2g~, <p as in Proposition 2.3, is of class BI,a' 
Replacing gl by t and limr_ 00 by limr_o in the proof of 
Lemma 1 of Ref. 5 shows that \{I is A 2,a' The formula for the 
transformation of the Ricci tensor under conformal changes 
of the metric can be written in the form 

A. .. -,,, 1= 1 {A.-I(RI.-R2)+2(n-2)A.A.-:-IA.-:-I 
'f' , (n _ 2) 'f' lj lj 'f''f'" 'f' J 

- (~g,<p-I + (n - 3)<pI V<p- II;,)gP, (2.10) 

and we also have 

~g,<p-I = {_ <P- 3R2 + <p-IRI 

- (n - l)(n - 4)<pIV<p-II;)/2{(n - I)}. 
(2.11 ) 

In local coordinates Xi in a neighborhood of ii' the right
hand side of (2.11) is bounded by C~ - 2, so that (2.10) 
implies that <p is twice differentiable outside the origin and 

la i aj<pl.;;;c~-2. (2.12) 

The right-hand side of the equation 

(2.13 ) 

where 1"17' and r~n are the Christoffel symbols of the met
rics <p-2g~ and~, respectively, is in view of (2.12) differen
tiable with derivatives bounded by C~ - 2 for some constant 
C, which shows that if; is A 3,a' The equations obtained by 
differentiation of (2.10), (2.11), and (2.13) imply if;EA k,a 
by induction. 

III. THE LOGARITHMIC AMBIGUITIES 

In Sec. II we have established uniqueness of Ak,a confor
mal structures, aE (0,1 ). In Geroch's analysis one needs 
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some more structure, which we introduce below, it should, 
however, be noted that the well-known condition a > ! (Ref. 
4, 5, and 14) is sufficient for a meaningful definition of ener
gy in Geroch's framework (cf., e.g., Ref. 8). We shall say 
that a function/is of classAk (Y,io) (Ak) if/is Cion Y and if 
the following limits 

limai a./(m), ... ,limyk- 2 a il .. ·aik/(m) 
r-O r_O 

exist, where n is any unit vector. As in Sec. II we can define 
an Ak differentiable structure and B/, /.;;;k - 1 tensors, The 
following theorem shows that there exists only a three-pa
rameter family (parametrized by the vector C i) of inequiva
lent A k structures compatible with a given conformal geom
etry. 

Theorem 3.1 (Quasi-uniqueness of conformal A k struc
tures): Let (~I,il,gl)' (~2,i2,g2) beAk manifolds, k-;;.3, with 
B k _ I metrics, let \{I be a continuous conformal mapping 
from ~I to ~2' \{lUI) = i2, \{I of class CI in ~I \ VI}' Then 
there exist A k charts {x'}, {ji'} in neighborhoods of i I and i2 
and a (constant) vector C \ such that, in local coordinates, 
\{I takes the form 

yi = Xi + (Ci-p. _ 2C kxkxi)ln r, r = r(x). 

In particular, if; is A k if and only if C i = O. 
Proof' For any a < 1, if; is of class Ak,a by Theorem 2.4. 

There exist A k coordinates {x'}, {y'} in neighborhoods of i I 
and i2, such that XiUI ) = i(2) = 0, g~ (0) = ~ (0) = 8ij' 
<p(0) = 1. The estimates of Lemma 2,2, part (b) and Eqs. 
(2.10) and (2.11) yield an equation of the form 

~ftat <p = ~ftat <p - ~g, <p + ~g2 <p = c( (),ifJ )/r + o( l/r), 
(3.1) 

for some function c«(),ifJ), so that, e.g., an inversion argu
ment, as in the proof of Lemma 2.2 together with the esti
mates of Ref. 12, lead to 

<p = 1 + CiXi In r + rg«(),ifJ) + o(r), (3.2) 

for some constants C i and a function g( (),ifJ), which implies 

1"17' = (8Z'C/ + 87'C k - 87C m )ln r + A Z; «(),ifJ) + 0(1), 
(3.3 ) 

for some functions A Z'/«(),ifJ). (3.3) inserted in (2.13) gives 

a auk / a 2yk k' k" . k 
__ J_. =n --. -= (n C'+8i C J n J -n'C )lnr 
ar ax' ax' ax/ 

+A7«(),ifJ) +0(1), (3.4) 

ni = xi/r, with some functions A 7«(),ifJ)' Twice integrating 
(3.4) along rays, rigidly rotating the coordinates x if neces
sary, Xi-+Xi = w;x j

, w;EO(3), one obtains 

yk = Xk + (2C jxrxk _ r 2C k )ln r + r 2A k«(),ifJ) + o(r 2), 
(3.5) 

for some functions A k( (),ifJ)' Let 

yk = Xk + (2Crxrxk _ r 2C k)ln r. 

Then (3.5) yields 

yk = yk + r( y)2A k«(),ifJ) + o(r 2), (3.6) 

which is an Ak transformation and the theorem follows. 
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IV. CONCLUSIONS 

Our results show that Geroch's description of spatial 
infinity is a fairly natural one, since the conformal Ak com
pletions are "almost uniquely" defined by the asymptotic 
behavior of the metric: the only ambiguities consist of a 
three-parameter family of "logarithmic transformations." It 
is well known (cf., e.g., Ref. 15) that these transformations 
do not affect the numerical value of four-momentum. It 
must be stressed that the A k •a conformal description of ini
tial data slices is completely equivalent to the standard coor
dinate description (cf., e.g., Refs. 1,4,14,5), and the use of 
one or another seems to be a matter or personal taste, de
pending upon whether one prefers the symbollimr _ o to the 
symbollimr _ 00 • 
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The ambiguities in the differentiable structure of Ashtekar-Hansen completions satisfying a 
geodesic condition are analyzed. The results obtained imply, in particular, uniqueness up to a 
four-parameter family of "logarithmic transformations" of completions of asymptotically flat 
space-times stationary "in a neighborhood of io'" 

I. INTRODUCTION 

In a previous paper of this series! uniqueness up to a 
three-parameter family of logarithmic transformations of 
conformal one-point compactifications of three-dimensional 
asymptotically flat Riemannian manifolds was established. 
A corollary of that result is that within the Geroch frame
work2 the four-momentum of an initial data set for Einstein 
equations is unambiguously defined. In general relativity, 
which is a four-dimensional theory par excellence, one hopes 
to assign a four-momentum Pp, or, say, its invariant square 
m2 = - 7Jappapp to a four-dimensional set, rather than to a 
three-dimensional subset thereof. It has been shown in Ref. 3 
that one can, in a meaningful way, associate an invariant 
mass m to a boost-type domain or, more generally, to a four
dimensional asymptotically flat end of a Lorentzian mani
fold defined by a collection of boost-type domains. This rela
tively satisfactory result suffers from the drawback that the 
somewhat arbitrary notion of the boost-type domain plays 
an essential role in the analysis. One would like to replace the 
statement that "two three-dimensional ends included in 
some boost-type domain of a vacuum space-time have the 
same mass" by something of the kind "two three-dimension
al ends included in the same asymptotic region have the 
same mass," avoiding the use of some unnaturally preferred 
sets in some coordinate system as a primary concept of the 
construction. A reasonably natural setup in which one can 
define the notion of an asymptotic region has been proposed 
by Ashtekar and Hansen4

,5 who describe the behavior of the 
gravitational field at spatial infinity by means of conformal 
completions of asymptotically flat four-dimensional mani
folds in which spatial infinity is represented by a point io' The 
existence of an Ashtekar-Hansen completion--or some 
variation thereof, as considered in this paper-adds useful 
information about the global causal structure of space-time 
to the standard coordinate notion of asymptotic flatness,6,3,7 
which seems difficult to describe in terms of asymptotically 
flat coordinates only. The main problem with the Ashtekar
Hansen completions is their potential nonuniqueness. In this 
paper we show that if a certain geodesic condition is satisfied 
by some completion, then there exists a four-parameter fam
ily of inequivalent completions only. 

a) On leave of absence from the Institute of Mathematics of the Polish Acad
emy of Sciences, Warsaw, Poland. 

In Sec. II we introduce the notion of weak conformal 
completions and the geodesic regularity condition. We show 
that weak geodesically regular completions are unique. We 
also show that every completion of a no-radiation metric (in 
particular, of the Kerr metrics) is geodesically regular. In 
Sec. III we define strong completions (the conditions of this 
section are essentially those of Ashtekar and Hansen) and 
we show their uniqueness up to "logarithmic ambiguities" 
provided that geodesic regularity holds. 

II. WEAK CONFORMAL COMPLETIONS 

In order to give a motivation to the definitions of this 
section let us recall the fundamental result of Christodoulou 
and O'Murchadha6 (the "boost theorem"): Given asymp
totically flat data for general relativity (cf. Ref. 6 for the 
appropriate definition of asymptotic flatness) and given any 
"boost slope" 0 < 1 there exists a metric gp,1" solution of the 
vacuum Einstein equations, the evolution of the Cauchy 
data, and positive constants R and T such that gp,1' is defined 
for all xl' belonging to the boost-type domain fiO•R • T (Ref. 8): 

fi O•R •T = {xa:r)oR, Ixol <Or + T}, 

0>0, R)oO, TE( - 00,00], 

with gp,1' satisfying 

Igp,1'-7Jp,1'I<C(I+r)-a, la"gp,1'I<C(1+r)-a-1 (1) 

for some constants C( O,R, T,gp,1' ), a> 0, where 7J p,1' is the 
Minkowski metric. For xl' xp, > ° (Ref. 9) (signature 
- + + +) let <I> denote the inversion xl' -+ Y p, 
= xP, / (xaxa ). It is simple to check that for 0 < 1 and T> ° 
the set <1>( fi O•R •T ) contains the "wedge" WO•IIR (Ref. 10): 

WO•E = {y P,:r(y) < E, Iyo I < Or} 

and Eq. (1) gives, for y p, E Wo, II R , 

gp,1' dxP, dx1' = (yaya ) -2gp,1' dy p, dy1', 

Igp,1' -7JP,1'I<C'(O,R,T,gp,1')r(y)a, 

I (]gp,1' I <C' (O,R,T,gp,1' )r(y)a - I. 

ay" 

(2) 

Equation (2) displays the expected behavior of the metric 
under an inversion which brings "spatial infinity" to a point 
ya = 0, say io' Following Ashtekar and Hansen4

,5 we shall 
ask for some more structure than what follows in a straight
forward manner from the "boost theorem." 
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Definition 1: Let (M,g) be a space-time (=C 3 four-di
mensional manifold with a C 2 Lorentzian metric) and let JI' 
denote the disjoint union MU{io} where io is a point. We 
shall say that (JI',g,io) is a weak a-completion of M, 
aE (0, 1 ], if the following holds. 

(i) In JI' there exists a coordinate system {y /L }, 

Y /LEWI,E U{O} such that io = O. 
(ii) There exists a function 0: WI,E -R+ such that the 

metric g/LV = 02g/LV satisfies 

'tIfJ< 1, 'tIXEWe,Elg/Lv -1J/Lvl<C(fJ)r(y)a, 

la" g/LV 1 <C(fJ)r(y)a -I. 

( iii) 

lim 0 = 0, lim aao = 0, IV/L VvO - 2g/Lvl<C(fJ)r(y)a 
y_o y_o 

with some function [0,1) 3 fJ- C( fJ) < 00 (Ref. 11). 
(iv) For all pEM there exists no timelike curve in JI' 

fromp to io' 

Here JI' shall be equipped with the natural topology 
induced by the topology of M and the coordinates ya . We 
shall say that a weak conformal completion is geodesically 
regular if for every affinely parametrized spacelike geodesic 
r of the physical metric g/LV' r = {ya(s),s>so}, which ex
tends to io, there exist constants SI>SO' 'I1(r) < 1 such that 
for all S>SI we have l2 

We shall show that weak geodesically regular a-completions 
are unique for 0 < a < 1. 

Lemma 1: Let g/LV be a C2 metric in a boost-type domain 
Oe,R,T satisfying 

with some constant C. There exist spacelike hypersurfaces 
B ± COe,R,T defined by 

B ± = {PErn±, where rn± = complete spacelike geodesic 13 satisfying xn±(O) =Rln, 

dx± 
nES( 1) 14, _n_ (0) = n, (Xn± )°(0) = 0, lim r(xn± (s») = 00, (xn± )o(s) >0 on r n+ , 

~ _00 

[in other words, B ± are "sewn up" from geodesics starting 
from the sphere {rex) = R I , XO = O} which stay in Oe,R,T 

and remain either to the local future (with respect to the 
chronology of Oe,R,T) or to the local past of N';., 
= {xa:xO= O,r(x»R I}]. The B± are graphs over 
N';.,:B ± = {xIL:r(x»R 1, XO = w± (x)}. Every future di
rected timelike curve starting at N ';., either remains entirely 
within the wedge W+ = {xIL:r(x»RI,O<xo<w+(x)} or 
meetsB + . Similarly, every past directed timelike curve start
ing at N';., either remains entirely within the wedge 
W- = {x/L:r(x»R I, w-(x)<xo<O} or meets B-. 

PrOOF By Propositions Bland B2 of Appendix B of Ref. 
3 for R I sufficiently large the family of geodesics r n± , 
nES(1) defined by xn±(O)=Rln, nES(1), 
(dx! /ds)(O) = n, (xn± )°(0) = 0, and d(xn± )o/ds(O) 

= ± fJo= ± min(fJ,l)12 will satisfy 'tIs>O(xn+ )o(s»O, 

(xn- )o(s) <0, (xn± /r)(dxn± /ds)(s) >~, and fJo! 

2< ± d(xn± )0/ds<3fJo!2. Let 

A = (P>R I:'tIxEB(p}\Int[B(R I )]3n± (x)ES(1) and 

xo± (x), Ixo± (x) 1 <fJr(x) 

+ T such that Ixo± (X),X)Ern±±(x), 

where B(p) denotes a closed ball of radius p. A is nonempty 
because R lEA, A is closed by standard properties of solutions 
of differential equations, and openness of A follows from the 
implicit function theorem and the fact that dXn± / ds is every
where transversal to the spheres S(p). This implies 
A = {PER:p>R I }, so that for every xER3 \.B(R I ) there ex-
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ists p ± = Iw ± (x) =Xo± (x),X)E!le,R,T and two geodesics 
r n± which pass through p ± . 

± 

Lemma 2: Let (JI'I,gI,il ), (JI'2,g2,i2) be two weak a-
completions ofa space-time (M,g), O<a < 1; let x andy be 
the appropriate coordinate systems, XaEWI,E, U{O}, 
yaEWI,Ez U{O}; let <t> denote the coordinate transformation 
ya(x/L) wherever defined; suppose that <t> be differentiable; 
and define N E, = {xa:XO = O,r(x)<EI }. If <t> (NE,) is con
tained in a wedge We,Ez ' fJ < 1, then there exists a Lorentz 
matrix A~ such that 

y/L = A~xv + ;/L, 

where {i satisfies 

'tI", < 1, 'tIXEW""E, : I;/LI <C( "')rl 
+ a, 

la/L ;vl<C("')~, la/L av ;PI<C(",)~-I. 

(4) 

(5) 

PrOOF The image by <t> of i l must be i2, otherwise there 
would exist a timelike curve from some point pEM to ii' 
contradicting point (iv) of Definition 1. Let ,XI' 

A 

= xIL/(xaxa ), y /L = Y /L/(yaya ); the hypersurface N~/E' 
= {,XI':r(x) > lIEI ,x° = O} is asymptotically fiat and is in

cluded in some boost-type domain of coordinates y /L with 
slope fJ smaller than I-the result follows from Theorem 1 
and Point 2 of Corollary 2 of Ref. 3. 

Lemmas 1 and 2 lead to the following theorem. 
Theorem 1 (uniqueness of geodesically regular weak 

completions, a < 1): If a space-time (M,g) admits one geo
desica1ly regular weak a-completion (M ,g,7), aE( 0,1), then 
the following holds. 
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(i) All weak a-completions of (M,g) are geodesically 
regular. 

(ii) All weak a-completions of (M,g) are related to 
each other by coordinate transformations of the form (4) 
and (5). 

Proof: Let (M,g,i) be some completion of (M,g), let 
{xa

} be the appropriate coordinate system for (M,g) , lety" 
be the coordinates of Definition 1 for (M,g), and let 'I' de
note the transformation ya (xl-' ). From Lemma 1 applied to 
the physical metric gl-'v in coordinates JcI' = xl-' I (xaxa ) one 
infers the existence of two hypersurfaces B ± sewn up from 
the geodesics rn±, nES(1). By geodesic regularity for all 
nES( 1 ) there exist (J n± such that 'I' (r n± ) C Wo n± ,E2 • By com

pactness of S( 1) we have sUPnES(I) (J n± = (Jo < 1. 15 Since 
Nl/R, = {xa:XO = O,r(x),lIR I} (R I given by Lemma 1) 
lies to the local future of B - C WOo,E

2 
and to the local past of 

B + C WOo,E
2 

we must have N I1R , C WO",E
2

' so that we can ap
ply Lemma 2 to conclude thaty(x) is oftheform (4), which 
establishes point (ii). It is not too difficult to show that x(y) 
must be of the form (4) as well, so that the image 'I' (n of 
any spacelike geodesic r = {ya(s),s>so}CO O(r).E

2 
will be 

included in '1'( W O(r),E
2

) C WO',Ei with some (J' < 1 and point 

(i) ensues. 
A metric shall be called a no-radiation metric if there 

exist coordinates XaEOR,oo =( - 00,00)X[R3"B(R)] 
such that goo<' - € for some positive €, gij is a positive defi
nite matrix with eigenvalues separated from zero, and (3) 

holds throughout OR, 00 with some constant C. The Kerr 
metrics are no-radiation metrics in this sense, with a = 1. 

Proposition 1: Weak a-completions of no-radiation met
rics, a> 0, are geodesically regular. 

Proof: By point (i) of Theorem 1 it is sufficient to show 
the existence of one geodesically regular completion. Let x a 

be the coordinates satisfying (3) and let xl-' = xl-' I (xaxa ). 
By Proposition B 1 of Appendix B of Ref. 3 every spacelike 
geodesic meeting io [i.e., such that x-+O:::::}r(x) -+ 00] be
haves asymptotically as follows: 

xa(s) = 7]';, S + o(s) 

for some constant vector 7]';, satisfying 7] I-'V 1foo 7]:' > 0, where 
s is an affine parameter, and we can normalize 7]';, to satisfy 
7]~ 7]~ = 1 (:::::} 17]~ I < 1). We have 

xa(s) = [7]';,/(1-I1J~ 12)]S-1 +O(S-I), 

so that xO(s) =1J~r(x(s»)+o[r(x(s»)] and for s large 
enough one obtains 

W(s) I <,(Jr(s) , (J = (11J~ I + 1)/2 < 1. 

III. STRONG CONFORMAL COMPLETIONS 

In Sec. II we have investigated the structure of the set of 
conformal completions in which the metric is allowed to 
blow up as one approaches "what would be the light cone of 
io'" As has been shown by Schmidt and Walker (cf. Appen
dix C of Ref. 4) much better behaved completions can be 
obtained for Kerr metrics. To justify our conditions on the 
conformally rescaled metric, to be presented later, let us re
call the Schmidt-Walker coordinates for the Schwarzschild 
metric: For s> 2m letf(s) be defined by 
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f(s) = s + 2m In(s/2m - 1) 

and let us set 

r* =f(r), r* = [f(v-I) +f(w- I)]l2, 

t = [f(V-I) - f(w-I) ]12, 

r = (v + w) 12, t = (v - w) 12, 

(6) 

(7) 

where rand t are the standard Schwarzschild coordinates 

d~ = - (1 - 2mlr)dt2 + (1 - 2mlr) -I dr + r d02. 
(8) 

In the coordinates v, W, vw> 0, the Schwarzchild metric 
takes the form 

1 
d~=-

(VW)2 

X { (1 - 2mlr) dv dw + (vwr)2 d02}. 
(1 - 2mv) (1 - 2mw) 

From Eqs. (6) and (7) one has 

r = r* - 2m In(r*/2m) +; *, 

with 

(9) 

;* = 2m In { 1 + 2m In [rl2m - l]1r} = o(ln[r*]) 
1 - 2mlr r* 

for large r*; therefore, from 

r* = rlvw + m{ln[ (1 - 2mv) (1 - 2mw)] 

-In[ 4m2vw]} 

one obtains, for small r, 
;* = (vwlr)O(lln[r] I + Iln[vwl!> 

= O(rlln[r]I ), for It I <,r 

and one obtains 

w=vwrlr= 1 + (mvwlr)ln(vwIP) + O(p), 

so that 

(w - 1)lr = m(1 - t 2/P)ln(1 - t 2/P) + OCr). 

The metric (9) can be written in the form 

d~ = 0-2g1-'V dJcl' dxv = 0-2 a~, 0 = vw = P - t 2, 

dSZ= (1-2mvwl(wr») (-dt 2 (Xidxi)2) 
A12A + ~2 (1 - 2mu)( - mw) r 

+ W2[ dx2 + dr + dP _ (Xi ~Xi)2 ] , 

(10) 

and we have limit I /'r w = 1, so that gl-'v can be continuously 

extended to the set t 2<,P, O<,r<,ro with some roo The metric 
gl-'v is of the form 

gl-'v = 7]I-'V + rkl-'v«(J,f/J,t Ir) + oCr) 

and we have 

Igl-'v -7]l-'vl<,CT 

(11) 

(12) 

for some constant C; the derivatives of gl-'v are, however, not 
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bounded up to the light cone of io = {xa = O}: One finds 

acu-InO - f 2/P), 

where cu is defined in (to), so that one obtains 

laugllv I <C, (f Ir), 

with C, (1]) = C[ IlnO - 1]2) I + 1] for some constant C. It 
must be emphasized that the singularity of C, (1]) at 1] = 1 is 
rather mild in the sense that 

f C,(1])d1] < 00. 

We also have 

ria" ap gill' I <C2 (f Ir), C2 ( 1]) - 0 - 1]2) -I, 

with 

10 

C2 (1])d1]<C'C,(O). 

This analysis '6 motivates the following definition. 
Definition 2: Here (M,g,io) will be called a strong com

pletion of a space-time (M,g) if M is the disjoint union 
Mu {io} and the following holds. 

(i) ForallpEM thereexistsnotimelikecurveinM from 
p to io. 

(ii) There exists a coordinate system XaEWI,Ex U{O} 
such that io = 0 and the points xaxa > 0 correspond to points 
in M. On M there exists a function O:M ..... R, n > 0 such that 
gill' = 02gllv and there exists a constant C and nondecreas
ing functions CI>C2:[0,1) ..... R+ such that 

'VXEn W1,Ex:lgllv - 1]llv I <Cr, lau gill' I <CI (11]1), 

rlau ap gllv I <C2 ( 11]1)' 1]=t Ir, 

with 

10 

C2 (1])d1]<C, (0), f CI(1])d1] = C\ < 00. 

(iii) n satisfies 

lim n = 0, lim all n = 0, for x;60 
x_a x_a 

lall av n - 2gllv l<Cr. 

(iv) For every 11]1 < I the limits 

lim au gill' (t = 1]r,r,O,</J) , 
r~O 

(13) 

(4) 

exist and are continuous functions of ( 1],0,</J ), where 0 and </J 
are standard spherical angles. 

Let us note that (13) implies that the Ricci tensor RaP 
of gill' satisfies 

IRapl<CR (1])r- l, 

rlOI t 
CR (0) = Jo CR (1])d1], Jo CR (O)dO = CR < 00 

(CR (1]) <c[ C2 ( 11]1) + Ci (11]1)]; therefore, CR (0) 

<c[ CI (10 I) + CI (10 I )SboiCI (1])d1]] = c[ 1 + CdCI (10 I) 
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with some numerical factor c). Our main result is the follow
ing theorem. 

Theorem 2 (quasiuniqueness of geodesically regular 
strong completions): Let (vIIl,gl,i l ), (vII 2,g2,i2 ) be two geo
desically regular strong completions of a space-time (M,g) 
and let {xa}, XEW1,Ex U{O} and {ya}, yEWI,E

y 
U{O} be the 

appropriate coordinate systems in viii and v112 • There exists 
a Lorentz matrix A~, a constant vector 0' , and a constant C 
such that for XEWI,Ex' 

ya = AcpxP + (C axllxll - 2XaXILCIL ) In r + {; a, 

1{;IlI<Cr, lav (;1l1<Cr. 

Moreover, for all 11]1 < 1 the limits 

lim [aa {;1l(t=Y7J,r,O,</J)r- I ], 
r~O 

exist and are continuous functions of (1],0,</J). 

(5) 

Proof: By Theorem 1 there exists a Lorentz matrix A~ 
such that for XENEx = {xa:XO = O,r<Ex }' 

ya = AcpxP + (;a, I{;al <Cr - E, lap{;al <Cr1 - E, (6) 

with any E> 0 and, in fact, a straightforward extension of the 
estimates of Ref. 3 leads to 

'VXENEx: 

{;Il = (CIlX2 
_ 2xllCx) In r + ;1l(O,</J)r + oCr), 

av{;a = av [ (CaxllXIl - 2~xIlCIL )In r + ;ar ] + oCr), 

ap au {;a = ap au [ (CaxllXIl - 2~xIlCIL )In r 

+;ar] +00) (7) 

for some constant vector 0' . By a slight abuse of notation let us 
denote by ~ the coordinates Acp y P, so that we can set A~ = lY:, 
in Eq. (6), and on NEx we have 

1'11~o =Yf,~o = O(rln r), 

r(y(x))II~o = rex) + O(rln r), 

all ~~o = 0: + O(rln r), 

aa apyt~o = O(lnr). 

(8) 

Now g~v and i.v are conformally related to each other, so that 
by definition, there exists a function cI>: WI,Ex ..... R+ such that 

'Vxa,~xa >0:cI>2(X)g~,,(x) =iap(Y(x)) a~ ayp . (19) 
axil axv 

Equations (13), (8), and (19) yield 

_ {deti.v}I/8 { (ayp )}114 cI> - -- det--
detgl ax" Ill' 

=>cI>ll~ 0 = 1 - 2Cx In r + <J,(O,</J )r+ oCr), 

all cl>11 ~ 0 = - 2CIl In r + Xil (O,</J) + 00 ) 
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for some functions <i> ( O,rp ), X IL (O,rp). The transformation law 
of the Christoffel symbols gives 

aa ap ylL = [r~~ + <1>-1 (8~ ap <I> + 8~ aa <I> 

_gl ...A.o-a <1»] aylL _r21L(y(x»)aypa~ 
apl> I 0- ax'- po- a~ axP ' 

(22) 

where r l and r 2 are the Christoffel symbols of the metrics g~v 
and iJ,v' The formula for the transformation of the Ricci tensor 
under conformal transformations reads as 

- <I>-lgfP:: ~] g~v} . (23) 

By (18) and (21) one can find Eo<min(Ex,e- l ) (e is the Euler 
number) small enough so that for all xENEn we have 

~<<I>II = o<~, 3r(x)/4<r(y(x»)II= 0 <Sr(x)/4, 

l a~_8pl <!, lar_r(Y(x») ar(y) I >~. 
axP 11=0 4 at r(y(x») at 11=0 4 

Let 

for 7JE[O, 1), 

CR,(rJ} 

== sup r(x)lR~v(x)1 and CR,(-7J)==CR,(7J), 
/-L. V,XE wl1,E

x 

for 7JE[O,l), 

CR , (rJ) 

== sup r(y)lR!v(y)1 and CR,( -7J)==CR,(7J), 
J.I.,v.yew1J.E"y 

fora = 1,2, 

CRa(O) = 1'81 

CR)7J)d7J, C\a = f CR)7J)d7J( < 00). 
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Let n C WI •
Eo 

be the set of points such that 

lalL <1>1 <C", (x) + C", In( 1/r), 

! <<I> < 2, 

r(x)/2 < r(y(x») < 3r(x)/2, 
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(24) 

where 

C",(x):= (2+243-~~)CR,(7J) + (24 33 

7 - - -+2 Cg,Cg,)CR2 (7J(X») + 1 =:aCR,(7J) 

+ bCR, (ij(x») + 1, ij(x) ==r(x)lr(y(x»). 

Let n; CO be the set of points x a such that the curve 
[O,t] 3s-+ (s,x) is included in O. We have NEn CO;; let O. be 
the connected component of 0; which contains NE . We 
shall show that there exists ° < EI <Eo such that O. n W •. E , is 
closed in W •. E , By (23) we have, for XaEO., 

I ~ a<l>I<[(1 +233-~g2 )CR (7J) + (2332 

at axil ' , 

+ 263 -·Cg, Cg2 )CR, (ij)] r(x)-· 

+ (2
2 

+ 24C~, ) {C", (x) + C", In [r(~)]} 2 

+ 23
3Cg, Cf (7J){ C'" (x) + C", In [r(~;]} , 

where Cf is the function C. in Eq. (13) for the coordinate 
system x a

, extended to negative 7J by C f ( - 7J) == C f ( 7J). 
From 

I 
a<I> (f,x) I < I a<I> (O,x) I + r I a 2 

<I> (s,x) IdS, 
axil axil Jo at aX' 

and from 

L CR, (;) ds = rCR, (;) , 

r CR [ r(s,x) ] ds 
Jo ' r (y(s,x») 

= ri](X) C
R
, (7J) r(y) d7J 

Jo - arlat - [rlr(y)][ar(y(x))/at] 

<3r(x) li](X) CR2 (7J)d7J 

= 3r(x)CR (~), 
2 r(y(x») 

L [ c'" (s,x) + C", In ( + ) r ds 

<2 L [c~ (s,x) + C~ ln2 (~:)] ds 

<2C",(x)(aCR +3bCR + 1)r(x) +2C~rln2(!) 
" r 

we have used the facts that C'" is nondecreasing along the 
curves [O,t) 3s-+ (s,x), and It 1< r in W.,E,]' 

L C'" (s,x)Cf (;) ds<rCfC", (x), Cf == f Cf (7J)d7J, 

one obtains 

lalL <I>(f,x) I 

<C", In G) + (23 + 25C~, )E.ln2 C) C~ 
+ 233Cg,CfE.ln C) C", + H + [(23 

+ 25C~,) (aCR, + 3bCR2 + 1) 
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+ 233Cg , en €I }C.p (x) 

(1) 1 5C.p(x) 
<C.p In -; +8+--8-

(1) 3C.p (x) 
<C.p In - +---

r 4 
for €I small enough. This gives 

1<I>(t,x) -11<I<I>(O,x) -11 + So' la, <I> (s,x) Ids 

1 - = 
<- + (aCR + 3bCR + 1 )€I 4 ' 2 

decreasing €I if necessary. One shows in a similar way that 
none of the inequalities in (24) can saturate for 
xaenln WI.E, if€1 is small enough, so that !lIn WI,E, is both 
open and closed in WI,E,; therefore, !lIn WI,E, = WI,E,. It is 
not too difficult to show from (22) and (24) that <I> and 
ay 1'/ axv uniformly tend to 1 and ~ atio and (23) yields 

lim [a<I> (t = NJ,r,O,f/J) - ~ (o,r,o,f/J)] 
r-O a;(- ax 

. i7Jr a2
<1> = hm --ds = :AA (TJ,O,f/J), 

r_O 0 at ax!-
(25) 

with some continuous functions AA (TJ,O,tjJ), so that from 
(21) and (25) one has 

a<I> (t = NJ,r,O,f/J) = - 2CA In r + AA (TJ,O,f/J) + 0(1) 
a;(-

for some continuous functions A A and (17) and (22) imply 

a{J ~ = 8<p + 2( Cax{J - C{Jxa - 8<pCl'xl') 

Xln r + rA p(O,f/J,TJ) + o(r), 

with some continuous functions A <p; a straightforward anal
ysis establishes our remaining claims. 

Two completions differing by a transformation of the 
form (15) with C I' = 0 can be considered as equivalent. 
Theorem 2 and Proposition 1 implyl? the following corol
lary. 

Corollary 1: Strong conformal completions of no-radi
ation space-times are unique up to the four-parameter family 
of transformations (15). 

It may be of some relevance to note that the logarithmic 
transformations (15) are notthe ones given in Appendix 1 of 
Ref. 18: The latter introduce singularities in gl'v-TJl'v at the 
light cone of io, while (15) do not. 

It is natural to ask about the group properties of the 
transformations (15) since ris not Lorentz invariant: Under 
a Lorentz transformation ~ = A<pxfl we have 

r(y) = ~A~xI'A~xv 

= r(x)~A~ (xI'/r)A~(xv/r) = f(TJ,O,tjJ)r(x), 

so that 

In r(y) =In r(x) +In/ 

and the In/ terms can be absorbed in ~ , which shows that a 
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composition of transformations (15) is still of the form 
(15). 

Let us finally note the existence of a set of coordinates 
for the Schwarzschild metric in which the metric is slightly 
worse behaved at io than in (11) and (12); however, for r#O 
the first derivatives of the metric do not blow up as one ap
proaches the light cone of l~. Let us set 

r* =/(r), r* = Hi(v- I
) +i(w- I

)], 

t=Hi(v- l
) -i(w- I

)], r=Hv+w], 

t = Hv - w], i(s) = s + 4mln(s12m), 

with r, t as in (8) [this choice of i cancels these terms in 
r(v,w) which exhibit the worst behavior at the light cone of 
iol. One obtains 

ds2 = fl-2 dSZ, fl = vw, d'S2 =gl'v dF dj;v, 

Igl'v - TJl'v I <0 In r, laa gl'v I <Cln r 

for some constant C. An unpleasant feature of these coordi
nates is the logarithmic blowing up of (gl'v - TJl'v)/ r at 
r = 0; however, we have 

gl'v = TJI'V + r[ it ~v (ij,O,f/J )In r 

+ it !v (ij,O,f/J)] +o(r), ij=t/r, 

which is of simple and tractable form. 

IV. CONCLUSIONS 

We have shown uniqueness "up to logarithmic ambigu
ities" of Ashtekar-Hansen4

•
5 completions satisfying a geo

desic condition. We conjecture that the geodesic regularity 
condition is unnecessary in the case of strong completions 
and that it cannot be removed without losing quasi unique
ness of the weak completions. It may be of some interest to 
mention that in Theorems 1 and 2 the geodesic regularity 
hypothesis may be replaced by the probably much weaker 
condition that there exists a spacelike geodesic r extending 
to io such that rc W~y,Ey' rc WexoEx with some O<Ox, ° < 1, where WYo c and We E areappropriateyandxcoor-y y,O::y X' x 

dinate wedges. This condition does not, however, character-
ize some completion, but pairs of completions. It is likely 
that a proof of quasiuniqueness of strong conformal comple
tions without any further conditions can be obtained by 
showing that such geodesics always exist. 

It must be stressed that the Kerr family of metrics ex
hausts the up-until-now known set of vacuum Einstein met
rics admitting strong completions of spatial infinity, so that 
the results of Sec. III cover all actually known physically 
relevant examples: The metrics recently constructed by Cut
ler and Wald l9 or Christodoulou20 are "Schwarzschild in a 
neighborhood of io," so clearly our theorems apply. It seems 
rather difficult to guess whether there exists some sufficient
ly large class of vacuum space-times admitting weak or 
strong completions, the existence of which would justify the 
need of a search for more general results than those present
ed here. 

An important consequence of our results is that one can 
assign an invariant mass parameter (cf., e.g., Ref. 21) to 
every vacuum space-time admitting strong or weak geodesi-
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cally regular completions, a> !-this complements the re
sults presented in Ref. 3. 
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Two-sided conformally recurrent four-dimensional Riemannian manifolds are defined and 
analyzed from the point of view of the Petrov-Penrose classification. All two-sided 
conformally recurrent four-dimensional Riemannian manifolds of types D ® D, N ® N, and 
N® [ - ] are given. 

I. INTRODUCTION 

Let M be a COO four-dimensional real differentiable 
manifold or a four-dimensional complex analytic differen
tiable manifold endowed with a Coo real or holomorphic, 
respectively, metric g. 

Then (M,g) is said to be a two-sided conformally recur
rent Riemannian manifold if there exist spinors r AB and r AB 
such that 

V EPCABCD = rEPCABCD , 

V EPCABCb = rEPCABCb , 

and, moreover, 

L (ICABCDI + ICABCbi> #0, 
A,B,C,D 

( Ua) 

(Ub) 

(Uc) 

where CABCD and CABCb are "undotted" and "dotted" Weyl 
spinors, respectively. (In what follows ''f #0" means ''fis 
nowhere vanishing.") If (M,g) is a space-time of Einsteinian 
general relativity, i.e., a four-dimensional Riemannian mani
fold with metric g of the Lorentzian signature, then our de
finition contains the complex recurrent spaces defined by 
McLenaghan and Leroy. 1 The cited authors have found and 
analyzed in detail all two-sided conformally recurrent Rie
mannian manifolds with Lorentzian metrics. It is worth 
pointing out that the space-times of pp waves are two-sided 
conform ally recurrent Riemannian manifolds. 1-4 

The purpose of our paper is to examine all two-sided 
conformally recurrent Riemannian manifolds. It may seem 
to be an "academic problem" only. But it is not so because of 
great interest in the complex relativity and gravitational in
stantons; and, as will be shown, there are some essentially 
new solutions of the type N ® [ - ] that define the complex 
(or ultrahyperbolic) space-times. The formalism we use is 
the spinorial one, which seems to be the most convenient for 
our purpose. The spinorial formalism for all four-dimension
al real or complex Riemannian manifolds has been amply 
described in Refs. 5 and 6. Here we will only outline the basic 
facts. 

The four-dimensional Riemannian manifolds can be 
classified according to the scheme 

a) On leave of absence from the University of Warsaw, Warsaw, Poland. 
b) Permanent address: Instytut Fizyki, Politechnika tOdzka, W6lczanska 

219,93-005 L6dz, Poland. 

"complex relativity" (CR): 

M complex analytic, g holomorphic; 

"real relativity" (RR): 

M real, g real of 

{

( + + + -) or (

signature (+ + - - ): UR, 

(+ + + +) or (-

+): HR, 

- - -): ER, 

where HR, UR, or ER stand for "hyperbolic relativity," "ul
trahyperbolic relativity," or "Euclidean relativity," respec
tively. In all cases we postulate the metric in the form of 

g = - !gAB ® gAB, A = 1,2, iJ = i,2" (1.2) 
s 

where gAB are one-forms constituting the components of the 
canonical spinor-valued one-form on M. Spinorial indices 
are to be manipulated according to the scheme 

"'1=",2, "'2= _",1; "'i =",i, "'i = _",i. 

(1.3 ) 

The one-forms gAB in CR are holomorphic; in RR (in gen
eral) they are complex valued and additionally endowed 
with the following properties under complex conjugation: 

HR: gAB = gBA or gAB = _ gBA, resp., 

UR: gAB = gAB , 0.4) 

ER: gAB = - gAB or gAB = gAB' resp. 

Components of contravariant spinors of the first rank are 
subject to the transformations 

",A' = IA 'A ",A, ",A' = IA'A",A, 

with 

CR: IIIA'A II,IIIA'A liE SL(2;C); 

HR: IIIA'A liE SL(2;C), IIIA'A II = IIIA'A II; 

UR: IIIA'A II,IIIA'A liE SL(2;R); 

ER: IIIA'A II,IIIA'A liE SU(2). 

The first Cartan structure equations read 

( 1.5) 

where D is the exterior covariant differentiation and r A 
B 

and r A B are components of connection one-forms for the 
vector bundles of undotted or dotted, respectively, contra-
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variant spinors of the first rank. The one-forms r A Band 

p4 B satisfy the conditions 

rA
A =0 = rA

A . ( 1.7) 

The second Cartan structure equations read 

RAB = drAB + rAcl\r C
B, RAB = drAB + rAcl\rc

B, 

( 1.8) 

where RA Band R ABare the components of curvature two
forms ofrA Band r A

B , respectively. 
One has the following decomposition: 

RAB = - !CABCDSCD + (R 124)SAB + !CABCDSCD, 

RAB = - !CABCDS CD + (R 124 )SAB + ~CCDABS CD, 

( 1.9) 

where 

SAB: = !ECDgAc I\gED, SAB: = !ECDgcA I\gDB (1.10) 

constitute a basis for self-dual and anti-self-dual, respective
ly, two-forms 

C ABCD = C(ABCD) and C ABCD = C(ABCD) are the Weyl spin
ors; R is the curvature scalar; and C ABCD = C(AB)CD 

= CAB(CD) is the spinor image of the traceless Ricci tensor. 
These objects have the following properties with respect 

to the complex conjugation: 

CR: CABCD,CABCD,CABCD,R complex; 

HR: C ABCD = C ABCD ' C ABCD = CCDAB' R = R; 

UR: CABCD,CABCD,CABCD,R real; (1.11) 

ER: C ABCD = C ABCD, C ABCD = C ABCD, 

-C-- C ABCD R- = R. ABCD = , 
One then introduces the "spinorial gradient V AB" as acting 
on spinors via 

D '·,... ("ABo-. I{I'" 
't' ... = - 20 v AB .... (1.12) 

With the help of this operation we can express the Bianchi 
identities DRA B = ° = DR A B in the form of 

VCDCACBD + ~VABR = 0, VEACBCDE + V(BECCD)AE = 0, 

VA ECBCDE + VE(BCIEAICD) =0, (1.13) 

and the Ricci identities for one-index spinors in the form of 

and 

(VE . V . ,.,A - ,.,EC A .. 
2 (C IEID)'t' - 't' ECD' 

!V(C EV DlEI{IA = I{IE( - C
A 

ECD + (R 112)EE(co
A 
Dl)' 
(1.14 ) 

!V(CEVDlEI{IA = I{IECCDAE' 

!VE(CVIEID) I{IA = I{IE( - C
A

ECD + (R 112)EE(coADd. 

(1.15) 

Knowing (1.14) and (1.15) one can easily find the Ricci 
identities for any spinor I{Ik" B' . " applying (1.14) and 
(1.15) to each index in the additive manner. 

The above-presented basic facts of the spinorial formal
ism are essential for our further considerations. 
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In Sec. II we find the Petrov-Penrose types of two-sided 
conformally recurrent four-dimensional Riemannian mani
folds. 

In Sec. III we consider the types D ® D and N ® N. 
In Sec. IV we present the integration of the type 

N® [-]. 

II. THE PETROV-PENROSE CLASSIFICATION OF TWO
SIDED CONFORMALL Y RECURRENT RIEMANNIAN 
MANIFOLDS 

We assume that the four-dimensional Riemannian 
manifold (M,g) is two-sided conformally recurrent and in 
the condition (1.1 c) we assume, for definiteness, 

L ICABcDI #0. (2.1) 
A.B,C,D 

Acting with !VE (P V1E1Q) on C ABCD , employing (1.1a) 
and the first of Eqs. (1.14), one obtains 

CABCD(i)" _ 4CS(ABCCD) .. 
PQ - SPQ' 

(i)PQ = (i)(PQ) : = !Vs(prISIQ) . (2.2) 

Similarly, acting with !V(P EV Q)E on C ABCD , using (1.1a) 
and the second of Eqs. (1.14), one has 

_ CABCD(i) _ 4[CS(ABCCD) 
PQ - SPQ 

+ (R 112)C(ABc(poDl Q) ] , 

(i)PQ = (i)(PQ): = !V(pErQ)E . 

Define the one-form 

r: = - ~rABgAB. 

Then we have 

dr= !«(i)ABS
AB + (i)ABS

AB
). 

From (2.5) it follows that 

dr = ° ~ (i) AB = ° = (i) AB • 

We now intend to prove that (i)PQ = 0. 

(2.3 ) 

(2.4 ) 

(2.5) 

(2.6) 

Using (1.1a) one easily finds the following formulas: 
2 2 3 3 

dC = 2Cr, dC = 3Cr, (2.7) 

where 

C
2 

'CAB CCD 3. AB CD EF 
• CD AB' C. = C CDC EFC AB' 

2 3 
ForP~trov-PenrosetypeI, ICI + ICI#O,andfortypes 

II and D, C #0; thereforedr = ° [by (2.7)] and consequent
ly (i)PQ = ° [by (2.6)]. For type N, with C ABCD 
= kAkBkCkD' (2.3) obviously reduces to 

- k Ak Bk ck D(i)PQ = (R 13)k Ak Bk (Ck(poDl Q) . (2.8) 

Contracting this with kD one obtains R = 0, which, used 
back in (2.8), implies (i)PQ = 0. 

Therefore, one has 

type N: R = 0, (i)PQ = 0. (2.9) 

It remains only to examine type III. We show that this type is 
altogether incompatible with condition (2.3). Indeed, sub
stituting into (2.3) C ABCD = k (Ak Bk Cl D), with ~ IA #0, 
and then contracting (2.3) with IAIBlclD one has 

° = - !(kAIA )5k(pIQ) + (R 112)(k A/A )3/p lQ • (2.10) 
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Contracting (2.10) with k!' IQ we obtain ! (k A I A ) 7 = 0, 
which contradicts the assumption ~ IA #0. 

We thus conclude as follows: type III is "forbidden"; for 
types I, II, D, and N, if they are admissible, one has 

WPQ = O. (2.11) 

With (2.11), formula (2.3) reduces to 

CS(ABCCDlsPQ + (RI12)C AB(c( poD)Q) =0. (2.12) 

Setting D = P, and then contracting with EQD and lowering 
the indices C and D, one obtains 

CABpSCPS CD + (R /12)C AB CD - j COA(COB D) = O. 
(2.13 ) 

But we also have the Hamilton-Cayley equation7
•
8 

C AB cPQ C RS lC
2
C AB IC

3 
JlA JIB 0 PQ RS CD - 2 CD -1 U (Cu Dl = . 

(2.14 ) 

From (2.13) and (2.14) it follows that 
2 3 

C = 6(R 112)2, C = - 6(R /12)3. (2.15) 
2 3 

Hence the invariant a: = !(C)3 - 3(C)2 vanishes. From 
this fact and from the fact that the minimal polynomial for 
CAB CD is of order 2 [see (2.13 ) ] it follows that the undotted 
Weyl spinor must be either of type D or N. In the case of type 

2 . 
D, C # 0 and consequently by (2.15), R # O. 

The exterior covariant differentiation of (2.13), with 
the use of (1.1a) and (2.13), gives 

dR - Rr = 0, (2.16) 

so that, in the case of type D, 

r=dlnR. (2.17) 

Similar considerations concerning the dotted Weyl spinor 
CABeD satisfying condition (l.1b) lead to the final conclu
sion: If a four-dimensional Riemannian manifold (M,g) is 
two-sided conformally recurrent, then it must be one of the 
following Petrov-Penrose types: 

CR,HR,UR,ER: D®D, R #0, r=dlnR=r; 
(2.1Sa) 

CR,HR,UR: 

CR,UR,ER: 

CR,UR: 

N®N, R=O; (2.1Sb) 

D® [-], R #0, r=dlnR; 
(2.1Sc) 

N® [-], R =0. (2.1Sd) 

Cases (2.1Sa) and (2.1Sb) have been analyzed in detail 
for HR in Ref. 1 with the use of the bivector formalism. 

The results can be easily generalized on all possible four
dimensional Riemannian manifolds and we consider this 
problem in the next section using the spinorial formalism. 
Then we find all N ® [ - ] two-sided conformally recurrent 
spaces. 

Up to now we have not succeeded in integrating the type 
D ® [ - ]. It seems to be a rather hard problem. The work on 
it is underway. 

III. THE INTEGRATION OF TYPES oeD AND NeN 

We intend to integrate types D®D and N®N for the 
case of CR and then find the corresponding RR cases taking 
suitable real slices. 
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A. The type De 0 

From (2.12) and its dotted version it follows that 

CABCD = iRic.AJcDl' CABeD = iRic.AJeD) , 

with 

lAB = ic.AB» lAB = ic.AB» 

!IAJ
AB = - 1 = !IAJ

AB
. 

(3.1) 

(3.2) 

One then easily finds that, as a consequence of (1.1a), 
(l.1b), and (2.1Sa), 

DIAB = 0, DIAB = O. (3.3) 

Now as from (2.1Sa) onehasR #O,dr = 0 = dr,andformu
las (2.2) and (2.6) with their dotted versions give 

I S(AI BCC Dl SPQ = 0, C PQ S(:y Bel D) s = O. (3.4) 

Simple analysis of (3.4) leads to the formula 

CABeD = iPIAJeD , (3.5) 

where P is some scalar. 
Using the freedom of the SL(2;C) X SL(2;C) gauges we 

can always choose the spinorial frame so that 

III = 0 = h2; 112 = E, E = ± 1; 

Iii = 0 = hi; Iii = E, E = ± 1. 
(3.6) 

From (3.3) with (3.6) one easily infers that in the present 
gauge 

r ll = 0 = r 22, r 12 #o, 
r ii = 0 = r h , r ii #0. 

(3.7) 

(r12 and r ii must be nontrivial because RAB and RAB are 
nontrivial. ) 

Assuming (3.7), the first structure equations (1.6) re-
duce to 

dg1i + ( - r l2 - rii) /\gli = 0, 

dg1i + ( - r l2 + r ii ) /\gli = 0, 

dg!i + (r12 + r ii ) /\g!i = 0, 

dg!i + (r12 - r ii ) /\g!i = O. 

(3.S) 

The second structure equations ( 1. S) now reduce to the only 
effective conditions 

dr '2 = - (R /S)S 12 + EE(P /S)S ii, 

drii = - (R /S)S ii + EE(P /S)S 12. 
(3.9) 

The structure (3.S) and (3.9) is now easily integrable. 
As gAB /\ dgAB = 0 (no summation over A and B), there 

exist local coordinates (1], fJ,s,t) and the functions A, A, B, 
and B such that 

gli =,{2A d1], gli = {i.B dS, 

g!i = -,{U dfJ, g!i = {i.B it. 
(3.10) 

This fed back into (3. S) gives as a consequence that there 
exist functions C, C, D, and D such that 

r l2 + r ii = dinA + 2C d1], 

r l2 + r ii = - dInA - 2C dfJ, 

r l2 - r ii = dlnB + 2DdS, 

r l2 -r ii = -dlnB-2Ddt· 

J. F. Plebar'lski and M. przanowski 
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The consistence of these relations requires 
- -2 -AA = '11 , C = a'1 In '11, C = ail In '11, 
- -2 -BB = <I> , D = as In <1>, D = at In <1>, 

(3.12) 

where <I> and '11 are the functions of two variables only: 

(3.13 ) 

We thus infer at this point that the metric has the general 
form of [see (1.2)] 

g=2<1>-2(5,t)d5 ® d#:+2'11-2(17,fJ)d17 ® dfJ· (3.14 ) 
s s 

Without any loss of generality we can set AB 
= '11- 1<1>-1 =AB in (3.10). Then from (3.11) and (3.9) 

one obtains 

R = - 4 ['I12(1n '11) ,'1,iI + <1>2 (In <I»,st] #0, 

p = 4EE[ '112 (In '11) ,'Iii - <1>2 (In <1» st ] . 
(3.15) 

We now can give a plausible geometric interpretation of the 
results obtained. 

All two-sided conformally recurrent four-dimensional 
Riemannian manifolds of the type D ® D are just the Carte
sian product of two two-dimensional Riemannian manifolds 

g=gl +g2' 

gl: = 2<1>-2(5,t)d5 ® dt, g2: = 2'11-2(17,fJ)d17 ® dfJ, 
s s 

with the curvature scalars 

RI = - 4<1>2(1n <I»,st' R2 = - 4'112(1n 'I1),'1i1 ' 

respectively. Therefore (3.15) just says 

R = RI + R2#0, P= EE(R 1 - R2). 

(3.16 ) 

(3.17 ) 

(3.18 ) 

Now according to Ruse9 we define a recurrent n-dimension
al Riemannian manifold to be one that is nonflat and for 
which there exists a vector field r a' such that the covariant 
differential of the curvature tensor R af3rli satisfies the condi
tion 

( 3.19) 

If, in particular, r£ = 0, the Riemannian manifold is sym
metric. It can be shown that (3.19) is equivalent to the fol
lowing relations: 

(3.20) 

where Caf3rli and Caf3 are the Weyl tensor and the traceless 
Ricci tensor, respectively. Therefore, every conformally 
nonflat recurrent Riemannian manifold is also conform ally 
recurrent, 10 i.e., 

(3.21) 

and every symmetric Riemannian manifold is conformally 
symmetric, II i.e., Caf3rli;£ = 0. 

In the case of n = 4 we can state that every recurrent 
space with Caf3rli #0 is two-sided conformally recurrent. 

For the type considered, D ® D, one easily finds that the 
following statements are equivalent: 
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R = const {::} R 1 = const and R2 = const 

{::} (M,g) is conformally symmetric 

{::} (M,g) is symmetric, 

Now we would like to state that the derived metric 
(3.14) covers all two-sided conformally recurrent four-di
mensional Riemannian manifolds D ® D if some suitable re
strictions are imposed on the local coordinates 17, fJ, 5, and t 
and the functions '11 ( 17,fJ) and ~(5,t). Namely, one has 

CR: 17,fJ,5,t complex, '11,<1> holomorphic; 

HR: 17,fJ real, 5 complex, t =?, 
'11 , <I> real ( + + + - ) or pure imaginary 

(- - - +); 

UR: 17,fJ,5,t real, '11,~ real; 

ER: 17,5 complex, fJ = rj, t = ?, 
'11, <I> real ( + + + + ) or pure imaginary 

(- - - -). 

It is worthwhile to notice that according to (3.5) the spinor 
CABcb , which enters as the source into the Einstein equa
tions, has an algebraic structure compatible with the struc
ture of the source of the nonlinear electrodynamics of Bom
Infeld type. 12 The consequences of this observation will be 
examined elsewhere. 

In the special case R = const ::::::? P = const, the metric 
(3.14) is commonly interpreted as the Bertotti-Robinson 
solution13,14 with the cosmological constant A. #0. 

The same case can be, however, reinterpreted as some 
solution to the Einstein and Bom-Infeld equations with the 
electromagnetic field covariantly constant. 

B. The type Ne N 

In this case we have 

CABCD =pkAkBkCkD' CAiJeb =pkAkiJkckb' 

p#O, p#O, L IkA 1#0, L IkA 1#0. (3.22) 
A A 

From (1.1a), (1.1b), and (3.22) one finds 

(D+dlnp-~r)kA =0, (D+dlnp-!r)kA =0. 
(3.23 ) 

Consequently, the null vector field kl' = gAiJl'kA kiJ appears 
to be recurrent, i.e., 

Dkl' = akl" f.-l = 1, ... ,4, (3.24) 

with a = ~(r + r) - d(lnp + Inp). The spin tensor gAiJl" 
f.-l = 1, ... ,4, is defined by the formula, gAB = gABI' d:xl', where 
{xl'}, f.-l = 1, ... ,4, is a local coordinate system. Conversely, if 
a null vector field kl" f.-l = 1, ... ,4, is recurrent, i.e., it satisfies 
the condition (3.24) for some one-form a, then the spinor 
fields k A and k A defined by the relation k I' = gAiJ It k A k iJ are 
recurrent: 

(3.25) 

where sand s are one-forms such that s + s = a. Therefore, 
using arguments similar to those in Sec. IV [see Eq. (4.28)] 
one arrives at the following statement: If (M,g) is two-sided 
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conformally recurrent Riemannian manifold of the type 
N ® N then the quadruple Debever-Penrose vector fields is 
recurrent; conversely, if a null vector field kJl. on Rieman
nian manifold (M,g) of the type N ® N is recurrent then 
(M,g) is two-sided conformally recurrent and kJl. is the qua
druple Debever-Penrose vector field. In the case ofHR this 
statement is given in Ref. 1. [Remark: One can easily prove 
that for UR or HR, if (M,g) admits a recurrent null vector 
field then it also admits a real recurrent null vector field.] 
The HR metrics admitting the existence of a recurrent null 
vector field were examined by Walkerl5 and by Debever and 
Cahen. 16 The general N ® N metric of this type (¢} the gen
eral N ® N metric of a two-sided conformally recurrent Rie
mannian manifold) for the case ofHR was found by McLen
aghan and Leroy.1 Analogous considerations lead to the 
conclusion that, in the case of CR, the general metric of 
Riemannian manifold admitting a recurrent null vector field 
is ofthe following Debever-Spelkens l

•
17 form: 

g=2dv ® (du+Cdv) 
s 

+2q-2(dz+pdv) ® (dz+pdv), (3.26) 

where v, u, z, and z are local coordinates, C = C(v,u,z,z), 
q = q(v,z,z),p = p(v,z,z) , andp = p(v,z,z) are arbitrary ho
lomorphic functions. The one-forms ltB defining the metric 
(3.26) according to (1.2) can be taken in the form 

gli = {l(du + C dv), gli = {lq-I(dz + p dv), 

g2i= -{ldv, g2i={lq-l(dz+pdv). (3.27) 

Then from the first and second Cartan structure equations 
( 1.6 )-( 1.10) with ltB given by (3.27) we obtain 

2105 

r ll = 0, 

r 12 = - !(C.u + F - F>dv - !(In q).z dz 

+ !(In q).z dz, 

r 22 = q-I [p(F + FJ - PP.z - q2C.z ] dv - q-Ip.z dz 

+ q-I(F + FJdz; (3.28) 

Cllll=O, Cll12 =O, 

CIl22 = - H!c. uu + i(ln q).zz]' 

CI222 = q{ - HC. u + F - F - (In q).u l.z 

(3.29a) 

(3.29b) 

- p(ln q).zz}, (3.29c) 

C2222 = {p [2F + (In q) ,u] - pp,z - q2C,z + P,v },z 

+ 2p,z [!C. 1l + F - F - (In q),v] 

- 2p2(ln q),zz; 

R = 12C1122, 

CIIAB = 0, 

C12ii = 0, 

C12ii =H~C.1l1l -q2(lnq).u], 

(3.29d) 

C12ii =q{Hc.1l +F-F+ (lnq).v],z -p(lnq),u}' 

C22ii = 0, 

C22ii = q~H C,Il + F - F + (In q),u ].z - p(ln q),u}' 
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C22ii = p{[F - F + (In q).v ].z - 2p(ln q).u} 

+ [p(F + F> - PP.% - iC.z ].z 

- 2q{q-1 [p(F + FJ - PP.z - iC.z ] }.z 

+ q[q-I(F + F> Lv 

+ (F+F>(C,1l +F-F>; 

where 

F:=p(lnq),z -!(lnq),v -~p,z, 

F: = p(ln q).z - !(In q),v - !p,z' 

(3.30) 

(3.31) 

Now rAB and CABeb can be found from (3.28) and (3.29), 
respectively, by the following interchanges: 

z++z, p++p, F++F. 

Formulas (3.26)-(3.31) define the generalfour-dimension
al complex Riemannian manifold admitting a recurrent null 
vector field. 

We intend now to specialize them for the type N ® N. In 
this case one has 

C1l22 = ° = Ciiii , 

CI222 = ° = Ciiii , 

(3.32) 

(3.33 ) 

C2222#0#Ciiii' (3.34) 

From (3.29c) and its dotted version, with (3.33) assumed, 
C. IlIlZ = ° = C. IlUZ ' Hence 

C = - ek 2(V)U2 + I(v,z,z)u + m(v,z,z), (3.35) 

wheree = - 1,0, + 1 andk(v), I(v,z,z),andm(v,z,z) areas 
yet arbitrary holomorphic functions. 

Then from (3.29b) with (3.32) and (3.35) one has 

qq,zz - q,.q,z = ek 2(V). (3.36) 

This is the Liouville equation for q with the general solution 

q = k(v) (1 + erprp)/(rp,zrp.z) 1/2, (3.37) 

where rp = rp(z) and rp = rp(z) are arbitrary holomorphic 
functions. Without any loss of generality we can set rp = z 
and rp = Z. Thus (3.37) is of the form 

q = k(v) (1 + ezz). (3.38) 

Then Eqs. (3.33) and (3.29c) and its dotted version, with C 
and q given by (3.35) and (3.38), respectively, lead to the 
following conclusion (compare Ref. 1): There exists a func
tion a(v,z,z) such that performing the coordinate transfor
mation preserving the form of the metric (3.26), 

Zl--+Z, Zl--+Z, u--.v, Ul--+U + a (v,z,z), 

one obtains that 

p = p(v,z), P = p(v,z), 

I=!(p,z +p,z) -e(1 +eZZ)-I(Zp+Zp). 

(3.39) 

(3.40) 

(3.41 ) 

Finally, the general metric of a two-sided conformally recur
rent four-dimensional complex Riemannian manifold of 
type N ® N is of the form 

g = 2 dv ® [du + ( - ek 2U2 + Iu + m) ] 
s 

+ 2k -2( 1 + eZz) -2(dz + p dv) ® (dz + P dv), 
s 

(3.42) 
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where E = - 1,0, + 1; k = k(v), m = m(v,z,z),p = p(v,z) 
and p = p(v,z) are arbitrary holomorphic functions; and 
1= /(v,z,z) is defined by (3.41). 

Then the non vanishing components of the curvature are 

C2222 = - k 2(1 + EZZ) Uu(1 + EZZ)P.zzz + 2Ezm.z 

+ (1 + Ezz)m.zz ]; 

C12ii = - Ek 2, 

C12ii = k( 1 + EZZ)l.z, 

C22ii = k( 1 + EZZ)l.z' 

C22ii =Pl.z +Pl.z -l.v + k 2
(1 +EZz)2m.zz 

(3.43 ) 

- (In k) .vv + 2Ekk.vu + (/ + In k),v (In k) ,v' 
(3.44) 

[Ciiii can be found from (3.43) by the replacements Zl---+Z, 

Zl---+Z, and p---+p.] 
Assuming that 

C12ii = C12ii = C22ii = 0, (3.45 ) 

one can bring the metric (3.42) to the form 

g = 2 dv ® (du + m dv) + 2 dz ® dz, ( 3.46) 
s s 

where m = m(v,z,z) is an arbitrary holomorphic function. 
This is the Robinson metric for the space of plane-fronted 
waves with parallel raysl,2,4 (pp waves). 

Then (3.46) is the vacuum metric iff C22ii = 0, i.e., 
m = H(v,z) + li(v,z), where H(v,z) and li(v,z) are arbi
trary holomorphic functions. 

One can easily find (compare Ref. 1) the following spe
cial cases of the metric (3.42): (i) the general conformally 
recurrent space of type N ® N, 

g=2dv ® [du+ (/+n)dv] +2dz ® dz, (3.47) 
s s 

where/=/(v,z + z) and n = n(v,lIi(z - z») are arbitrary 
holomorphic functions; (ii) the general conformally sym
metric space of type N ® N, 

g=2dv ® [du+ (r+z2 +ezz)dv] +2dz ® dz, 
s s 

(3.48 ) 

where e = e(v) is an arbitrary holomorphic function; and 
(iii) the general symmetric space of the type N ® N, where g 
is ofthe form (3.48) with e = const. 

Finally, one can verify that all formulas concerning two
sided conformally recurrent complex Riemannian mani
folds hold true in the cases HR and UR if the following 
restrictions are imposed: 

HR: u,v real, z complex, z = z, 
the functions C,I,mJ,n,e are real, 

the functions p = p, li = li, 

the functions q and k are real ( + + + - ) 
or pure imaginary ( - - - + ); 

UR: all coordinates and functions are real. 

2106 J. Math. Phys., Vol. 30, No.9, September 1989 

IV. THE INTEGRATION OF THE TYPE N4D[ -] 

Two-sided conformally recurrent Riemannian mani
folds of the type N ® [ - ] are allowed in CR and UR only 
[ (2.18d) ] . As before we consider the case of CR and then we 
find the metric for UR as a suitable real slice. 

Now one has 

CABCD = pkAkBkCkD' p=lO, Ikll + Ik21 =1O, 

CA-Beb = 0, (4.1 ) 

withp to be chosen as convenient (p=lO). 
From (l.1a) and (4.1) we obtain 

(D+dlnp-!r)kA =0. (4.2) 

Therefore, if one defines a recurrent undotted spinor field to 
be a spinor field k ~ such that 

and 

(D-s')k~ =0 (4.3 ) 

for some one-form s', then (4.2) says that our space admits 
kA as a recurrent undotted spinor field. This space general
izes the one with a recurrent null vector field (see Sec. 
III B). Therefore it is of interest to explore the consequences 
of the existence of a recurrent undotted spinor field without 
any further assumptions, and only later on to specialize the 
results obtained. 

We intend to proceed this way. 
Define ~: = k ~gAB; with (4.3) assumed, because of 

DgAB = 0, we have D~ = s' I\gB, or explicitly 

d~ + rBe I\ge = s' I\~. (4.4) 

Using the Frobenius theorem one infers from (4.4) that 
there exist functions qB and L Be such that 

gB=LBedqe, dqil\dqi=lO, detllLBell=lO. (4.5) 

Writing L Be = L1Bc. detlllBell = 1, L =1O, it is clear that 
we can adopt the SL(2;C) gauge in a specific manner so that 

k ~gAB = ~ = L dqB. (4.6) 

Using then the multiplicative ambiguity in the definition of 
the recurrent undotted spinor field (4.3) we set 
kA : = L -lk~, reducing (4.6) to 

kAgAB = dqB. (4.7) 

Then from (4.3) one has 

(D - S)kA = 0, s: = S' - din L. ( 4.8) 

In the next step we use the freedom of the SL(2;C) gauge, 
choosing it so that 

kA = (1I!i)82
A . (4.9) 

From (4.7) and (4.9) one finds 

~B = !i dqB. ( 4.10) 

Consequently, 

S22 =~i I\~i = 2 dqi I\dqi, ( 4.11) 

and thus we have a null string defined by S 22 that is a simple, 
self-dual, and closed two-form.5

•
18 Moreover, this string is 
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nonexpanding. Indeed, in the gauge (4.9), condition (4.8) 
takes the form of 

-r2A =S82
A ~ r 12 = -s, rJl=o. (4.12) 

The condition r II = 0 assures us that the null string defined 
by S 22 is nonexpanding. 

Consequently, with (4.10), the Dg'lB = 0 equations 
amount to 

- s 1\ dqB + r B C 1\ dqc = 0; ( 4.13 ) 

and the DgIB = 0 equations reduce to 

dglB + S I\glB + r B C I\glC - jir 221\dqB = O. (4.14) 

Then, (4.13) wedged with dr/ amounts to 

(S~B + rAB) 1\ dqi 1\ dqi = 0 

~ sl\dqi I\dqi = 0 and r AB I\dqi I\dqi = O. (4.15) 

This being so, we infer from (4.14) that 

dqi I\dqi I\dglB = 0, (4.16) 

and therefore there exist functions pB and Q ,B C such that 

( 4.17) 

As 

O#gli I\gli I\g'li I\g'li = 4 dqi I\dqi I\dpi I\dpi, (4.18 ) 

{r/,pB} constitutes a chart for the studied structure. Now 
decomposing Q' AB according to 

Q'AB = QAB + €ABQ, QAB = Q(AB» (4.19) 

one easily finds that 

g = - ~AB ® gAB = 2 dr/ ® (dPA + QAB dqB). 
s s 

(4.20) 

Therefore, without any loss of generality we can put Q = 0 in 
(4.19); thus Q'AB =QAB =Q(AB)' 

Gathering this all together, we have arrived at the con
clusion that if a complex four-dimensional Riemannian 
manifold (M,g) admits a recurrent undotted spinor field k 'A 

then one can choose a function L and the SL(2;C) 
XSL(2;C) gauge in such a manner that L -lk'A = :kA 

= (1/ ji) 82 
A and the tetrad is of the form 

g'lB = ji dqB, glB = ji (dpB + Q B C dqc) ( 4.21 ) 

for some chart {r/,pB}, where QAB = Q(AB) are functions of 
the variables r/ and pB. Moreover, in this gauge 

rJl=o and r 12 = -s, (4.22) 

where s is the recurrence one-form defined by (4.8). The 
first condition of (4.22) means exactly that the null string 
defined by S 22 = g'li 1\ g'li = 2 dqi 1\ dqi is nonexpanding. 
The metric g of the manifold considered is given by (4.20). 
[Notice that all these facts hold true in the case ofUR with 
the only difference being that one takes the SL (2;R ) 
X SL (2;R) gauge and all functions and coordinates are 
real. ] 

With the tetrad (4.21) and {r/,pB} being a chart we can 
directly specialize the results of Ref. 18, writing that article's 
(2.16)-(2.18) in the case of <I> = 1. Thus we arrive at the 
following results: 
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rJl = 0, 

- s = r 12 = !aA QAB dqB' 

r 22 = (j A Q AB dq B ; 

r AB = a(A QB)C dqC; 

CJlJI=O, 

CJl12 = 0, 

C Ia· a· QAB Jl22 = - Ii A B , 

C1222 = - !aA(jBQAB = - !dAaBQAB' 

C2222 = - (jA(jBQAB; 

CABCb = - a(AaBQCb); 

R = - 2aAaBQAB, 

C IIAB = 0, 

C12AB = - !a(A a CQB)C' 

C22AB = - J(A (jCQB)C; 

where 

a A a AB 
aA:=-·, d :=--+Q aB' 

apA JqA 

a A: = ~BaB = ~. 
apA 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

We now use the results obtained above for the case of 
two-sided conformally recurrent space of type N ® [ - ]. 

We have found [see (4.1) and (4.2)] that every two-sided 
conformally recurrent space N ® [ - ] admits a recurrent 
undotted spinor field. Conversely, if a space of the type 
N ® [ - ] admits a recurrent undotted spinor field then the 
space is two-sided conformally recurrent. Indeed, writing 
the exterior covariant differential DCABCD in the gauge 
(4.9), remembering that, by (4.25), CJIJI = 0 = CJl12 and 
therefore also CI122 = 0 = C1222' and then using (4.12), one 
obtains 

( 4.28) 

Hence the space is two-sided conformally recurrent. 
Moreover, the recurrent spinor field appears to be a quadru
ple Penrose spinor field for CABCD • 

Specializing Eqs. (4.25) and (4.26) in the case of 
N ® [ - ] we obtain a set of differential conditions: 

(C1122 = 0 ¢:> R = 0) ¢:> aA aBQAB = 0, (4.29) 

CI122 = 0 ¢:> a A(jBQAB == (jAa iJQAiJ = 0, 

CAiJcb = 0 ¢:> a(A aiJ QCb) = 0, 

C2222 = - (jA(jiJQAB # O. 

(4.30) 

(4.31 ) 

(4.32) 

Similar to in Ref. 18, we infer first from (4.29) the exis
tence of a spinor AA such that 

QAiJ = a(AAiJ)· (4.33 ) 

Then, condition (4.31) takes the form 

a(AaiJacAb) = O. (4.34) 

Acting on (4.34) with a b we obtain 

aAaiJacabAb = O. (4.35) 

Acting on (4.34) with ak , employing the identity 
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akAb = - Ekb aFA F + abAk, and then (4.35), one finds 
the equation 

aAailacabAk = o. (4.36) 

From (4.36) it follows that AA must be a polynomial of 
order <3 with respect to pil. 

Then one can easily verify that the most general A A that 
satisfies (4.34) has the form 

AA = ~EAbailCpilpCpb + (!PAilc + EAilbc)pilpC 

(4.37) 

whereailc = a(ilCPPAilc =P(AilcP (TAil = (T(Ail) , bc, c, and 
1" A are the functions of variables t/. 

Substituting AA given by (4.37) into (4.33) we obtain 

QAil = aC(AEil)bpcpb + (PAilc + b(AEil)C)pc + (TAil . 
(4.38) 

Now, only Eq. (4.30) and inequality (4.32) remain to 
be satisfied. Simple manipulations show that the equation 
(JAailQAil = 0 with QAil given by (4.38) is equivalent to 
three equations for the functions of t/ only: 

(4.39) 

( 4.40) 

We intend to solve these equations but first we would like to 
examine the transformations that leave the form of metric 
(4.20) unchanged. The general transformation of this type is 

qA = qA(qil), h = T - lilA (Pil - Sil), 

A aqA il T il: = -., SA = SA (q ), aqB 

(4.41 ) 

with T: = detll TAil II #0 (compare Ref. 18). 
One finds that (4.41) leaves the form of metric (4.20) 

unchanged: 

QAil = (;zC(AEil)bpcpb + (PAilc + h(AEil)C)pc + UAil' 

where 

- IT- Ic T- Ib 
aAil = A ilacb, 

- TT - Ib T - Ik T - IF [ + ~ PAilc = A il C PbkF a(DE~j;) 

- TiI(b,kT-Ij;)iI] ' 
- -lil C 
bA = T A [bil + taileS + j(ln n,il]' 

UAil = T - ICA T - Ib il [ (Tcb + (PCDE + b(CE b)k)S k 

+ ak(CEb)FSksF + S(C,D) ] (4.42) 

(the symbol ",A" denotes a/art)· 
Now we are going to utilize the transformations (4.41) 

to simplify the final form of our metric. 

First consider the case 

(i) aAilaAil #0. 

We can choose qA = qA(~), Sil = 0 in (4.41) so that 
(we omit the overtildes) 

2108 J. Math. Phys., Vol. 30, No.9, September 1989 

aii = aii = 0, aU #0 (4.43) 

( this problem resembles the problem of characteristic curves 
in the theory of partial differential equations). With (4.43) 
fixed one has 

(4.44) 

Now, from (4.42) we conclude that there exists functions 
SA = SA (qil) with TAil = 8A il such that 

(Tii = (Tii = O. 

Hence, by (4.44), it follows that 

Ail 0 (TAil a = , 

(4.45 ) 

(4.46) 

and then from Eq. (4.40) with (4.46) one infers that there 
exists a function b = b(t/) such that 

bA = b,A . (4.47) 

Substituting (4.43) and (4.47) into Eqs. (4.39) we find 

a [!(b -In aii)] 
Piii = aqi ' 

a B(b -In aii)] 
Piii = - . . 

aq2 

Then one has QAil defined by (4.38) in the form 

Qii = Ap
2
i + B,iPi + CPi + D, 

Qii = (lnA),dPip 

QH = - Ap
2
i + EPi + B,iPi' 

where 

A: = au, B: = ~b -! In au, 

C:= -Piii, D:=(Tii, E:=Piii 

( 4.48) 

( 4.49) 

[A, B, C, D, and E are arbitrary functions (A #0) of rtl. 
Consider now the case 

i 
(") Ail 0 "I I 0 11 a a Ail =, . ~. a Ail # . 

A,B= I 

In this case we can choose qA = qA(qil) , Sil = 0, in 
( 4.41) such that 

aH = aii = 0, aii #0. (4.50) 

With (4.50) fixed one has 

(TAil aAil = (Tiiaii' (4.51 ) 

Then we choose the transformation ( 4.41 ) with 
TAil = 8A

il and SA = SA (qil) such that (4.45) holds. There
fore, by (4.51), (TAilaAil = 0 and from Eq. (4.40) it follows 
thatthereexistsafunction b = b(t/) such that (4.47) holds. 
Consequently, from Eqs. (4.39) one finds 

a [b -In aii ] 
Piii = 0, PHi = aqi (4.52) 

Finally we obtain QAil in the form 

(4.53 ) 
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where A: = - aii, B: =Piii + b,.i' C: = -Piii, D: = O"ii, 
and b are arbitrary functions of aA

• 

Finally, consider the case 

(iii) aAB = 0. 

Then (4.46) holds and bA is of the form (4.47). From for
mulas (4.42) it follows that one can choose the transforma
tion (4.41) with SA = ° such that 

b = ° and Piii = 0. (4.54) 

With (4.54) fixed we can also perform the transformation 
(4.41) of the form SA = SA (qB), TAB = 8A B' in such a man
ner that 0" AB satisfies (4.45). 

Thus we arrive at the following formulas for QAB : 

Qii = BPi + CPi + D, Qii = EPi - BPi, 
(4.55) 

Qii = - EPi' 

where B: = Piii, C: = - Piii, D: = O"ii, and E: = Piii are 
arbitrary functions of~. 

Notice that the expressions (4.55) can be obtained from 
(4.53) by a limiting transition consisting of setting b = €b' 
and A = €A ' with € = const-+O. 

Having QAB for our three cases [formulas (4.49), 
(4.53), and (4.55)] we can find CABCb from (4.27). 

Straightforward computations give the following. 
For (i), 

CIIAB = 0, 

C12i i = CI2ii = 0, 

CI2ii = -A, 

C22ii = -A.iPi + 2ACPi + C,i - CB,i - ~B,i (lnA),i 

+ H (lnA),i ]2 + !C(lnA).i - !(In A),ii' 

C22ii = 2A,[iPi] + ~(lnA),ii 

-!(lnA),i(lnA),i -B,ii +EC, 

C22ii =A,iPi -~(lnA),ii +!E(lnA),i +H(lnA),i]2 

+ E,i - !B,i (lnA),i - EB,i (4.56) 

([ ii] denotes the antisymmetrization over indices i,i). 
For (ii), 

C l1AB = 0, 

C12ii = C12ii = 0, 

C12ii =A, 

C .. = (34b -A - 2AB)p· + (34b· ..:..A· )p' 2211 '2'" ,I ,I 2 '2"'.2 ,2 I 

+ C,i - ~b,ii + B,i + (~b,i - B)(~b,i - 2B) 

+ C Bb,i - 2(lnA),i]' 

C22ii = (A,i - ~b,i )Pi - B,i + ~b,ii - (lnA),ii 

- (~b.i -B)[~b,i - (lnA),i], 

C22ii = (In A ) ,ii - ~b,ii 

- Bb,i - (lnA),i] [2(lnA),i -~b,i]. (4.57) 

For (iii), the spinor CABCb in this case can be obtained 
from (ii) by the limiting transition b-+O, A-+O, (lnA),i 
-+ - E. The result reads 
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CIIAB = 0, 

CI2AB = 0, 

C22ii =C,i +B,i +2B 2 +2EC, 

C22ii = - B,i + E,i + BE, 

C22ii = - E,i + 2E2. 

( 4.58) 

The expressions for C2222 are involved and we do not give 
them here. But it is evident that in general C2222 does not 
vanish. 

In summary, we have found all two-sided conformally 
recurrent four-dimensional Riemannian manifolds of the 
type N ® [ - ]. In the case of CR the coordinates ~ and pB 
are complex and all functions considered are holomorphic; 
in the case ofUR, ~ and pB are real and all functions are real. 
For (i) and (ii) the metric (4.20) contains five arbitrary 
functions of variables ~ [formulas (4.49) or (4.53), respec
tively]; for (iii) the metric contains four arbitrary functions 
of variables ~ [the formulas (4.55)]. 
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Nonstatic charged spheres admitting a conformal Killing vector 
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Exact, nonstatic, spherically symmetric solutions of the Einstein-Maxwell equations are found 
for self-gravitating charged spheres under the assumption of the existence of a conformal 
Killing vector. Solutions are matched to the Reissner-Nordstrom metric and it is found that as 
a consequence of the junction conditions, the material must be anisotropic. The radius of the 
sphere for static distributions corresponds to the radius of the unstable null circular orbit of the 
Reissner-Nordstrom geometry. 

I. INTRODUCTION 

Exact analytic solutions of the Einstein-Maxwell equa
tions for charged spheres have been studied in both static 
and dynamic cases since the discussion by Bonnorl on the 
eqUilibrium of charged dust. 2-7 Besides assuming spherical 
symmetry, several authors8-ll make the further assumption 
that space-time admits a conformal Killing vector S, in order 
to aid in the solution of the Einstein field equations, that is, 

Lsgap = 'I1gap ; (I) 

where the left-hand side is the Lie derivative of the metric 
tensor gaP and '11 is an arbitrary function of space-time co
ordinates. This symmetry, which is the simplest generaliza
tion of a homothetic motion ('11 = constant), allows the in
tegration of the field equation in the nonstatic case for 
neutral spheres8 and in the static case for charged ones.9

•
IO 

In this paper we show how the analytical integration of 
the Einstein-Maxwell field equations under the above as
sumption may be accomplished, leading to solutions repre
senting different cases of self-gravitating charged spheres. 
The solutions are matched to the Reissner-Nordstrom met
ric and the junction conditions give the evolution of the 
boundary surface. We find an oscillating distribution and 
another expanding asymptotically to a static sphere lying 
outside the singularity. In the neutral fluid limit q 0, 
known results can be recovered. 

The discussion is organized as follows. The field equa
tions and the implications of conformal motion are present
ed in Sec. II. Section III includes the matching conditions 
and the evolution of the boundary. Finally in Sec. IV the 
interior solutions are proposed in terms of an arbitrarily cho
sen function and, as an example, a particular model is con
sidered. 

II. THE FIELD EQUATIONS 

If comoving coordinates xa = (t,r,(),cp) are adopted, 
the lines element is given by 

dSZ = eV dt 2 - fI dr2 - R 2(d() 2 + sin2 () dcp 2) (2) 

a) Postal Address: Apartado 32, Jpostel La Hechicera, Merida, Venezuela. 

where v, A, and R are unknown functions of the Lagrangian 
coordinates comoving with the fluid r, and t. 

Consider the Einstein-Maxwell system 

R p -! ~'P R = 81TTp = 81T(M p + E'P), (3) 

F':f = 41Tj 

F af3.u + Fpu.a + FuQ,p = 0 

(4) 

(5) 

where MaP, the energy tensor for anisotropic matter, is giv
en by 

Map = (p + Pl )uaup - PlgafJ + (Pr - Pl )XaXp (6) 

and ua = e - vIZ ~g is the four-velocity, Xa a unitary vector in 
the radial direction, and P rand P 1 are the radial and tangen
tial stresses, respectively. The electromagnetic energy tensor 
Eap , in terms of the Maxwell field tensor Fap , takes its usual 
expression 

Ep = [1I( 41T) 1[ FaAFJ.p + ! ~p Fl'vFVI']. (7) 

Finally,j is the electric current vector which is proportion
al to the four-velocity ua 

• 

For a spherically symmetric charge distribution, FOI 
will be the only surviving component of puP, and thus Eq. 
( 5) is satisfied identically. Furthermore, since we are using 
comoving coordinates only lis nonvanishing; hence Eq. (4) 
is integrated to give 

FOI = Q(r)e-1I2(v+J.l/R 2, 

where 

(8) 

Q(r) = f 41TR 2leIlZ(v+J.) dr (9) 

represents the constant electric charge inside a sphere of ra
dius r. 

It can be shown (see Ref. 8 for details with a slightly 
different notation) that the assumption that space-time ad
mits a conformal Killing vector 

Lagap = Sa;p + SP;a 'I1gap , (10) 

restricted by demanding that the vector field S is orthogonal 
to the velocity (i.e., Saua 0), implies that the metric func
tions can be written as 

eV = fI-fit), 

R 2 = fI- fit) 1m2, 

(11 ) 

(12) 
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where f(t) is a function of t and llJ is a positive constant. 
Moreover, using (11) and (12) the field equation R ~ = 0 
can be integrated to obtain 

e-J.12 = h(r) + g(t), (13) 

where h(r) and g(t) are unknown dimensionless functions 
of their arguments. Thus the line element (2) can be ex
pressed in the form 

dSZ = R 2(t,r) [llJ2 dt 2 - efllJ2 dr - dU2] (14) 

with dU2 = de 2 + sin2 e dq; 2 and 

R(t,r) = e- ftt
)
12lllJ[h(r) + g(t)]. (15) 

Taking into account this line element and Eqs. (6 )-( 8), Ein
stein equations become 

81Tp + Q21R 4 

= - (3h'2-3~ef) +2e-J.I2(h" +iref) 

+ e-J.ef(F/4 + all, 

81TPr - Q21R 4 

= 3h '2 - 3~ef + e - J.l2ef(2g - it> 
+ e-J.ef(j - j2/4 _llJ2), 

81TPl - Q21R 4 

= 3h,2 - 3~ef - 2e - J.12(h " - gef) 

+ e-J.efjI2, 

(16) 

(17) 

(18) 

and the electric field intensity defined as E = ( - FOl Fol ) 1/2 
results: 

E(r,t) = Q(r)IR 2(r,t). (19) 

Dots and primes denote hereafter differentiation with re
spect to t and r, respectively. 

III. THE JUNCTION CONDITIONS AND THE EVOLUTION 
OF THE BOUNDARY 

Let the boundary of the distribution be a timelike three
space denoted by ~. The interior space-time V -, with co
ordinatesxa

_ = (t,r,e,q;) andmetricgivenbyEq. (14),isto 
be matched across ~ to the exterior Reissner-Nordstrom 
spacetime V+ withcoordinatesx~ = (T,R,e,q;) and metric 
given by 

dSZ+ = (1- 2: + ;22)dT2 

_ (1- 2M +L)-I dR 2 -R 2du2. 
R R2 

(20) 

The intrinsic metric to ~ can be given as 
'..2 i' -2 2 2 ds~ = gij ds ds J = dr - S (r)dU, (21) 

where the Gaussians coordinates fare 1', e, and q;. 
Following Israel,12 we will demand continuity of the 

intrinsic metric so that when approaching ~ from V + or V - , 
we have 

(22) 
where [a] ===a+ - a-. The second condition imposed on ~ 
is the continuity of its extrinsic curvature or second funda
mental form 

(23) 

where the three tensor Kij is given in terms of the unit space-
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(24) 

In writing Eq. (23) the absence of a thin mass shell is as
sumed; also we will assume the continuity of the electric field 
across ~, thus there is not surface concentration of charge 
and as a consequence, Q(ro) = q. It can be shown 13 from 
Eqs. (22) and (23) and the Gauss-Codazzi contracted 
equations that 

[ Tapn anP ] = 0, 

[ Tapn anP ] = o. 
(25) 

(26) 

(i) The interior space-time. For the interior spacetime 
V- the junction condition (22) gives 

R(t,ro)=S(r), (27) 

dr 
R(t,ro)llJ =-, 

dt 
(28) 

where ro is the value of the radial coordinate at~. The equa
tion of the surface is 

f- (r,t) = r - ro = 0, 

hence, the unit normal vector is 

n;; = R(t,ro)llJefI28Ia 

and the unit tangent vector is 

u"- -~8a - dr 0' 

(29) 

(30) 

(31) 

Using Eq. (24), the only non vanishing components of the 
extrinsic curvature are calculated to be 

K r-:;' = - n;; [du
a

_ + r~v u"_ uv_ ] = e-
f

:
2 

R' I (32) 
dr llJR ~ 

and 

1 e-
fl2 I Kee =-.--K;cp = -n;; r~e =--R' . 

sm2 e llJ ~ 
(33) 

(ii) The exterior space-time. The equation of the surface 
~ is now given by 

f+(T,R) = R - Rb(T) = o. (34) 

The unit normal vector and the four-velocity are 

n + = - dR tf!. + dT 81 (35) 
a dr a dr a' 

ua = dT 8a + dR 8a . (36) 
+ dr ° dr I 

The junction condition (22) gives now 

Rb(T) =S(r), (37) 

(1 _ 2M + L)(dT)2 _ (1 _ 2M + L) -1(dR)2 = 1. 
R R 2 dr r R 2 dr 

(38) 

The nonvanishing components of the extrinsic curvature are 

K r;: = - n: Du
a 

, 
Dr 

K + =_I_K + = dT(l_ 2M L)R. 
ee sin2 e cPcP dr R + R 2 
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The junction condition K ;;e = K :e gives 

--R =- 1--+- R b • 
e-

fl2 
, I dT( 2M Q2) 

liJ l: dr Rb R ~ 
(41) 

UsingEq. (15)tobringRintotheformR 'Il: = - h '(ro)R ~ 
and taking into account Eqs. (28) and (38), we obtain final
ly 

R ~/liJ2 = 2MRb - R ~ + h ,2(ro)R! - q2. (42) 

Equation (42) can also be obtained from the continuity of 
the effective gravitational mass m(t,r), defined by the rela
tion 

(43) 

where R ~~ is the mixed angular component of the Rie
mann-Christoffel curvature tensor. In fact, the continuity of 
Kee implies the continuity of the mass function. J3 

On the other hand, Eq. (25) gives in our case the con
tinuity of the radial pressure cross ~, 

(44) 

Using the field equation (17) and taking into account that 
p/ =Oand Q(ro) = q (no surface concentration of charge) , 
we obtain 

( 2RbR b/liJ2) - (R i/liJ2) = 3h ,2(ro)R! - R ~ + q2. (45) 

Equation (42) shows that the boundary of the distribution 
evolves slower than in the neutral case q = O. Notice that if 
the model is static or has a static limit (R = R = 0), Eqs. , 

where 

k = (MR st - q2)/R;t 

A = 3 - q2h '2(ro)/k 2. 

This solution represents an expanding boundary which 
tends asymptotically to a radius given by Eq. (46). For the 
critical charge-mass relation q/ M = ±~, the models are 
static since A = 0 Eq. (49) with a radius equal to 3M /2. 
Note that in both cases for q = 0, known results for neutral 
fluid can be recovered. 8 

IV. THE SOLUTIONS 

In this section we present some particular model with 
boundaries evolving according to the solutions found above. 
We select for simplicity g(t) = 0, such that from Eq. (15) 
we have 

Rb (t) = e-f<t)/2/wh(ro)' (50) 

Thus the surface equations (42) and (45) in terms of/(t) 
are given by 

ef(j - j2/4 _liJ2) = - 3d 2 - q2liJ4h 2 (ro)e2.t; (51) 

j2/4 + liJ2 = 2MliJ3h(ro)lf/2 + d 2e- f - q2w4h 2 (ro)eI; 
(52) 
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(42) and (45) imply that the radius of the distribution will 
be given by 

R st = H3M ± (9M 2 - 8q2)1/2], (46) 

which corresponds to the radius of the unstable null circular 
orbits in the exterior Reissner-Nordstrom space-time. 14 

Finally, observe that Eq. (45) is just the time derivative of 
Eq. (42); hence, the evolution of the boundary will be 
known once we succeed in integrating this equation. 

General solutions of Eq. (42) are expressed in terms of 
elliptical functions. However, it is also possible to obtain 
solutions in terms of elementary functions for very particu
lar forms of H'(ro)' We consider two cases. 

(i) If the function h(r) is such that h ' (ro) = 0, then the 
first solution becomes 

Rb (t) = M - (M 2 - q2) 1/2 cos liJt, (47) 

which represents a sphere whose surface oscillates between 
itsgravitationalradiusR + = M + (M 2 - q2) 1/2 and thein
nerhorizonR - = M - (M 2 - q2) 1/2, as seen by anobserv
er comoving with the matter. For an exterior observer, the 
boundary is not oscillating but propagating forward inside 
the event horizon. Note that for the extremal case 
q/M = ± 1, the distribution is static with a radius equal to 
M. 

(ii) If the function h(r) is such that 

h ,2(ro) = (MRst - q2)/R:.. (48) 

the integration of Eq. (45) can be carried out to give 

(49) 

I 
where d 2 = h ,2(ro)/h 2(ro)' 

Using Eqs. (50)-(52), the field equations (16)-(19) 
with g(t) = 0 become 

81TPr = 3h ,2(r) - 3d 2h 2(r) + [h 2(r)/h 4(ro)R!] 

X [Q2(r)h 2(r) - q2h 2(ro)], (53) 

81TPl = 3h ,2(r) - 2h(r)h" (r) - d 2h 2(r) 

+ Mh 2(r)/R ~ h 2(ro) - [h 2(r)/h 4(ro)R!] 

X [Q 2 (r) h 2 (r) + q2 h ~ (r 0) ] , (54 ) 

81TP = 3h ,2(r) + 2h(r)h" (r) + d 2h 2(r) 

+ 2Mh 2(r)/R ~ h 2(ro) - [h 2(r)/h 4(ro)R!] 

X [Q2(r)h 2(r) + q2h 2(ro)], (55) 

E(r,t) = Q(r)h 2(r)/R ~ h 2(ro)' (56) 

Note that after makingpr = Pl' we get from Eqs. (53) 
and (54) 

This equation is contradictory as the left-hand side depends 
only on r whereas the right-hand side depends on time. Thus 
local isotropic pressure is forbidden and, consequently, the 
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material must be anisotropic, a peculiarity shared with the 
neutral case.8 

Note also that the models are completely specified for a 
given charge distribution, by giving explicitly the function 
h (r). This function is not completely arbitrary since the en
ergy density and the stresses depend upon it. Therefore, after 
giving explicitly a function her), it must be verified if the 
energy tensor satisfies the energy conditions in order to ob
tain physically reasonable models. 

As an example consistent with case (ii), we consider the 
following choice: 

Q(r) = q(rlro)3 (57) 

and 

(58) 

Without loss of generality we can take c = ro, and from Eq. 
( 48) after some manipulations we have 

i6 = 4R ;t (1 - 2M I R st + q2 I R ;t ) - 1 • (59) 

Substituting Eqs. (57) and (58) in Eqs. (53)-(56), we ob
tain for the matter variables and the electric field 

(60) 

(61) 

81TP = 2M(ro)4 + 4i6 _ L(ro)4[(.!..-)2 + 1], 
R ~ r r4 R: r ro 

(62) 

E(r,t) = (qlR ~) (rolr) , (63) 

and the line element becomes 

ds2 = R ~ (rlro)4[ w2 dt 2 - (w2 drlR ~) - d02]. 
(64) 

As can be seen, the weak energy condition TapuauP>O is 
satisfied for the above choice of h (r). In fact, this inequality 
is just 

81TP + Q21R 4>0, 

but using Eq. (16) with g( t) = 0, this is equivalent to 

- 3h,2 + 2hh" + hef(t2/4 + 1»0. 

For her) <X r- 2
, the two first terms cancel out and the third 

one is always positive. Moreover, by inspection of Eqs. (61) 
and (62) we see thatp>P.L. Also, it can be shown thatp>Pr' 

As t --+ 00, the distribution evolves towards the static sit
uation described by Eqs. (61)-( 63) substituting the func
tionRb (t) by its limitRst as given byEq. (46). In particular, 
the line element becomes 
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(65) 

We can introduce Schwarzschild-like coordinates (T,R) 
through the transformation 

r = 2( 1 - 2M IR st + q2IR;t) -1/2~RstR, (66) 

t = (1 - 2M IR st + q2IR;t)( T IwRst )' (67) 

which brings the line element (65) to the form 

dr= 1---- --dT2- 1--+--(
2M i ) R2 (2M q2 )-1 
R st R;t R ;t R st R ;t 

X (R IR st ) dR 2 - R 2 d02, 

which clearly shows that both the interior and the exterior 
metrics join smoothly at the boundary surface. Finally, it 
should be noted that space-time is not regular at the origin, 
and the energy density and the pressure diverge as R -2 (in 
Schwarzschild-like coordinates); thus this type of solutions 
must be considered as the outer envelope of a well-behaved 
central core. 
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The equations for the spin-~ perturbations of the solutions of the Einstein-Maxwell equations 
given by the linearized 0(2) extended supergravity are considered. It is shown that for each 
geodetic and shear-free principal null direction of the background electromagnetic field there 
exists a gauge-invariant quantity made out of the spin-~ field that satisfies a decoupled 
equation. In the case oftype-D solutions with a nonsingular aligned electromagnetic field it is 
explicitly shown that the decoupled equations associated with the two principal null directions 
admit separable solutions and the separated functions obey certain differential relations. 

I. INTRODUCTION 

In recent years there has been considerable progress in 
the study of linear perturbations of gravitational fields and 
test massless fields ofspin-O, l' and 1, especially in the case of 
the algebraically special solutions of the Einstein vacuum 
field equations, where, by means of the procedure intro
duced by Teukolsky, lone obtains a decoupled equation for a 
component of the field that gives useful information about 
the behavior of the perturbation. When there exists a suit
ably aligned background electromagnetic or neutrino field a 
similar treatment is applicable and one obtains a decoupled 
system of equations (see Ref. 2 and the references cited 
therein). Among the algebraically special solutions, type-D 
metrics are distinguished because of their separability prop
erties3

-
7

; for each massless perturbation of spin greater than 
zero there exist two decoupled equations which can be 
solved by separation of variables. 

For a spin-~ field the usual massless free-field equations 
on a curved background have integrability conditions which 
severely restrict the possible solutions. On the other hand, 
supergravity theory gives a consistent system of equations 
for a spin-~ massless field coupled to a gravitational field, 
which reduces to Einstein's vacuum field equations when the 
spin-~ field vanishes. The supergravity field equations, lin
earized with respect to the spin-~ field about an algebraically 
special solution of the Einstein vacuum field equations, lead 
to decoupled equations that, in the case of type-D metrics, 
are solvable by separation ofvariables.s- to 

In a similar way, the 0(2) extended supergravity field 
equations II give a consistent coupling of an 0 (2) doublet of 
spin-~ fields, electromagnetism, and gravity in such a way 
that when the spin-~ fields vanish, one recovers the Einstein
Maxwell equations. Therefore, the 0(2) extended supergra
vity field equations, when linearized with respect to the spin
~ fields about a solution with vanishing spin-~ fields, give 
consistent equations for an 0 (2) doublet of spin-~ test mass
less fields on a solution of the Einstein-Maxwell equations. 12 

In this approximation the back reaction of the spin-~ fields 
on the background solution is neglected and the supersym-

metry transformations affect only the spin-~ fields. By con
sidering the case of a type-D solution of the Einstein-Max
well equations, where the principal null directions of the 
electromagnetic field are aligned with those of the conformal 
curvature, transforming to zero certain components con
structed from the spin-~ field by means of a supersymmetry 
transformation (which in the case of the Kerr-Newman so
lution can be made only if the electric charge is different 
from the mass parameter), Aichelburg and Guven 12 showed 
that there exist two decoupled equations for the spin-~ per
turbations, which in the Kerr-Newman background admit 
separable solutions. 

In the present paper we extend Aichelburg and Guven's 
results 12 by showing that in a solution of the Einstein-Max
well equations such that one (single or double) principal 
null direction of the electromagnetic field is geodetic and 
shear-free (and hence, the conformal curvature is algebrai
cally special, but not necessarily type-D) there exists a de
coupled equation for a gauge-invariant quantity constructed 
from the spin-~ perturbation. Moreover, the derivation given 
here does not invoke the supersymmetry transformations 
and applies without any further condition. We also show 
that in all type-D solutions of the Einstein-Maxwell equa
tions such that the principal null directions of the electro
magnetic field are aligned with those of the conformal curva
ture, the two decoupled equations are solvable by separation 
of variables and the separated functions satisfy differential 
relations of the Teukolsky-Starobinsky type found in the 
caseoftype-D vacuum metrics (see Ref. 7 and the references 
therein) . 

In Sec. II, following Ref. 12, the equations for the spin-~ 
perturbations and the effect of the supersymmetry transfor
mations are written in spinor notation. In Sec. III, following 
Teukolsky's procedure, I we show that under suitable condi
tions there exists a component made out of the spin-~ pertur
bation, invariant under the supersymmetry transformations, 
which obeys a decoupled equation. In Sec. IV, making use of 
the explicit form of type-D solutions of the Einstein-Max
well equations with a nonsingular aligned electromagnetic 
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field,13.14 we show that in these backgrounds the decoupled 
equations are solvable by separation of variables and the sep
arated functions are related through certain differential op
erators. Spinor formalism and Newman-Penrose notation 
are used throughout the paper (see, e.g., Ref. 15). 

II. PRELIMINARIES 

The equations for an 0(2) doublet of test massless spin
~ fields on a curved background with an electromagnetic 
field can be expressed as 11.12 

'A • r-i 'k A .1.1< .IJA 
V AB' 7/1 CD' + IV2e ({J cIf' D'B'A = V CD' 'f/ AB' (1) 

U,k = 1,2), where ({JAB is the electromagnetic spinor, eik is 

the usual Levi-Civita symbol, and t/lA 'B'C = t/lABC" Equiv
alently, Eq. (1) can be written in the form (cf. Ref. 10) 

HjABC = Hj(ABC) (2a) 

HjAB'C' = 0, (2b) 

where 
'A 'A S' . r-i 'k A .I,k S' 

Hl BC =,V(BIS'I 7/1 C) - IV2e ({J (B'f/ IS'I C) (3) 

and 
'A _ 'AR . r-i 'k A .,.1< R (4) 

Hl B'C' = V R(B' 7/1 C') - Iv2e ({J R'f/ (B'C') . 

(The parentheses denote symmetrization on the indices en
closed and the indices between the vertical bars are excluded 
from the symmetrization.) 

Equations (1) and (2) are invariant under the super
symmetry transformations 

t/lABC' -+ t/lABC' + V Bc,ciA - i:J2~k({JABak C" (5) 

where ciA is a pair of arbitrary spinor fields provided that the 
Einstein-Maxwell equations, without cosmological con
stant, are satisfied: 

<l>ABC'D' = 2({JAB({JCD" 

A=O, 

VA c'({J AB = O. 

(6a) 

(6b) 

(6c) 

In fact, using the Ricci identities one finds that under trans
formation (5), the fields HjABC and HjAB'C' transform ac
cording to 

HjABC-+HjABC - 'l'ABCDciD + 2AEA(BciC) 

'r-i 'k k S' + iv2e a S' V(B ¢lC)A (7a) 

and 

'r-i'kk R 7b + iv2e a (B'V C') ({JRA , ( ) 

which shows that the invariance ofEqs. (2) under the super
symmetry transformations requires the fulfillment of Eqs. 
(6). 

The spinor fields H j ABC are closer to the usual gauge
invariant description of the massless fields than the fields 
t/lABC" Making use ofEqs. (1), (3), (6), and the Ricci iden
tities one obtains that the fields H j ABC satisfy 

AR' j 'ADR' . r-i 'k.I,k R'A S' (8) 
V H ABC = 'I' ABCD7/I + IV2e 'f/ S' VB ({JAC' 

The integrability conditions ofEq. (8), obtained by applying 
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VB R' to both sides of this equation and using the Ricci identi
ties; the Bianchi identities; and Eqs. (2b), (3), and (6) are 
satisfied identically. In contrast, the usual massless free-field 
equations for spin-~ lead to the Buchdahl-Plebaiiski con
straints (see, for example, Ref. 15). It is a remarkable fact 
that several cancellations depend crucially on the fulfillment 
of the background field equations (6). 

III. DECOUPLED EQUATIONS 

In this section we shall assume that (at least) one of the 
principal null directions of the background electromagnetic 
field is tangent to a geodetic and shear-free null congruence. 
This implies that the conformal curvature is algebraically 
special, with its mUltiple principal null direction also tangent 
to the geodetic and shear-free null congruence. If IA denotes 
the geodetic and shear-free principal spinor of ({JAB' th.en us
ing the facts that IAlav AC' IB = 0 and IAIBI c'I' ABCD = 0, one 
finds that I Al BI CH j ABC are invariant under the transforma
tion (7a). 

Despite the complexity of the foregoing equations it 
turns out that with the only restriction of the existence of a 
spinor field I A as above, there exists a decoupled equation for 
each gauge-invariant component I A I B I C H j ABC U = 1,2). In 
a frame such that ({Jo = 0 and K = 0 = (T, it follows that 
'1'0 = 0 = '1'1; from Eq. (8) one finds that the derivatives of 
the gauge-invariant component H j 000 are given by 

(8 - 3a + 1T)Hjooo - (D - E - 3p)Hjool 

, 'r-i 'k .I,k .I.k) 
= '1'27/1000' + 12v2e ({J1(P'f/ 1'0'0 - r'f/ 0'0'0 , 

(a - 3y + f..l)Hjooo - (8 - {3 - 3r)Hjool 

, r-i 'k k .I.k 
= '1'27/1001' + i2v2e ({JI (prf 1'1'0 - r'f/ 0'1'0)' 

where we have made use of the Maxwell equations 

(D - 2p)({JI = 0, (8 - 2r)({J1 = O. 

On the other hand, from Eq. (3) one finds that 

Hjooo = (D - 2E + € - P)t/lOOI' 

- (8 - 2{3 - a + 1f)t/looo' 

and from Eq. (1), 

(8 - 2a - {j + 1T)t/l000' - (D - € - P)t/lOIO' + Pt/llOO' 

(9) 

( to) 

(11) 

. r-i 'k k (12) = IV2e ({Jlrf 0'0'0' 

(D + 2E - € - P ) t/ll 10' - (8 - /3 + 1T)t/llOO' 

- 1Tt/l01O' + ).t/looo' 

. r-i 'k k .,.1< 
= IV2e «({Jlrf 0'0'1 - ({J2'f' 0'0'0)' 

By applying (8 - 2{3 - a - 3r + 17') to the first equation in 
(9) and (D - 2E + € - 3p - p) to the second and subtract
ing, the terms with Hjool cancel (cf. Ref. 1). Using Eqs. 
(6a), (10), and (11); the complex conjugates ofEqs. (12); 
and 

(D - 3p) '1'2 = 2P<l>l1' 

(D - E - € - p)p = 0, 

(D - E + € - p) r = p1f, 

(8 - 3r)'I'2 = - 2r<1>l1 + 2P<l>12' 

(8-{3-a-r)p= -rp, 

(8 - {3 + a - r)r = pJ.., 

which follow from the Bianchi and Ricci identities, respec
tively; one obtains 
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[ (D - 2€ + € - 3p - p)( II - 3r + .u) 

- (~- 2/3 - a - 3r + 1f) 

X (~- 3a + 1T) - 'l'2]HjOOO = o. (13) 

Equation (13) is equivalent to the decoupled equation 
found in Ref. 12, which was obtained by assuming that the 
background solution of the Einstein-Maxwell equations is of 
type D and the principal null directions of the electromag
netic field are aligned with the double principal null direc
tions of the curvature, with the further assumption that by 
means of the supersymmetry transformation (7a), the non
invariant components of H j ABC may be transformed to zero 
(which is not always possible). The derivation of ( 13) does 
not make use of the supersymmetry transformations and ap
plies for all the algebraically special solutions of the Ein
stein-Maxwell equations such that the multiple principal 
null direction of the curvature is geodetic, shear-free, and 
coincides with one of the principal null directions of the elec
tromagnetic field. In particular, this shows that several con
clusions obtained by Aichelburg and Guven 12 concerning 
the spin-~ perturbations of Kerr-Newman black holes are 
actually valid for all values of the parameters. It is a remark
able fact that in the form given above, Eq. (13) does not 
contain the electromagnetic field explicitly, but only 
through the metric. Furthermore, Eq. (13) has exactly the 
form ofthe decoupled equation found in the case ofthe spin-~ 
perturbations of an algebraically special vacuum space
time lO and hence, it corresponds to make s = ~ in Teu
kolsky's equation. I As we shall show explicitly in Sec. IV, 
another remarkable feature ofEq. (13) is that it is separable 
in all the type-D solutions of the Einstein-Maxwell equations 
such that the principal null directions of the electromagnetic 
field coincide with those of the conformal curvature. 

IV. SPIN-~ PERTURBATIONS OF TYPE-O ELECTROVAC 
SPACE-TIMES 

In a type-D solution ofthe Einstein-Maxwell equations 
with an algebraically general aligned electromagnetic field 
one can choose the spin frame in such a way that the only 
nonvanishing components of 'I' ABCD and rp AB are '1'2 and rpl' 
respectively; then from the Maxwell equations it follows that 

rpl = !(e + ig)¢/, (14) 

where e and g are real constants, interpretable as electric and 
magnetic charges, and ifJ is a function such that 

p = D In ifJ, r = ~ In ifJ, 1T = - (5 In ifJ, .u = - llin ifJ· (15) 

Since the cosmological constant is required to be equal to 
zero, it turns out that both principal null directions must be 
geodetic and shear-free,16 i.e., 

K = 0' = A = v = O. (16) 

The remaining spin coefficients can be expressed in the form 

€ = D In;, /3 = ~ In;, a = - (5 In S, r = - llin S, 
(17) 

where; and S are some functions. The integrability condi
tions on; and S are satisfied as a consequence of ( 16) and the 
fact that '1'2 is the only nonvanishing component of the Weyl 
spinor. Owing to the existence of two geodetic and shear-free 
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principal spinors of the electromagnetic field, which are tak
en as the spin frame, the components Hjooo and Hjlll are 
invariant under the transformation (7a) and satisfy the de
coupled equation (13) and 

[(ll + 2r - r + 3.u + ,u)(D + 3€ - p) 

- «(5 + 2a +,8 + 31T - 7) 

X (~+ 3/3 - r) - 'l'2]Hjlll = 0, 

respectively. 

(18) 

All the type-D solutions of the Einstein-Maxwell equa
tions with an aligned electromagnetic field possess (at least) 
two commuting Killing vectors. The (two-dimensional) or
bits generated by this isometry group are called null or non
null according to whether the metric induced on the orbits is 
singular or not. 13,14 With respect to a (local) coordinate sys
tem {x,y,u,v} such that au and au are the two commuting 
Killing vectors, Eqs. (13) and (18) admit solutions with a 
dependence in the variables u and v of the form 

ei(ku + lu) , (19) 

where k and I are separation constants. In order to determine 
the dependence of the decoupled components of the spin-~ 
field on the coordinates x and y we shall consider the non
null and null orbit solutions separately. 

A. Non-null orbit solutions 

The metric corresponding to a non-null orbit solution 
can be written in the form 

ds2 = (ifJ¢)-1 (P2 du - Pt dV)2 --{ 
Q dy2 

(Ptq2 - P2qt)2 Q 

- (q2 du - qt dV)2 - - , P dX2} 
(Ptq2 - P2qt)2 P 

(20) 

where,ifJ is defined by (14); Pt = Pt(x) and qt = qt(y) are 
polynomials of degree not greater than 2; P2 and q2 are con
stants; and P = P(x) and Q = Q(y) are polynomials of de
gree not greater than 4 that contain the parameters e and g, 
as well as other arbitrary parameters corresponding to mass, 
NUT parameter, acceleration, and angular momentum per 
unit mass. The tangent vectors 

D = ay + (lIQ) (qt au + q2 au)' 

II = - !ifJ¢Q (ay - (lIQ)(qt au + q2 av»)' 

~ = (P /2) t/2¢(ax + (i/P)(PI au + P2 av)j, (21) 

(5= (P/2)1/2ifJ(ax - (i/P)(Pt au +P2av») 

form a null tetrad such that D and II are double principal null 
directions of the conformal curvature. 

Acting on functions with a dependence of the form 
( 19), the tetrad vectors can be replaced according to 

- t D ...... fiJ 0' ll ...... - !ifJifJQfiJ 0' 

~ ...... (1I{l)¢i?6, (5 ...... (lI{l)ifJi? 0' 

where 

fiJ n =ay + iq/Q + nQ (l)/Q = Q - nfiJ oQ n, 

fiJ~ =ay - iq/Q + nQ(1)/Q = Q - n fiJ6Q n, 

G. F. Torres del Castillo 
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TABLE I. Expression of the functions that determine the null tetrad. The metrics denoted as G - Sand D - M correspond to the null orbit solutions. Here a, 
b, m, n, e, g, Yo, and Eo are aIbitrary constants. 

Metric p(x) q(y) 

gR-N k+1 k 

g*R-N k+1 k 
gC k+1 k 

cB(+) 1+ 2akx _ k(a2 +y) 

cB( -) k(a2 + x 2) -1- 2aky 

G-S k(a2 + x 2) -1- 2aky 

CA 1+ kx2 I-ky 

D-M 1+ kx2 I-V 
P-D 1+ kx2 I-V 

.!£ n =ff (ax + piP + np(t)/2P) = P - n/2.!£ oP n/2, 
(23) 

.!£! =ff (ax - piP + np(1)/2P) = P - n/2.!£"6pn12, 

p(x) =PI (x)k + P21, q(y) =ql (y)k + q21, (24) 

andJ<k) denotes the kth derivative of/with respect to its 
argument. 

The polynomials p, q, P, and Q are listed in Table I, 
following Ref. 13 with some slight changes in notation (see, 
also, Ref. 14). For each specific metric, the spin coefficients 
can be computed using Eqs. (15) and (17) and the expres
sions listed in Table II. Some of the metrics given in Table I 
can be obtained from others also given there by setting some 
of the parameters equal to zero and making a coordinate 
transformation or by means oflimiting transitions; neverthe
less, these particular branches are included in order to sim
plify the application of the results derived here to the specific 
cases avoiding irrelevant parameters. The Kerr-Newman 
metric is a special case of the CA metric given in Table I, if 
one takes b = a2

, g = 0 = n, Eo = 1. In terms of the Boyer
Lindquistcoordinates,y = r,x = - a cos e, U = - t + aqy, 
and v = qy I a; therefore, the separation constants k and I cor
respond to k = - U), I = a(m + aU), where m is an integer. 

Using Eqs. (15)-(17), (22), and (23), together with 
the expressions given in Tables I and II, a straightforward 
computation shows that Eqs. ( 13) and ( 18) admit separable 
solutions of the form given in Table III, with the one-vari
able functions R ± 3/2 (y) and S ± 3/2 (x) obeying the ordi
nary differential equations 

P(x) Q(y) 

1 - EoX2 Eor - 2my + (e2 + f)y4 

- EoX2 + 2nx3 - (~+ f)x4 1 +Eor 
b - EoX2 - 2mx3 - (e2 + f)x4 - b+ Eor - 2my + (~+flJl' 

1 - EoX2 ~ + f - 2my + Eo(Y - a2) 
- ~ -f + 2nx - Eo(X2 - a2) 1 +Eor 

-~-f+2nx 
b - f + 2nx - EoX2 b + e2 - 2my + Eor 

- e2-f + 2nx 
- f + Yo + 2nx - EoX2 e2 + Yo - 2my + Eor 
+ 2mx3 - (e2 + yo)x4 - 2ny + (f - YO)y4 

[QiP -1/2iP"6 - 2iq(J) + Q(2)/6]Q3/2R+ 3/2 

= AQ3/2R + 3/2" 

[QiPt_ 112 iP 0 + 2iq(J) + Q(2)/6 ]R_3/2 = AR_3/2' 

and 

(25) 

(26) 

[.!£t_ 1I2.!£ 3/2 + 2iJ) + P(2)/6 ]S+3/2 = - AS + 3/2' (27) 

whereA is a separation constant. By means of the commuta
tion relations 

QiP 1- siP6 = QS+ liPT + siPoQ -s - 2iq(J) + sQ(2), 

.!£ 1- s.!£I = .!£T + s.!£ _ s - 2p(J) + sp(2), (29) 

which follow from the definitions (23), Eqs. (25)-(28) can 
be summarized by the master equations 

[QiPL siP 0 - (2s + l)iq(J) 

+ (s+ 1)(2s+ l)Q(2)/6]Rs =ARs, (30) 

[.!£I+S.!£~s + (2s+ l)p(J) 

+ (s+ 1)(2s+ I)P(2)/6]Ss = -ASs, (31) 

where s now takes the values ~ or -~. Furthermore, Eqs. 
(23), (25),and (26) showthatQ3/2R+3/2andR_3/2satisfy 
complex-conjugate equations. 

Equations (30) and (31) have exactly the same form as 
that found for perturbations of spins-s = 0, !, 1, ~, and 2 in 
the non-null orbit type-D vacuum metrics7

; the only differ
ence comes from the presence of the parameters e and g in 

TABLE II, Expression of the only non vanishing component of the conformal curvature and of the functions that determine the spin coefficients. 

Metric '1'2 t/J ; 5 

gR-N [- m + (e2 +f)t/J]t/J3 y p 1/4y-1 P 114Q 1/2 

g*R-N [ - in + (e2 + f)~]t/J3 - ix p
'
/4X-1 p 1/4Q'/2 

gC [-m+ (~+f)(Y_X)]t/J3 x+y pII4(X+y)-1 p 1/4Q'/2 

CB( +) [ - (m + iEoO) + (e2 + i)~1t/J3 (y+ ia)-I pl/4 P 114Q 112(y + ia)-I 

cB( -) [ - (in + Eoa) + (e2 + f)~]t/J3 (a + ix)-I pII4 P 1/4Q 1/2(a + iX)-1 

G-S [-in+ (~+f)~W (a+ix)-I pl/4 pIl4(a+ix)-1 

CA [- (m+in) + (~+f)~]t/J3 (y+ iX)-1 pll4 P 1/4Q 1/2(y + iX)-1 

D-M [- in + (e2 +f)~W (y+ iX)-1 pl/4 pll4(y + iX)-1 

P-D { - (m + in) + (~+ iH (I + xy)/(y - ix) J}t/J3 (1- xy)/(y + ix) pI/4(1_xy)-1 PI/4Q'/2(y+ iX)-1 

2117 J. Math. Phys., Vol. 30, No.9, September 1989 G. F. Torres del Castillo 2117 



                                                                                                                                    

TABLE III. DecoupJed components in tenns of the separated functions. 

Metric 

cB{ + ), CB{ - ) 
G-S, CA,D-M 

gR -N,g*R -N,gC 
P-D 

- (2)-3/2l/J4e'(ku+'v)R_3/2S_3/2 

- (2) -3/2{1 - xy)r/?ei(ku+ M R-3/2S-312 

the fourth-order polynomials P and Q. Therefore, from Eqs. (25) and (26) it follows that 7 

Q3/2(P}o)3R_ 3/2 = CQ3/2R+3/2, 

Q 3/2(rdrt )3Q3/2R -C'R 
;;:p 0 +3/2 = -3/2' (32) 

where Cis a constant (taking into account that Q3/2R+ 3/2 and R-3/2 satisfy complex-conjugate equations). By substituting 
the first equation (32) into the second, we obtain Q3/2(P}6 )3Q3/2(P}O)3R_ 3/2 = IC 12R_3/2. Then by commuting the 
differential operators and using Eq. (26) we find7 

IC 12 = A 3 + {_ H QQ(4) _ Q(OQ(3) + ~(Q(2»2] + 4(q(l)2 _ 8qq(2)}A + ~{~q2Q(4) _ qq<0Q(3) 

+ (qq(2) + (q(i)2)Q(2) _ 3q(l)q(2)Q(I) + 3(q(2»2Q} +,t{ _ 2QQ (2)Q (4) + ~(Q(I»2Q(4) + Q(Q(3»2 

_ Q(J)Q (2)Q (3) + j(Q(2»3}. (33) 

Similarly, the functions S ± 3/2 obey the relations 

.!? -1/2.!? 1/2.!? 3/2S +3/2 = - BS_3/2, .!?t_ 1/2 .!?i/2 .!?!/2S-3/2 = BS+ 3/2, (34) 
I 

where by adjusting the phases of R ± 3/2 and S ± 3/2' B is a real constant. By substituting one of the equations (34) into the 
other, commuting the differential operators, and using Eq. (31) one obtains 

B 2 = A 3 + { _ H pp(4) _ p(Op(3) + ~(P(2»2] _ 4(p<0)2 + 8pP<2)}A + ~{1P2p(4) _ pP<0p(3) + (pp(2) + (p<0)2)P(2) 

The values of the constants B 2 and I C 12 differ because of the 
presence of a background electromagnetic field; in fact, we 
find that 

IC 12 = B2 + 14(e + ig)h 12, 

where h is given by 

(36) 

ifJ- I (pll. + JlD - r"3 - 'lT8)ei(ku + Iv) = hei(ku + Iv) (37) 

in terms of the Killing vector field ifJ -I (pll. 
+ JlD - r"3 - 'lT8). [Compare with Eq. (41) of Ref. 7.] 

B. Null orbit solutions 

In the case of a null orbit solution the metric can be 
written in the form 

d~ = (ifJ(fo) _1{2 dY(P2 du - PI dv) 
Plq2 -P2ql 

P dX2} 
- 2 (q2 du - ql dV)2 - - , 

(Plq2 - P2ql) P 
(38) 

where PI = PI (x) and ql = ql (y) are polynomials of degree 
not greater that 2, P2 and q2 are constants, and P = P(x) is a 
polynomial of degree not greater than 4. There exist only two 
different branches of the null orbit solutions, which are given 
in Table I (denoted as G - Sand D - M). A null tetrad for 
the metric (38) is determined by the vector fields 
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(35) 

Acting on functions with a dependence on u and v of the 
form ( 19), the tetrad vectors (39) can be replaced according 
to 

D-2iq, Il.- -~ifJ(foJy, 8-(1/.,fi)(fo.!?6, "3-(1/.,fi)ifJ.!?o, 
(40) 

with q = q(y) defined in (24) and'!? 0 and .!?6 given by Eq. 
(23). The spin coefficients and curvature can be obtained 
with the aid of Eqs. (15 )-( 17) and Table II. 

The decoupled equations (13) and (18) admit separa
ble solutions of the form given in Table III, where the func
tions R ± 3/2 (y) and S ± 3/2 (x) satisfy 

[2iqJy - (2s-1)iq(o]Rs =ARs (41) 

and Eq. (31), respectively. In the present case the functions 
R ± 3/2 obey the following relations: 

(2iq)3R_ 3/2 = ER+ 3/2, (Jy )3R+3/2 = FR_ 3/2, (42) 

where E and F are constants. The value of the product EF 
can be obtained by substituting the first equation in (42) into 
the second and using Eq. (41). The result amounts to the rhs 
of Eq. (33), setting Q equal to zero, i.e., 

EF = A 3 + 4{ (q(I)2 - 2qq(2)}A. (43) 
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Equation (36) also holds in this case if 1 C 12 is replaced by 
EF. 

v. CONCLUSIONS 

The results of this paper show that many of the regulari
ties found in the study of test massless fields in algebraically 
special vacuum space-times also apply to the case of spin-~ 
perturbations of certain solutions of the Einstein-Maxwell 
equations if one employs the linearized equations of the 
0(2) extended supergravity. Equation (36), applicable to 
the case oftype-D solutions with a non-null aligned electro
magnetic field, is similar to that obtained for the gravitation
al perturbations oftype-D vacuum metrics. Therefore, spe
cifically for the Kerr-Newman solution, it is possible to have 
perturbations with one of the two components H boo or H ~ 11 

equal to zero, which corresponds to having 1 C 12 or EF equal 
to zero (cf. Ref. 17). 
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A way to compute the entropy of an invariant measure of a hyperbolic rational map from the 
information given by a Ruelle-Perron-Frobenius operator of a generic Holder-continuous 
function will be shown. This result was motivated by an analogy of the Brownian motion with 
the dynamical system given by a rational map and the maximal measure. In the case the 
rational map is a polynomial, then the maximal measure is the charge distribution in the Julia 
set. The main theorem of this paper can be seen as a large deviation result. It is a kind of 
Donsker-Varadhan formula for dynamical systems. 

I. INTRODUCTION 

We will show an interesting analogy of the Brownian 
motion on Rn with the maximal measure of a hyperbolic 
rational map (the quotient of two polynomials) on the com
plex plane. In this context, the Ruelle-Perron-Frobenius 
operator plays the role of the semigroup (at time t = 1) asso
ciated with the infinitesimal generator of a diffusion process. 
We will show these results in Sec. IV of this paper. First in 
Sec. II and Sec. III we will explain carefully the concepts 
that we want to relate. 

We believe it is worthwhile to present all the consider
ations that motivate the main theorem of this paper. 

We refer the reader to Walters, 1 Mafie,2 and Ruelle3 for 
general results about ergodic theory and thermodynamic 
formalism, and we refer to Varadhan4 for results about diffu
sions and large deviation properties of stochastic differential 
equations. Another source of references for the latter subject 
is Freidlin-WentzelV but here we will follow the more con
cise version of Varadhan. 

All analogies presented here are based on some results 
presented in Ref. 6 about relations of the pressure, entropy, 
free energy, and large deviation. In Refs. 7-9, results related 
to the theorems in Ref. 6 are also obtained. 

II. DIFFUSION AND BROWNIAN MOTION 

Here we will follow the nice presentation of the main 
ideas about diffusion that appeared in Varadhan.4 

There are many cases where solutions to problems are 
expressed as an integral over a space of functions. A simple 
example below is the (simplified) version of the Feynman
Kac formula that expresses the solution of the equation 

8u 1 
-=-au+v(x)u, u(0,x)=1, (2.1) 
8t 2 

as the function space integral 

u(t,x) =E,,{exp Sa' V(X(S»)dS} , (2.2) 

where Ex refers to the expectation with respect to Brownian 
motion on R n

, starting from the point x in Rn at time t = 0. 
Denote Ex {exp f~ v(x(s) )ds} by a(t),tER and consider 

the limit 

A = lim (l/t)log aCt) . (2.3) 
,- 00 

a) Permanent address: Instituto Mat·UFRGS, Porto Alegre, Brazil. 

When vex) is periodic with period 1 in each variable, we 
can visualize, via the spectral theorem for ~a + v on the n 
torus, that the above limit exists and is also the largest eigen
value of !a + v. 

Now, by the variational principle, we have 

A = lim (1!t)log aCt) 
,- 00 

= sup [r v(x)(p2(x) dx - ~ r IVCPl2 dX]. (2.4) 
q,eL,(T") JTn 2 JTn 
114>11'=1 

This last expression can be interpreted in the following 
way: f TnV(X)cp2(X)dx is the potential term, that is, the term 
where the action of the external potential vex) appears. 

The other term is a kind of inertial term. If there is no 
external potential v, that is v = 0, then we just notice the 
solution given by the regular Brownian motion. 

Making analogy with classical mechanics, we can say 
the first term corresponds to potential energy and the second 
term to kinetic energy. Hamilton's principle of least action 
claims that motions of a mechanical system coincide with 
the extremal of a functional related to the difference ofkinet
ic and potential energy. In the case that we are in a Rieman
nian manifold, and there is no potential energy, the trajector
ies are geodesics. 

Now, let us return to diffusions. For a Markov process 
with infinitesimal generator L and domain D, consider the 
semigroup T, corresponding to L; then the deviation func
tion (see Ref. 4, Sec. 13) is 

lev) = lim - ~ inf {flOg T,u(x) dV(X)}. (2.5) 
'-00 t UEB+ u(x) 

Here v is any probability measure on the state space X of 
the Markov process and B + is the space of continuous 
bounded positive functions. 

We also have 

lev) = - inf 
UED 

Ix ( ~u )(X) dv(x) . (2.6) 

Note that L = log T1• 

III. THE MAXIMAL MEASURE AND THE PRESSURE 

In this section we will explain the main reason to consid
er the pressure (sometimes called topological pressure) and 
the Ruelle-Perron-Frobenius operator. 
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Now we will follow the beautiful and simple motivation 
of the subject presented in Bowen. 10 

Consider a physical system with possible states 1,2, ... ,m 
and the energies of these states are E I ,Ez, ... ,E m , respectively. 
Suppose our system is put in contact with a much larger 
"heat source," which is at temperature T. Energy is thereby 
allowed to pass between the original system and the heat 
source, and the temperature T of the source remains con
stant, as it is so much larger than our system. As the energy 
of our system is not considered fixed, the array of the states 
can occur. It has been known from statistical mechanics for a 
long time that the probability Pj that the state j occurs and is 
given by the Gibbs distribution: 

e - BEj • 

Pl' = , jE{I,2, ... ,m}, l:m -BE, 
i=le 

(3.1 ) 

where B = 11 kT and k is a physical constant. 
A mathematical formulation of the above consideration 

in a variational way can be obtained in the following way: 
consider 

m m 

F(PI,PZ,···,Pm) = L -Pi logpi - L PiBEi' (3.2) 
i= 1 i= I 

defined over the simplex in Rm, given by 

{(PI,PZ, ... ,Pm): Pi>O, 

iE{I,2, ... ,m} and itl Pi = I} . 
Using Lagrange multipliers, it is easy to show that the 

maximum of F in the simplex is obtained for 

e- BEj 

P = , jE{I,2, ... ,m}, , l:m -BE, 
i= Ie 

in accordance with 3.1. 
The quantity H(PI,Pz, ... ,Pm) = l:;"= I - Pi logpi is 

called entropy of the distribution (PI,PZ,oo.,Pm)' Denote 
-l:;:' I PiEi as the average energy E(PI,PZ,oo.,Pm)' 

Then we can say that the Gibbs distribution maximizes 

(3.3 ) 

The expression BE - H is called, in this context, free 
energy (in fact, there exist several different concepts in 
mathematics and physics also called free energy.) 

Therefore we can say that nature minimizes free energy. 
In the absence of the heat source, that is E = 0, nature 

maximizes entropy. In this case the Gibbs state is the most 
random probability, namely, Pj = 11m, jE{I,2,oo.,m}. 
Again, using analogy with classical mechanics, E plays the 
role of potential energy and H plays the role of kinetic ener
gy. 

Now, let us return to Gibbs measures. Generalizing the 
above considerations, Ruelle proposed the above model: 
consider the one-dimensional lattice l. Here one has for each 
integer a physical system with possible states 1,2,oo.,m. A 
configuration of the system consists of assigning an 
x i E{I,2,oo.,m} for each iEl. 
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Thus a configuration is a point 

x = {XJiEZETI {1,2,oo.,m} = l:m . 
z 

Considering now the space l:m, the shift map 

u: l:m - l:m , 
{X,}iEZ {X,+ ,}iEZ 

and M(u), the space of probabilities v, such that for any 
Borel setA 

v(A) = v(u-I(A»), 

we have the well-known Bernoulli shift model. 
A continuous function ifJ: l:m -R, in this setting, plays 

the role of the energy. 
The problem here is to find a way to obtain the Gibbs 

distribution in the one-dimensional lattice in a similar way as 
how it was obtained before, in the beginning of Sec. III. Note 
that it is natural to consider just probabilities pEM(u), be
cause there is no natural reason to consider a certain distin
guished point of the lattice as the origin in l. 

Given a certain continuous function ifJ: l:m -R (as we 
said before will play the role of the energy), consider the 
following variational problem: 

sup {h(P)+JifJ(Z)dP(Z)}, (3.4) 
pEM(u) 

where h (p) is the entropy of the probability pI,2 . 
Denote such supremum by P( ifJ ), the pressure associat

ed with ifJ. It is natural to ask which properties have a proba
bility P", that eventually attain such supremum value. 

The above setting was proposed by Ruelle. In fact, he 
was able to find a certain ifJ, such that the above P", is exactly 
the Gibbs state for the one-dimensional lattice that with oth
er procedures people in physics already knew a long time 
ago. 10 

Now, given the above setting, then following Ruelle and 
Bowen,3,10-lz consider the below variational problem: given 
a rational map F of degree d in the complex plane and a 
Holder-continuous function ifJ on C, consider 

sup {h(P) + JifJ(Z) dP(Z)} =P(ifJ), (3.5) 
pEM(F') 

where h (p) is the entropy of the probability P and M(F) is 
the set of probabilities, such that for any Borel set A, 

peA) = p(F-I(A»), 

p(C)=I. 

The support of such measures in M(F) will be contained 
always in the Julia set. 13.14 

When ifJ = 0, there always exists a unique measure f.l of 
maximal entropy. 15,16 We will call this measure the maximal 
measure. The entropy of such measure is log d. 

In the case where the rational map is a complex polyno
mial, the maximal measure is the charge distribution in the 
Julia set. 13,15 If the rational map is not a polynomial, the 
maximal measure is not the charge distribution in the Julia 
set. 14 

, The results presented here are for the maximal measure 
f.l. If one considers F a polynomial then, as we said before, 
our result is, in fact, for the charge distribution in the Julia 
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set. This last measure is also called the harmonic measure 
seen from 00. 

In any case, given tP, the value P( tP) will be called the 
pressure of the function tP. 

There exists a very interesting way, developed by 
Ruelle, to obtain the above value P( tP ).10.11,3 

Ifa measure v satisfies h (v) + f<P(z)dv(z) = P(tP), that 
is, v attains the supremum of the above-mentioned variation
al problem, it is natural to call such measure a Gibbs state. In 
the case where F is hyperbolic and tP is Holder continuous, 
there always exists such a Gibbs state and it is unique. 10,3 

We will denote J the Julia set of F. 
Consider 0 < 8 < 1 and denote F the space of 8-Holder

continuous real-valued functions in J with the metric 

Ilgll = IIglio + sup Ig(x) - g( y) I , 
X#y Ix- ylli 

where II 110 is the usual supreme norm and I I is the modu
lus. 

Consider now the linear operator on F, L",: F -+ F, given 
by 

d 

L",(<I>(z») = L et!iXi(Z»)<I>(x; (z») , (3.6) 
;=1 

where "pis considered fixed, <l>EF, and x; (z), iE( 1,2, ... ,d) are 
the d solutions (counted with multiplicity) of F(x) = z. 

In the literature this operator is called the Ruelle-Per
ron-Frobenius operator associated with rfJEF. IO,12,13 

The conjugate of L"" denoted by L", *, acts on the space 
of signed measures, and is defined by taking a measure p to 
the q = L", * (p), the unique one such that for any continuous 
function <1>, 

J <I>(z) dq(z) = J L", (<I> )(z)dp(z) . (3.7) 

Theorem 111,12: Let Fbe a hyperbolic rational map and 
"p: J-+R Holder continuous. Then there exist h: J-+R(hEF), 
a probability v (not necessarily invariant) and A. > 0, such 
that 
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(1) J h(z)dv(z) = 1; 

(2) L", (h) = A.h; 

(3) L ~ (v) = A.V; 

(4) 11A.-nL:;'(<I»-h J <I>(z) dv(z) I 10-+0, 
V<I>EF; 

(5) h is the unique positive eigenfunction of L", (up to 
multiplication by scalars); 

(6) The probability u = hVEM(F) satisfies 
h(u) + S"p(z)du(z) = P("p) and is the unique so
lution of the variational problem (3.5). Therefore 
u is the Gibbs state for f/r, 

(7) P("p) = log A.; 

(8) A. is the largest eigenvalue of L",. 

The above theorem is proved in Refs. 11 and 12. 
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Given a probability pEM(F), consider the limit 

1
. p(F(B(z,r»)) 
1m . 
r-O p(B(z,r») 
The above limit exists by the Radon-Nykodin theorem 

for z,p-almost everywhere. 
Let us call 

J(z) = lim p(F(B(z,r»)) , 
r_O p(B(z,r») 

(3.8) 

for z,p-almost everywhere, point zEJ, the Jacobian of the 
measurep. In fact, h(p) = - S 10gJ(z)dp(z) (Ref. 17). 

In Ref. 6 it is shown that the set of probabilities in M(F), 
such that the Jacobian is Holder continuous and never zero, 
is dense in M(F). 

Note that J(z) < 1 for zEJ, and also ~1= 1 J(x; (z») = 1 if 
pEM(F). 

From this fact, it follows easily from Theorem 1 that, if p 
has Jacobian Holder continuous, then 

P(logJ) =h(p) + J 10gJ(z)dp(z) =0. (3.9) 

Using the notation of Theorem 1, we also have 
h(z) = IVzEJ, A. = 1, and u = v = p. 

We will use these results later in this paper. 
The Gibbs measure for log J is sometimes referred to as 

a "g measure." 
Theorem 26: Let Fbe a hyperbolic rational map and "p; 

then 

P("p) = !~~ n-Ilog J eXPCt~ 1/J(Fj(Z»))dlt(Z) 

+ logd, (3.10) 

where It is the maximal measure. 
Denote 8(z), the Dirac measure, with mass one in the 

point zEJ. 
In Ref. 6 the above result was used to prove the follow

ing theorem. 
Theorem 36

: Let F be a hyperbolic rational map of de
gree d and It the maximal measure, then for any open convex 
set G of I continuity6 G contained in the set of probabilities 
with support in theJuliaset, GnM(F) #tP, we have the limit 

1 {II n-I . } 
!:~ -;loglt zEJ -; j~O 8(FJ(Z»)EG (3.11 ) 

exists and is equal to 

- inf {log d - h(v)} . (3.12) 
VEGnM(F) 

Therefore log d - h ( v) is a deviation function for the pro
cess (F,It). In fact, this deviation function is the Legendre 
transform of the pressure minus log d.6 

IV. BROWNIAN MOTION AND CHARGE DISTRIBUTION: 
AN ANALOGY 

Suppose Fis a polynomial. Therefore all considerations 
made before can be applied for the charge distribution in the 
Julia set because, in this case, this measure is equal to It, the 
maximal measure. 

We have that for rfJEF and v a continuous function, the 
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expression !.;,:: NI{F j (z») can be considered a discrete time 
analogous version of Sbv(x(s»)ds. In this way 

P( t/J) -log d = !~~ ! 10g(f exp Ct: t/!{Fj(z»)) dli(Z») 

(4.1 ) 

is analogous to 

A = lim 1.. log Ex {exp r
l 

v(x(s») dS} , 
1-00 t Jo (4.2) 

where Ii plays the role of the Brownian motion. 
As we can see, respectively, in Sec. III and Sec. II, t/J and 

v play the role of a potential energy. 
Now from Sec. II the semigroup TI associated with the 

diffusion !a + v is such that TI has the largest eigenvalue e'. 
Observe that it also follows from Theorem 1 that ePC "') is the 
largest eigenvalue of L",. Therefore (lId)L", is analogous to 
TI • 

Finally, trying to find some kind of analogy with the last 
part of Sec. II [remember that L is analogous to 
log (d - I L", ) ], then we have the following theorem. 

Theorem 4: Consider F a hyperbolic rational map of 
degreedandVEM(F) a probability with JacobianJ(z) Hold
er continuous that never vanishes, then 

log d - h(v) - f t/J(z)dv(z) 

= _ inf {f log (d -IL", )u(z) dV(Z)} . 
UEB+ u(z) 

(4.3 ) 

We will make some remarks before the proof of this 
theorem. 

Remark 1: The function I of the end of Sec. II is a large 
deviation function, as can be seen in Sec. 13.4 By the other 
way, as we see in Sec. II, in the case t/J = 0, then in Theorem 
3, the value log d - h(v) is a deviation function for the pro
cess (F,Ii)' Therefore the above theorem also represents an 
analogy with a diffusion process. Here we cannot consider a 
limit as t goes to zero: 

. 1. {f TI u(x) } lev) = hm - -- mf log dv(x) , (4.4) 
1-0 t UEB+ u(x) 

because the time n is discrete. Therefore here in Theorem 4, 
we consider n = 1. 

It is usual in large deviation theory to suppose the devi
ation function is defined in a certain dense set with good 
properties. In the case of hyperbolic rational maps, this good 
set is the set of measures with Jacobian Holder continuous 
(see Ref. 6). Therefore the assumption about v in the setting 
of large deviation is a mild assumption. 

Now we will prove the main theorem of this paper. 
Proof of Theorem 4: Consider first u(z) = e - "'CZ)J(z); 

then 

I 
L",(u(z») I !.1~let!-iXjCZ»)U(Xi(Z») 

og = og--~------~--~ 

2123 

u(z) u(z) 
!.1 ~ 1 (et!-iXj(Z»)e - t!-ixj(Z»)J(Xi (z»)) 

=log:--------------------
u(z) 

d 

= log L J(xi(z»)-loge-"'CZ)J(z) 
i~1 

= t/J(z) -log J(z). 
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(4.5) 

Therefore, for such u, 

log '" dv(z) = t/J(z)dv(z) - log J(z)dv(z) f L u(z) f f 
u(z) 

= f t/J(z)dv(z) + h(v). 

Finally 

f
log (d -IL",)u(z) dv(z) 

u(z) 

= f t/J(z)dv(z) + h(v) -log d. (4.6) 

Now we will show that for any positive continuous function 
u, we have 

log '" dv(z» t/J(z)dv(z) + h(v). f L u(z) f 
u(z) 

(4.7) 

We can, of course, suppose that instead of a general 
ueB +, we have u(z)e - "'CZ)J(z) , becausee- ",(z) andJ(z) are 
nonzero by hypothesis. 

Therefore 

L",(u(z») 
d 

= L et!-iXj(Z»)e-t!-iXj(Z»)J(xi(Z»)U(xi(z») 
l~i 

d 

= L J(xi(Z»)U(xi(z») = L1ogJu(z). 
i~1 

In this case we have 

L (u(z)e- "'CZ)J(z») 
log ----''''------:-----

u (z)e - "'CZ) J(z) 

= 10gL\ogJu(z) 

-log u(z) + t/J(z) -log J(z). 

From this, it follows that 

f L (u(z)e-"'CZ)J(z») 
log '" dv(z) 

u(z)e- ",cz)J(z) 

= flog L1ogJu(z)dv(z) - flog u(z)dv(z) 

+ f t/J(z)dv(z) + h(v). 

Therefore all we have to prove is that 

f log L1ogJu(z)dv(z) - flog u(z)dv(z»O. 

(4.8) 

(4.9) 

Remember now that from (3) in Theorem 1, L :g J (v) = v, 
therefore 

flog u(z)dv(z) = f L\ogJ log u(z)dv(z). 

If we are able to show that 

log L\ogJu(z) >L\ogJ log u(z) 

for any zEJ, then (4.9) follows. 
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This last inequality means 
d 

log L J(xj(z))u(xj(z)) 
j=1 

d 

:> L J(xj(z))log u(xj(z)). 
j= 1 

(4.11 ) 

As ~1= 1 J(Xj (z)) = 1 for zEJ, the last inequality follows 
from the fact that log is a concave function and U is positive. 

This is the end of the proof of Theorem 4. 

v. CONCLUSION 

Theorem 4 gives a way to compute the entropy of the 
measure v as an information obtained from the Ruelle-Per
ron-Frobenius operator of a Holder-continuous function l/J. 
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Cartan's simple--often called pure-spinors corresponding to even-dimensional complex 
vector spaces are defined in terms 'of the associated maximal totally null planes. Their 
geometrical properties are derived and described using notions familiar to physicists: Dirac and 
Weyl spinors, gamma matrices, tensors formed bilinearly from pairs ofspinors, and creation 
and annihilation operators of Fermi states. A new theorem characterizes a simple spinor </J by 
the properties of the vector trfJBY'</J, where", is an arbitrary spinor and B is the matrix 
connecting the gamma matrices with their transposes. The Cartan constraint equations on the 
components of simple spinol'S are given a new, geometrically transparent derivation based on 
the action on simple spinors of a maximal Abelian subgroup of the group Spin. 

I. INTRODUCTION 

During the winter semester of 1935-1936, Elie Cartan 
gave a course of lectures at the Sorbonne on spinors. The 
notes of these lectures, taken by Mercier, were published in 
1938. 1 In 1966 an English translation by Streater appeared.2 

In the lectures, Cartan presented a new approach to spinors, 
associated with a vector space of n dimensions, based on 
their intimate relation to totally null (Cartan used the word 
isotropic) subspaces of maximal dimension. In fact, Cartan 
showed that for n > 6 not all spinors correspond to maximal, 
totally null subspaces; he called simple those that do and 
described their properties. Characteristically of Cartan, the 
lectures combine a depth and originality of ideas with only 
rough outlines of the proofs. The importance of the lectures 
was recognized by another outstanding mathematician, 
Chevalley, whose book3 connects Cartan's ideas with the 
approach to spinors presented by Brauer and Weyl4 and 
based on Clifford algebras. Chevalley's emphasis is on alge
bra: Spinors are identified with elements of a minimal left 
ideal of the Clifford algebra and most of the theorems are 
proved without restrictions on the basic field (it may be of 
characteristic 2, for example). The generality of Chevalley's 
exposition made his book difficult to use by physicists; there 
is a readable account of parts of it by Benn and Tucker. 5 

Following Chevalley, most of the authors of publica
tions on spinors in English replace the adjective simple by 
pure. However, here we shall use the original Cartan expres
sion: Otherwise, we would have to accept that the Dirac 
spinor is impure (cf. Proposition 3). 

Weyl spinors and the related null geometrical elements 
are known to play an important role in general relativity,6 
twistor theory/'s and optical geometry.9 Recent work on 
fundamental interactions and their unification makes essen
tial use of geometries of more than four dimensions. For this 
reason, nontrivial simple spinors-which occur for n> 6-
now have more chance of becoming relevant to physics than 
they had at the time of the appearance of Cartan's lectures. 
Further remarks on this subject can be found in our recent 
publications. 10,1 1 

a) Permanent address: Instytut Fizyki Teoretycznej, Uniwersytet Warszaw
ski, Hoza 69, 00-681 Warszawa, Poland. 

In this paper we present a straightforward and explicit 
description of simple spinors and their principal properties. 
A new theorem characterizes a simple spinor </J in terms of 
the properties of the vector bilinear in </J and another spinor 
which need not be simple. Our approach is based on the 
observation-which can be traced back to Brauer and 
Weyl-that to a complex vector space of dimension 2m or 
2m + I there corresponds a spinor space S of complex di
mension 2m representable as the Fock space of m Fermi 
states. We show that every simple spinor can be used to de
fine the "vacuum state" in S and then all eigenstates of the 
occupation number operators are also simple. 

The study of simple spinors may be considered as a pre
liminary to the problem of "classification of spinors,,,12 
which consists in finding the orbits of the Spin groups in 
spinor spaces, computing their stabilizers, and exhibiting the 
generators of the ring of invariants of the representation. 
Simple spinors correspond to the orbit of the lowest dimen
sion. The classification problem is difficult and very little is 
known for n > 14. We hope our approach will also shed light 
on this problem. 

We restrict ourselves here to complex vector spaces of 
even dimension 2m. It is easy to extend our considerations to 
complex odd-dimensional spaces as well as to real spaces 
with a scalar product of signature (m,m) and (m + I,m). 
Other signatures require a subtler study because in those 
cases. the dimension of the maximal totally null subspaces is 
less than m. 

II. PRELIMINARIES: NOTATION, CLIFFORD 
ALGEBRAS, AND SPINORS13 

Let V be a complex vector space of dimension 2m 
(m = 1.2 .... ) with a scalar product g. The Clifford algebra 
CI(g) admits a faithful and irreducible representation in a 
complex spinor space S of dimension 2m. To alleviate the 
notation we identify V with its image in Cl(g). Moreover. 
since the representation CI(g) -End S is an isomorphism 
(of algebras), we can also identify CI (g) with End S. There
fore. the same letter u denotes a vector. an element ofCl(g). 
and an endomorphism of S; if u, VEY. then 
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uv + vu = 2g(u,v). 

The vector space Vadmits a (generalized) orthonormal ba
sis (YI""'Y2m ) such that 

YI'Yv + YvYI' = 2gl'v, 

where 

gl'l' = (- 1)1'+ I, 

gl'v = 0 for p#v (p,v = 1, ... ,2m). 

We shall write r" = ~vgl'vYv' so that r"yv + Yvr" = 28:,. 
From the orthonormal basis one can construct a null 

basis (nl, ... ,nm,PI, ... ,Pm) by putting 

na = !(Y2a-1 - Y2a), Pa = !(Y2a-1 + Y2a)' 

so that 

nanp + npna = 0, PaPp + PpPa = 0 

and 

(1) 

naPp + Ppna = tiap , (2) 

where a,{J = 1, ... ,m. The null vectors (n a ) span a maximal 
totally null (MTN) subspace N of V: 

N = span{nl, ... ,n m }. 

Similarly, 

P= span{PI,. .. ,Pm}' 

is also a MTN subspace, Nnp = {O}, and there is a decom
position of V into a direct sum 

V=NtBP. 

Conversely, given a pair (N,P) ofMTN subspaces of Vsuch 
that Nnp = {a}, one can find a basis (nl, .. ,nm) of N and a 
basis (PI,. .. ,Pm) of Psuch that Eqs. (1) and (2) hold. Every 
vector u admits a unique decomposition 

u=n+p, 

where nEN and pEP. Writing 
m m 

n= I xana, P= IYaPa 
a= 1 a= 1 

one can express the fundamental quadratic form of Vas 

g(u,u) = XiYI + ". + XmYm' 

The orthogonal group O(g) acts transitively on the set of all 
MTN subspaces of V; this set has a natural structure of com
plex manifold of dimension m (m - 1) /2. 

Assume now that V has a preferred orientation and the 
basis (YI') agrees with the orientation. The volume element 

r = YIY2" 'Y2m 

can be expressed in terms of the null basis as 

(3) 

where square brackets denote commutators. Note, also, that 
r changes sign when the orientation of V is reversed. Since 
r 2 = I (the unit automorphism of S), the eigenvalues of r 
are 1 and - 1; the corresponding eigenvectors are Weyl 
spinors of positive and negative helicity, respectively. There 
is the decomposition 

S=S+ tBS_, 
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where 

The transposed endomorphisms (matrices)'yl' define a 
representation ofCI (g) in the spaceS * dual to S. Since Cl(g) 
is simple, there is an isomorphism B: S -+ S * such that 

and 

'yl' = BYI'B -I. 

One shows that 
'B= (_l)m(m-I)/2B 

(4) 

(5) 

('6) 

If t/JES is a "contravariant" and r/J*ES * a "covariant" 
spinor, then (r/J*,t/J) is the evaluation ("contraction") of r/J* 
on t/J. The isomorphism of End S with S ® S * makes it possi
ble to consider t/J ® r/J* as the endomorphism of S such that 
(t/J ® r/J*) (r/J) = (r/J*, r/J) t/J for every r/JES. Clearly, 

Tr(t/J ® r/J*) = (r/J*,t/J), Tr I = 2m. 

If AEEnd S, then 

Ao(t/J® r/J*) = (At/J) ® r/J*. 

The isomorphism B defines a bilinear map 

S XS3 (r/J,t/J) -+ (Br/J,t/J)EC, 

(7) 

which is invariant with respect to the action of the groupl4 
Pin(g): If u is a unit vector, then 

(Bur/J,ut/J) = (Br/J,t/J). (8) 

With every pair of spinors r/J, t/J one can associate a sequence 
Bk(r/J,y), k=0,1,2, ... ,2m of multivectors over V: Their 
components with respect to an orthonormal basis (YI') are 
given by 

B~'··l'k(r/J,t/J) = (Br/J,Yk .. 'r"'t/J), 

with 

(9) 

( 10) 

With the understanding that the product of an empty se
quence of the gammas is the unit automorphism I, Eq. (9) 
makes sense for k = 0 and Bo ( r/J,t/J) = (Br/J,t/J). The set of all 
products YI', .. 'Yl'k' where k = 0,1, ... ,2m and the indices sat
isfy (10), is a basis of End S. Therefore, there is adecomposi
tion l5 

t/J ® Br/J = 2 - m I B k ( r/J,t/J ), (11 ) 
k 

where 

.1, ""' 1', .. 1' Bk ('{-',t/J) = L B k kyl', . "Yl'k' 
(10) 

which is proved by noting that the trace of the product 

Y
V1 .• 'yV'Y "'Y where v < ... <v J-LI Uk' 1 I' 

is 2m for k = t', PI = VI"",Pk = Vk and zero otherwise. 
The symmetry properties (4) and (5) imply 

Bdt/J,1/!) = ( - l)(k(k-l)+ m(m-I))I2Bk (r/J,t/J), (12) 

so that Bk (t/J,t/J) = 0 for m=O,l and k = 2,3 or m=2,3 and 
k = 0,1 (mod 4). Equation (6) implies 
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Bdrtp,¢) = (-l)m- kBk (t/J,r¢). 

Therefore, if t/J and ¢ are Weyl spinors, then 

B k ( t/J,¢) = 0 if the helicities of t/J and ¢ 

(13) 

{
equal and m - k is odd 

are 
opposite and m - k is even 

(14) 

In particular, if ¢ is a Weyl spinor, then 

Bk (¢,¢) = 0 for m - b=1,2,3(mod 4). (15) 

Since 

ryl ... y"= (_1)ky"+I ... y2m, 

there is a convenient way of defining Hodge duality of multi
vectors by means of the gammas. For every k-vector Fwith 
the components Ff',···f'k with respect to the orthonormal ba
sis (Yf')' one defines its dual to be the (2m - k)-vector *F 
with the components given by 

= ~ Ff' .. ··f'krY "'Y 
~ fL. I-tk' 

(16) 

where the sums are taken over all strictly increasing se
quences of the indices. Since rZ = lone has ** F = F. 

Replacing ¢ by r¢ in Eq. (11) and using (7) and (16) 
one obtains 

*Bk(t/J,¢) = Bzm-dt/J.r¢)· (17) 

Therefore, if ¢ is a Weyl spinor r¢ = ± ¢, then 

* B k ( t/J,¢) = ± Bzm - k ( t/J,¢) (18) 

and, in particular, 

(19) 

The only essential component of Bzm (t/J,¢) is the pseudosca
lar (Bt/J,r¢). 

Let Fbe a k-vector and u = Uf'Yf'EV; then the contrac
tion u J F of u with F is the (k - 1) -vector with the compo
nents 

(u J F)f',···f'k = L gf'VuvFf'f',···f'k 

and the exterior product u 1\ Fis the (k + 1) vector obtained 
from the tensor product u ® Fby the alternating map ("anti
symmetrization over all indices"). The isomorphism (of 
vector spaces) CI (g) = A V leads to the following useful for
mula l6

: 

uF = u J F + u 1\ F, (20) 

where uF is the Clifford product of u and F. 
Computing u¢®Bt/J, where UEV and using Eqs. (7), 

(11), and (20) one obtains 

Bk (t/J,u¢) = u J Bk+ dt/J,¢) + u I\Bk_ dt/J,¢) (21) 

for k = 0, 1, ... ,2m; it is understood that B_1 and Bzm + I are 
zero. 

III. DEFINITION OF SIMPLE SPINORS AND AN 
EXAMPLE 

The vector space associated with a spinor ¢ES, 

M(¢) = {uEVlu¢ = a}, (22) 
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depends only on the direction of ¢. For ¢=l0 this vector 
space is totally null: Ifu, VEM(¢), theng(u,v) =0. 

Definition: A nonzero spinor is said to be simple if its 
associated totally null vector space is maximal. 

In other words, if V is 2m-dimensional, then simplicity 
of ¢ is equivalent to dim M( ¢) = m. To see that simple spin
ors exist in every dimension, consider a MTN subspace N of 
V and a basis (nl, ... ,nm ) of N. Since the representation of 
CI(g) in S is faithful, there exists a spinor X such that 

(23) 

is nonzero; then M(w) = Nand w is simple. On the other 
hand, not all spinors are simple, as may be seen from the 
following example, which is familiar to physicists. 

Example: If Vis four-dimensional, m = 2, then S is also: 

'B= -B, Br='rB. 

Let ¢ = ¢ + + ¢ _ be the decomposition of a Dirac spinor ¢ 
into its Weyl components, ¢ ± =! (l ± r)¢. 

For every UEV, the condition u¢ = 0 is equivalent to 
u¢ + = 0 and u¢ _ = 0; this shows that 

M(¢) =M(¢+)nM(¢_). 

To determine the spaces M(¢± ), consider the endomor
phisms ¢ ± ® B¢ ± . From ( 15) it follows that only the term 
with k = 2 is present in the decomposition (11): 

¢± ®B¢± =F±, where F± =!Bz(¢±,¢±) 
(24) 

and (15) and (19) imply 

rF±=*F±=±F±. 

Similarly, 

¢± ®B¢Of =!(1 ± r)k, 

(25) 

(26) 

where k is a vector. Using (21) for t/J = ¢ = ¢ ± one obtains 
that 

u¢ ± = 0 is equivalent to u J F ± = 0 and 
(27) 

ul\F± =0. 

In particular, computing k¢ ± and using (26) and 
(B¢ ± ,¢ ± ) = 0 one obtains 

k¢± =0. (28) 

Equation (28) implies that the two-forms F + and F _ are 
decomposable and have the null vector k as their common 
eigenvector. The spaces M( ¢ +) and M( ¢ _) coincide if and 
only if both ¢ + and ¢ _ are zero. If ¢ + =I 0 and ¢ _ =I 0, then 
the intersection 

(29) 

is one-dimensional and the Dirac spinor ¢ + + ¢ _ is not sim
ple. If ¢+ =10 and ¢_ = 0, the M(¢) = M(¢+) is two-di
mensional and the spinor ¢ = ¢ + is simple: similarly, the 
same holds when the roles of ¢ + and ¢ _ are interchanged. 

Parenthetically, we should mention that in Minkowski 
space, which can be defined by embedding R4 in (;4, so that 
(YI>YZ'Y3'Y4) are replaced by (YI,iYz'Y3,Y4), the null vector k 
can be made real by taking the charge conjugate of ¢ + for 
¢ _. With the direction of such a vector there is an associated 
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two-dimensional space of "null electromagnetic fields"s,9,17. 
Remembering that in signature (3, I ), the square of the dual 
is - id, one can write 

F ± =/+i*f, 
where the null two-formf, representing the electromagnetic 
field, is now real. The totally null subspaces M(¢>+) and 
M(¢>_) are complex conjugate to each other and Rk is their 
only real direction. The spinorial representation of null elec
tromagnetic waves, contained in Eq. (24), gives rise to var
ious extensions and generalizations to gravitation and other 
fields. They playa major role in the Penrose program and the 
Newman-Penrose formalism for the treatment of algebrai
cally special metrics,s as well as in the treatment of null 
strings. IS There is also a related spinorial form of the En
neper-Weierstrass formula for solutions of the equation for 
minimal surfaces and its extension to strings. 19 

IV. A FOCK REPRESENTATION BASIS IN THE SPACE 
OFSPINORS 

The vectors (endomorphisms of S) na and Pa 
(a = l, ... ,m) defined in Sec. II fulfill the anticommutation 
relations (1) and (2), which are identical to those satisfied 
by the annihilation and creation operators of states subject to 
Fermi statistics. This observation-made previously by 
Brauer and Weyl4- can be used to construct a convenient 
basis in S. 

Given the decomposition of Vinto a direct sum ofMTN 
subspaces Nand P and the corresponding null basis 
(nl,. .. ,nm ,PI" .. ,Pm) one can find a nonzero spinor w of the 
form (23) and interpret it as the "vacuum state": It is anni
hilated by all the "operators" nl,. .. ,nm' By acting on w with 
products of the "creation operators" Pa corresponding to all 
sequences (J-li) subject to (10) one obtains a collection of 2m 

spinors: 

PiP2W, .. ·,Pm_IPm w; 

... ; PI·"Pm W' 

(30) 

The collection (30) is linearly independent, as may be easily 
shown using (1) and (2) only. All the spinors occurring in 
the sequence (30) are simple, e.g., 

M(Pk+ IPk+2" 'Pm w ) 

= span{nl, ... ,nk,Pk+ I,Pk+2, .. ·,Pm} 

is totally null and of dimension m. The basis (30) can be 
used to show that the direction of a simple spinor is deter
mined by the associated MTN subspace. Indeed, let w'ESbe 
such that M(w') = M(w) = N and let 

w' = SoW + SiPlw + .,. + S2"'mP2" 'Pm W 

+ SI2"'mPiP2" ·Pmw. 
Multiplying both sides of the above equation by nln2" 'n m 
yields SI2"'m = 0; multiplying it next by n2 " 'n m leads to 
S2"'m = 0, etc. This proves the following proposition. 

Proposition 1: There is a natural, one-to-one correspon
dence between the set of all MTN subspaces of Vand the set 
of directions of all simple spinors. 
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Every simple spinor w can be taken to be the first, "vacu
um" or "standard spinor,,2 of the sequence (30). The spinor 
w determines only the subspace N = M(w): There is still 
considerable freedom in choosing the complementary MTN 
subspace P and the null basis adapted to the decomposition 
V=NffiP. 

Proposition 2: Let wand ¢> be linearly independent sim
ple spinors. There is a basis in S of the form (30) such that ¢> 
is one of the basis vectors, other than w. 

Indeed, it follows from Proposition 1 that 
N=M(w)=/=M(¢» =N'. Let 

k=dimNnN'; 

then O.-;;k < m and there exists a basis (nl,. .. ,nm) of N adapt
ed to the subspace NnN' in the sense that 

NnN' = span{nl, ... ,nk}' 

Similarly, there is basis (n; , ... ,n;") of N' such that 
n; = nl, ... ,n" = nk. The matrix of solar products 

g(na,n~), where a,b = k + 1, ... ,m 

is nonsingular: Otherwise ~here would be a vector 
Ak + In" + I + ... + Am n;" different from zero, null and or
thogonal to N, but not in N. This would contradict the maxi
mality of N among totally null subspaces. Therefore, by a 
linear transformation of the vectors n~ (a = k + 1, ... ,m) one 
can achieve g(na,n~) = !Dab . One can now put 

Pk+ I = n,,+ 1, .. ·,Pm = n;" 

and complete the sequence (Pk+ I '''',Pm) to a basis 
(PI, ... ,Pm) of a MTN subspace P complementary to Nand 
such that relations (1) and (2) hold. Since now 

M(¢» = span{nl,. .. ,nk,Pk+ I , .. ·,Pm}, 

it is clear that after rescaling, 

¢>=Pk+I·"PmW. (31) 

Proposition 3: Simple spinors are Weyl. 
The proof is straightforward: Since [nl,pdn l = n l and 

[nl,pdpi = - PI' etc., it is clear that with r given by (3) 
and ¢> by (31), one has 

r¢> = (_1)m-k¢>. 

Choosing the orientation in V so that r -rather than - r
is of the form (3) is equivalent to assigning a positive helicity 
to w. Since parallel spinors have equal helicity, this notion is 
transferred, via Proposition 1, to MTN subspaces of V. We 
should also mention that if n > 6 there are Weyl spinors that 
are not simple. For example, for n = 8, the spinor 
¢> = (1 + PiP2P3P4) w is not simple because u¢> = 0 implies 
u =0. 

If u is a unit vector and ¢> is a simple spinor, then u¢> is 
also simple and of opposite helicity to ¢>. Indeed, 

M(u¢» = uM(¢»u, ru¢> = - ur¢>. 

Remembering that the Pin(g) group consists of products of 
unit vectors and Spin(g) is its subgroup, consisting of prod
ucts of even sequences of such vectors, one arrives at once at 
the following proposition. 

Proposition 4: The group Pin(g) acts transitively on the 
set of directions of all simple spinors. The group Spin (g) acts 
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transitively on each of the two sets of directions of simple 
spinors of equal helicity. 

Indeed, Eq. (31) can be written as 

</J = (nk+ t +Pk+ t)" '(nm + Pm )w, 

where each factor na + Pa is a unit vector; their product 
belongs to Spin(g) whenever m - k is even, i.e., whenever w 
and </J are of equal helicity. Otherwise, the product belongs to 
Pin(g), but not to Spin(g), and the spinors wand </J are of 
opposite helicity. 

The helicities of the spinors wand </J related by (31) are 
equal or opposite depending on whether m - k is even or 
odd. Therefore, the dimension k of M( w) nM( </J) is even if 
and only if m is even and the helicities are equal or m is odd 
and the helicities are opposite. Thus, for example, the com
plementary MTN subspaces Nand P are of equal helicity if 
and only if m is even. One also proves the following proposi
tion. 

Proposition 5 (Ref. 3, Proposition III 1.12): If wand </J 
are linearly independent simple spinors, then w + </J is simple 
if and only if 

dimM(w)nM(</J) =m-2; 

then 

M(w) nM(</J + w) = M(w) nM(</J). 

The "if' part of the proposition is immediate: Taking </J 
to be of the form (31) with k = m - 2 one has 

M(</J + w) = span{nt, .. ·,nm_2,nm_t + Pm,nm - Pm-t}· 

The Lie algebra spin(g) of the group Spin(g) can be 
identified20 with the subspace [V, V] ofCI(g) spanned by all 
the commutators [u,v] where u, VE V. Every MTN subspace 
P defines the subalgebra 

[V,P] = {AEspin(g) IAIf = AIf,AEC}, (32) 

where If is a simple spinor such that P = M( If). If (Pa) is a 
basis in P, then 

m 

AE[V,P]~A = I [Va,Pa]' 
a=l 

where vaEV. The commutator subalgebra of [V,P] is the 
Abelian Lie algebra [P,P] consisting of all those elements of 
spin(g) that annihilate If. If 

A = I Aa{JPaP{3E[P,P], 
a<{3 

where Aa{J EC, then the element 

a = expA = II (1 + Aa{JPaP(3)ESpin(g) (33) 
a<{J 

leaves invariant all elements of P: IfpEP, then apa- t = p. If 
N is a MTN subspace complementary to P, then the Abelian 
subalgebra [P,P] is complementary, as a vector subspace, to 
[V,N] in spin (g). The subgroup of Spin (g) corresponding 
to the subalgebra [V,N] leaves the direction of w invariant; 
the subgroup corresponding to [P,P] "moves" w, but its ac
tion is not transitive on the set of directions of simple spinors 
of equal helicity. Indeed, if </J and </J' are two such spinors and 
there is an element (33) such that </J' = const a</J, then 
M(</J') = aM(</J)a- t . Since pEP implies P = apa- t one ob
tains 
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M(</J') np = M(</J) np 

as a necessary condition for the existence of a. This condition 
is also sufficient, as asserted in the following proposition. 

Proposition 6: Let Nand Pbe two complementary MTN 
subspaces of Vand </J a simple spinor such that M (</J ) n P is k
dimensional. There then exists an element a of the form (33) 
such that 

(34) 

where AEC, A #0, M(w) = N, and the vectors (Pt,,,,,Pk) 
constitute a basis of M(</J) np. 

Proof Let (Pt, ... ,Pm) be a basis of P adapted to 
M(</J) np, i.e., such that 

M( </J) np = span{Pt, .. ·,Pk}. 

Let (nt,. .. ,nm) be a basis of N such that Eqs. (2) hold and 
consider the MTN subspaces 

Nk = span{Pt"",Pk,nk + t , ... ,nm}, 

Pk = span{nt,. .. ,nk,Pk+ \>· .. ,Pm}· 

Clearly, Nk nPk = {O}, but, also, M(</J) nPk = {O} because 
if uEM(</J), then g(u,Pa) = 0 for a = l, ... ,k. Therefore, if 
uEM(</J) npk, then uEspan{Pk+ t "",Pm}CP, so that 
uEM(</J)np, but M(</J)npnPk = {O}. Complete now the 
basis (Pt, ... ,Pk) ofM(</J) np to a basis (Pt, ... ,Pk,nk+ t , ... ,n:") 
ofM(</J), so that 

nan~ + n~na = 0, for a = l, ... ,k, K = k + l, ... ,m; 
(35) 

n~p;. + p;.n~ = OK;" for K,A = k + l, ... ,m. (36) 

Writing n~ = nK - VK; computing the scalar products 
g(vK,p), pEP and g(vK,na ), a = l, ... ,k; and using Eqs. (2), 

(35), and (36) one finds that vKEspan{Pk+ t , ... ,Pm}, i.e., 
there is a matrix (A K;.) such that 

(37) 

The vectors n~ belong to an MTN subspace, g(n~,n~ ) = O. 
Therefore, 

g(nK,v;.) + g(vK,n;.) = 0 

and the matrix (A K;.) is antisymmetric. Let 

A = I AK;,PKP;,; 
k+ t<K<;'<m 

then 

nKA -AnK = IAKJ.p;.. 
;. 

(38) 

Therefore, if a is given by (3) with A determined from (37) 
and (38), then 

apaa- t = Pa (a = l, ... ,k), 

anKa- t =n~(K=k+ l, ... ,m). 

In other words, the element a of the group Spin(g) trans
forms Nk into M(</J) preserving Nk nM(</J) = pnM(</J). 
Since 

Nk = M(pt" 'Pkw), 

the simple spinor </J is proportional to apt' . 'PkW, as claimed. 
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Remark 1: The element (38) of CI(g) is nilpotent: 
There exists an integer 1 such that 21<m - k + 2 and A I 
= O. In particular. if k = m - 2. then 

A 2 =0. 

In this case A is proportional to Pm _ IPm' exp tA = 1 + tA 
and the straight line in S. 

t-+(1 + tA)PI···Pm_2W. O<t<l. 

connects the simple spinor </J = PI' . 'Pm _ 2 W with the simple 
spinor </J = 1/1. where 1/1-PI" ·PmW' This sheds some light on 
the property of simple spinors described in Proposition 5. 

V. MULTIVECTORS ASSOCIATED WITH SIMPLE 
SPINORS 

The decomposition formula (11) associates with a pair 
of spinors a sequence of multivectors; they provide useful 
information. often with a clear geometrical interpretation. 
This is especially so when one of the spinors-or both-are 
simple. 

For the sequel we need the following useful result. 
Lemma (Ref. 3, Proposition IlL 2.4): If wand 1/1 are sim

ple spinors. then 

M(w)nM(1/1h,f{O}~Bo(1/1.w) =0. (39) 

Indeed. if uEM (w ) n M ( 1/1) and u::/= O. then there is a vector 
VE V such that uv + vu = 1 and since uw = u1/1 = O. one ob
tains 

Bo ( 1/1.w) = (B1/1.uvw) = (tuB1/1.vw) = (Bu 1/1. vw ) = O. 

Conversely. if M(w) nM( 1/1) = {O}. then one can take 
N = M(w). P = M( 1/1) and construct a null basis (nlO .. ·.nm• 
PI •...• Pm) of V and the "Fock basis" (30) of S. If </J is any 
spinor from the sequence (30) other than 1/1 = PI" ·PmW' 
then M(w) nM(</J) ::/={O} and thus Bo(</J.w) = O. Since B is 
an isomorphism. the form Bo is nondegenerate and there
fore. Bo ( 1/1.w) ::/= 0; this completes the proof of the lemma. 

We may now prove the following proposition. 
Proposition 7: A necessary and sufficient condition for a 

spinor w::/= 0 to be a simple and have N as its associated MTN 
subspace is that the vector B I (</J,w) belongs to N for every 
spinor </J. 

Indeed, let w be a simple spinor N = M(w) and let </J be 
any spinor. For k = 0 the recurrence relation (21) gives 

u J BI (</J.w) = Bo(</J,uw). (40) 

If uEN, then uw = 0 and (40) yields u J B I (</J.w) = O. 
Therefore, the vector B I (</J.w) is orthogonal to N and as 
such, contained in N. Conversely. let BI (</J,w) belong to N 
for every </JES. If uEN, then Bo (</J.uw) = 0 for every </J; there
fore, uw = 0, i.e., N = M(w) and w is simple. 

Can every element of Nbe represented as B I (</J,w) with 
a suitable choice of </J? To show that this is so. we first observe 
that the lemma implies 

if 1/1=PI···PmW. then (B1/1,w)::/=O. (41) 

To prove that the map S-+N given by </J-+BI (</J.w) is surjec
tive we consider the spinors </Ja = na 1/1 and notice that by 
virtue of ( 40) , 
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Pa JBI(</Jp,w) = (B1/1.W)Dap • (a,/3= 1, ...• m). 

and the collection of vectors BI(</Ja'W). a = 1, ... ,m consti
tutes a basis of N. 

The characterization of simple spinors contained in 
Proposition 7 seems to be new. 

The following proposition is derived from the work by 
Cartan.2 

Proposition 8: If w is a simple spinor. then Bk (w.w) = 0 
for k::/=m and the m-vector Bm (w.w) is proportional to the 
product n l " 'nm of the vectors constituting a basis of M(w). 

Indeed. if w is simple. then it is a Weyl spinor and (15) 
gives Bk (w,w) = 0 unless k=.m (mod 4). If nEM(w), then 
nw = 0 and (21) yields 

n J Bk + 2 (w.w) + n I\Bk (w.w) = O. (42) 

If k=.m (mod 4). then B k+ 2 (w,w) = 0 and (42) implies 

n 1\ B d w.w) = 0, for every nEN. ( 43 ) 

A similar argument also gives 

n J B k (w.w) = O. for every nEN. 

The only nonzero solution of (43) is for k = m. Therefore, 

(44) 

where the numerical coefficient is determined by putting 
</J = 1/1 = win ( 11), multiplying on the Ihs by Pm .. 'PI' taking 
the trace of both sides, and noting that Tr(Pm" 'Pln l " 'n m) 
=1. 

Chevalley proved also the converse21 of Proposition 8: If 
w::/=O is a Weyl spinor and Bk (w.w) = 0 for k ::/=m, then w is 
simple. Therefore. Eq. (44). with the provision that w::/= 0 is 
a Weyl spinor, provides a definition of simple spinors which 
is equivalent to the one based on the maximality of the asso
ciated totally null plane M(w) given by (22). 

It is now easy to see that all Weyl spinors in spaces of 
dimension n < 6 are simple. Indeed, it follows from ( 15) that 
for every Weyl spinor w corresponding to a space of dimen
sion 2m < 6 one has 

Bk(w.w) =0. for k=O,I •... ,m-l. 

In dimension (7 and) 8 one encounters the first quadratic 
constraint on simple spinors, namely Bo(w.w) = O. In high
er dimensional spaces there is a sequence of such constraints. 
namely 

Bdw,w) = O. 

where k=.m (mod 4) and k<m. Since. for Weyl spinors, 
* B k (w.w) = ± B 2m _ k (w.w), it is enough to consider the 
constraints for k < m. 

Consider now a linearly independent pair of simple spin
ors wand </J. According to Proposition 2. one can find a null 
basis (nl,. .. ,nm,p\, ...• Pm) of V such that 

M(w) = span{n\ •...• nm }. 

M(</J) = span{n\ •...• nk.Pk+ \O···.Pm}. 

and 

</J = Pk + I" 'Pm W ' 

where k = dim M(w) nM(</J). Since 

Pmn\" 'n m =!( - 1)m- In\·· 'nm_ 1 (1 + [Pm,n m ]) 
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one easily proves by induction thatpk+I"'Pmnl"'nm is 
proportional to n I' .. n k + multi vectors of degrees k + 2. 
k + 4 •...• 2m - k. Bymultiplyingw ®BwwithPk+ I" 'Pm on 
the left and using the last observation one arrives at the fol
lowing proposition. 

Proposition 9: If wand ¢ are simple spinors. then the 
dimension of the intersection M(w) nM(¢) is the least in
teger k such that Bk (w.¢) #0. The multivector Bk (w.¢) is 
then proportional to the product of the vectors of a basis of 
the intersection. This proposition generalizes Proposition 8 
and the lemma. 

Remark 2: The Abelian subgroup G(P) of Spin (g) cor
responding to the subalgebra [P.P] of spin (g) is of dimen
sion m (m - 1) /2. equal to that of the manifold l: of direc
tions of simple spinors of one helicity coinciding. say. with 
that of w: Its action on l: is not transitive. For example. if Pis 
a complementary subspace to the MTN subspace M(w). 
then the direction dir tP of the spinor tP = PI ... PmW is left 
invariant by G(P). However. this action is "almost transi
tive,,22 in the sense that the orbit ofG(P) containing dir w is 
an open submanifold of l: and its complement is a submani
fold l:1 oflower dimension. Indeed. according to Proposi
tion 6 and the lemma. the direction of a simple spinor ¢ does 
not belong to the orbit containing dir w if and only if it satis
fies the homogeneous equation Bo( tP.¢) = 0 defining the 
submanifold l:1 of l:. Therefore. a simple spinor ¢. of the 
same helicity as w. can be said to be in a generic position with 
respect to P if Bo ( tP.¢ ) # 0; there then exists an antisymme
tric matrix (A ap ). a.f3 = I •..• m and a number 50#0 such 
that 

¢ = 50(expA)w. 

where 

(45) 

(Note that in the expansion of exp A only a finite number of 
terms are different from 0.) On the other hand. every spinor 
can be expressed in terms of the basis (30). as was already 
done in Sec. IV: 

m 

¢ = L L 5a""aJ'a, .. ·Pakw• 
k=O 

(46) 

where the second sum is over all the sequences (a i ) such 
that 

(47) 

and the term corresponding to k = 0 is SoW. Comparing (45 ) 
and (46) one obtains 

Sa,.' 'ak = O. for k odd. 

a condition resulting from the fact that wand ¢ have equal 
helicities. and 

5a,a, = 5oAa,a,. for k = 2. (48) 

Taking (33) into account gives 

¢ = 50 II (1 + SaP 'naPpw. 
a<{3 So Y 

By comparing the other terms with even k one obtains 
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I'~I: P "'P -1:4
1 

e.£- ~al"'a21 a. a21 - ~(YI , (49) 

where the sum is over the sequences (a i ) satisfying (47) 
with k = 2/. Since 2k,m. there is only a finite set of such 
relations. Using (48) to eliminate A one obtains a sequence 
of constraints on the components 5 of a generic simple spinor 
¢ of the same helicity as w; these constraints coincide with 
the set of equations (a) in Sec. 92 ofCartan's lectures. 1.2 For 
example. for 1 = 2 one obtains 

If m is even. then for 1 = m/2 the constraint (49) relates 
51...m to the Pfaffian of the antisymmetric matrix (SaP); with 
a suitable generalization of the notion of the Pfaffian one can 
extend this observation to other values of I; see Ref. 23. 

We hope to have convinced the reader that simple spin
ors are simple indeed. 

ACKNOWLEDGMENTS 

One of us (AT) thanks the International School for Ad
vanced Studies and the International Centre for Theoretical 
Physics for their hospitality during his stay in Trieste. 

This research was supported in part by the Polish Re
search Program CPBP 01.03. 

IE. Cartan, LelJons sur Theorie des Spineurs I & II (Hemann, Paris, 1938). 
2E. Cartan, The Theory of Spinors, English transl. by R. F. Streater (Her
mann, Paris, 1966). 

'C. Chevalley, The Algebraic Theory of Spinors (Columbia U.P., New 
York,1954). 

4R. Brauer and H. Weyl, Am. J. Math. 57, 425 (1935). 
51. M. Benn and R. W. Tucker, An Introduction to Spinors and Geometry 
with Applications in Physics (Hilger, Bristol, 1987). 

OR. Penrose, Ann. Phys. (NY) 10,71 (1960). 
7R. Penrose, J. Math. Phys. 8, 345 (1967). 
"R. Penrose and W. Rindler, Spinors and Space-time (Cambridge U.P., 
Cambridge, 1986), Vol. 2. 

91. Robinson and A. Trautman, in Proceedings of the Conference on New 
Theories in Physics, Kazimierz 1988, edited by Z. Ajduk, S. Pokorski, and 
A. Trautman (World Scientific, Singapore, 1989). 

lOp. Budinich, Phys. Rep. 137,35 (1986); P. Budinich and A. Trautman, 
Lett. Math. Phys. 11, 315 (1986). 

II P. Budinich and A. Trautman, The Spinorial Chessboard, Trieste Notes in 
Physics (Springer, Berlin, 1988). 

12J. Igusa,Am.J. Math. 92, 997 (1970); V.L. Popov, Trans. Moscow Math. 
Soc. 1, 181 (1980). 

"This introductory material is presented in many books; see, for example, 
Ref. 5, Chap. 2; Ref. 8, Appendix; Ref. 11, Chap. 6; W. Greub, Multilinear 
Algebra (Springer, Berlin, 1988). 

14M. F. Atiyah, R. Bott, and A. Shapiro, Topology Suppl. 1 3, 3 (1964); H. 
Baum, Spin-Strukturen und Dirac-Operatoren fiber Pseudoriemannscher 
Mannigfaltigkeiten (Teubner, Leipzig, 1981); L. Dabrowski, GroupAc
tions on Spinors (Bibliopolis, Naples, 1988). 

15K. M. Case, Phys. Rev. 97, 810 (1955) and earlier papers cited therein. 
16Reference 3, Proposition II. 1.6. 
17L. Silberstein, Philos. Mag. 23, 790 (1912); I. Robinson, J. Math. Phys. 2, 

290 (1961). 
18J. F. Plebanski and S. Hacyan, J. Math. Phys. 16, 2403 (1975); J. Ple

banski and K. Rozga, J. Math. Phys. 25,1930 (1984). 
19W. T. Shaw, Class. Quant. Gravit. 2, L 113 (1985); P. Budinich, Com

mun. Math. Phys. 107,455 (1986); P. Budinich and M. Rigoli, Nuovo 
Cimento B 102, 609 (1988). 

20See, e.g., Ref. 5, Sec. 2.4. 
21Reference 3, Proposition III. 3.2. 
22p. Furlan and R. Rl}czka, J. Math. Phys. 26, 3021 (1985). 
2'E. R. Caianiello and A. Giovannini, Lett. Nuovo Cimento 34, 301 (1982). 

P. Budinich and A. Trautman 2131 



                                                                                                                                    

Dirac equation in external vector fields: Separation of variables 
German V. Shish kin and Vfctor M. Villalbaa

) 

Department of Theoretical Physics, Byelorussian State University, Minsk 220080, Union of Soviet Socialist 
Republics 

(Received 17 May 1988; accepted for publication 5 April 1989) 

The method of separation of variables in the Dirac equation in the external vector fields is 
developed through the search for exact solutions. The essence of the method consists of the 
separation of the first-order matricial differential operators that define the dependence of the 
Dirac bispinor on the related variables, but commutation of such operators with the operator 
of the equations or between them is not assumed. This approach, which is perfectly justified in 
the presence of gravitational fields, permits one to prove rigorous theorems about necessary 
and sufficient conditions on the field functions that allow one to separate variables in the Dirac 
equation. In analogous investigations by other authors [Bagrov et al., Exact solutions of 
Relativistic Wave Equations (Nauka, Novosibirsk, 1982)] for electromagnetic fields an 
essential demand related to the operators that define the dependence of the bispinor on the 
separated variables is the demand for the commutation of a complete set of operators between 
them or with the operators of the Dirac equation. For this reason a series of possibilities that 
do not satisfy this demand escape the attention of these other authors. The present work 
liquidates this gap, solving the problem for external vector fields in general. 

I. INTRODUCTION 

The most important instrument for investigating the 
spin-! particle is the well known Dirac equation that presents 
a system of four differential equations with first-order partial 
derivatives. We do not have any universal method for solv
ing such systems today and the creation of such a method is 
undoubtedly a mathematically important problem. The 
physical actuality of the problem is evident in view of the 
wide role of the Dirac equation in modern physics. 

For a long time the set of exact solutions of the Dirac 
equation has been limited, because of mathematical difficul
ties, to the cases: free electrons, electrons in the Coulomb 
field, electrons in the constant magnetic field (Zeeman ef
fect) , and electrons in the field of plane monochromatic elec
tromagnetic wave. There has been interest in the exact solu
tions of the Dirac equation because of the necessity of 
analysis of synchrotronic radiation. 

Now we have a large set of exact solutions of Dirac equa
tion. The general feature of such works (by various authors) 
is the desire first to separate variables, because the separation 
of variables reduces the system of equations, with partial 
derivatives, to a system of well studied ordinary differential 
equations. 

First, we want to note the well known symmetry ap
proach successfully used in the investigations of single differ
ential equations with partial derivatives (see the excellent 
handbook of Miller!). 

Although Miller and his co-authors began the investiga
tions of the problem of exact solutions of the Dirac equation 
not long ago,2 the rigorous demonstration of the fact that the 
second-order symmetry operators of the Dirac equation in 
the absence of fields always must be products of the first
order symmetry operators of the same equation seems to be 
very significant. Note that in Ref. 2 the complete set of oper
ators are deduced. 

a) Permanent address: Centro de Fisica, Instituto Venezolano de Investiga
ciones Cientificas (lVIC) Apdo 21827, Caracas \o20-A, Venezuela. 

The problem of separation of variables using the point of 
view of the complete set of operators of the Dirac equation 
commuting with the operator of the equation in the presence 
of the electromagnetic fields has been studied in detail by 
Bagrov et al. (see Ref. 3 and references therein). In these 
investigations two mutually complementary approaches 
may be selected. 

( I) First, the authors investigate the possibility of sepa
ration of variables in the Klein-Gordon-Fock (KGF) equa
tion in the external electromagnetic fields. Thus, the authors 
try to separate variables in the Dirac equation, for all the 
classes of field symmetries which allow separation in the 
KGF equation. However, it should be noticed that the 
squared Dirac equation is not equivalent to the KGF equa
tion in the presence of external fields because the squared 
Dirac equation contains the first derivatives of field func
tions that are absent in the corresponding KGF equation, 
i.e., authors have assumed that corresponding derivatives 
are equal to zero. It does not appear to be an accident that 
Miller's theorem on the decomposition of the second-order 
operator in the form of the product of the first-order opera
tors mentioned above has been demonstrated only for the 
free case. 

(2) The sets of first-order operators are searched for 
directly in the Dirac equation. 

A remarkable contribution to the above-mentioned in
vestigations is the work of Cook,4 where the author studies 
the possibilities of separation of variables in the Dirac equa
tion in the presence of a scalar field. Cook uses the method of 
Stackers spaces. This method has been used before success
fully in the investigations of the classical Hamilton-Jacobi 
equation. In view of the characteristics of the Dirac equa
tion, Cook uses his own modification of Stackers space 
method. Cook obtains a set of orthogonal curvilinear coordi
nates, where the separation of variables in the Dirac equa
tion in the presence of scalar fields is possible. 

One of the serious problems in modern physics is the 
investigation of the Dirac equation in gravitational fields. 
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Concerning the separation of variables in the general covar
iant Dirac equation, we have to acknowledge the pioneer 
work of Brill and Wheeler,s where the Dirac equation is 
studied in the central symmetric gravitational field and 
where the separation of variables is fulfilled. Chandrasekhar 
and other authors6-1O have considered the problem of sepa
ration of variables in the Dirac equation in the gravitational 
Kerr's field. In contrast to Brill and Wheeler, who, taking 
into account the diagonality of the metric, work in the sim
plest normal diagonal tetrad, Chandrasekhar must deal with 
a nondiagonal metric. Using the Newman-Penrose method 
and a priori knowledge of the symmetry of the problem 
(Kerr's field) and also the appropriate isotropic tetrad, 
Chandrasekhar has separated variables in such a complex 
geometrical situation. In fact, he has used the widely known 
generalized approach to the separation of variables based on 
the idea of R separability of Miller. 1 

We should note, too, that all the above-mentioned au
thors also use very complex curvilinear coordinates except 
the well known orthogonal coordinates (Cartesian, cylindri
cal, and spherical). In particular, Cook4 in the scalar field, 
Bagrov et aC in the electromagnetic field, and Chandrasek
har in the gravitational Kerr's field successfully use very 
exotic oblate spheroidal coordinates (see also Ref. 2). It is 
curious why in such general approaches (see again Refs. 2-4 
and 11) the separation of variables in the Dirac equation has 
not been fulfilled in the prolate spheroidal coordinates and in 
simple coordinates, for example, elliptic cylindrical and 
parabolic cylindrical coordinates. In the present paper this 
problem is solved in general. 

One of us has proposed a new approach to the problem 
of separation of variables in the Dirac equation. 12 It is the 
method of the complete set of operators, but in contrast to a 
number of authors the commutation of such operators with 
the operators of the equation or between them is not as
sumed. At first we have used this method successfully with 
gravitational fields with diagonal metrics and all the gravita
tional fields of such kind, allowing the separation of vari
ables in the Dirac equation, have been found. Here this 
method is developed for the Dirac equation in external vec
tor fields in Cartesian and general orthogonal curvilinear 
coordinates. Such an approach allows us to enumerate all 
the vector fields for which partial or complete separation of 
variables is possible. Naturally we hope that the results of 
other authors, in particular, those mentioned above, must be 
partial cases in our investigation. 

Planck's constant, the speed of light, and the electron 
charge have been equated to unity throughout. 

II. CARTESIAN COORDINATES 

It is advisable at first to consider the problem of separa
tion of variables in the Dirac equation in the vector fields in 
Cartesian coordinates. Allowing us to find a wide class of 
fields with "flat" symmetry admitting the separation on one 
hand and to prepare the basis for the corresponding investi
gation in curvilinear coordinates on the other hand. 

The Dirac equation in Cartesian coordinates takes the 
form 
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{r(ai - iAi ) + yj(aj - iAj ) + y"'(am - iAm) 

+ y"(an - iAn) + mo}ql = O. (2.1) 

HereAi,Aj,A m, andAn arecomponentsofthevectorpoten
tial. We use the following commutation relations for Dirac's 
matrices: 

[y".y] + = 2Ir/', 17 k
' = diag(1,I,I,l), (2.2) 

i.e., all Dirac's matrices are Hermitian. Thus one of the vari
ables is imaginary; we do not concretize it for generality. One 
of the components of the vector potential must be redeter
mined to within imaginary unity, correspondingly. More
over, for mathematical generality we do not require that the 
vector potential components satisfy the Lorentz condition. 
However, this may be taken into account in concrete appli
cations. 

The separation of variables in Eq. (2.1) is possible by 
multiplication of its operator by any matrix on the right 
hand according to the scheme 

{H}'I' => {H}rr-I'I' => (Ka + Kp )<1>, 'I' = r<l>, (2.3) 

where a and {3 are groups of separated variables and {H} is 
the operator ofEq. (2.1). If the variables are separated we 
have 

(2.4 ) 

where Ka and Kp are operators depending only on their own 
variables. 

A A 

If one of the operators Ka or Kp depends only on one 
space-time variable, two possibilities exist. The correspond
ing operator does not include the mass term and therefore 
contains only one Dirac matrix. In this case after multiplica
tion of Eq. (2.1) by the co.xrespond.i.ng Dirac matrix, we 
obtain that the operators Ka and Kp commute. In our 
scheme such multiplication is included in the matrix r. 
Analogously if the operator depending on the one variable 
includes the mass term. The operators Ka and Kp in Eq. 
(2.4) will commute after multiplication ofEq. (2.1) by the 
other three Dirac matrices. In the situation where the opera
tors Ka and Kp both depend on two space-time variables 
(each on its own variables) again one of the operators (with
out a mass term) contains two Dirac matrices and again the 
operators Ka and Kp in (2.4) will commute. 

Thus in our scheme for separation of variables in the 
Dirac equation it is necessary that 

(2.5) 

Of course, for arbitrary operators, for example, with 
higher-order derivatives or with more complicated matrix 
algebra, the conditions (2.3)-(2.5) may not be fulfilled. In 
general, there may be a situation where it is possible to have 
an operator dependent on only one variable commuting with 
the operator of the whole equation. 

In order to reach the complete separation of variables in 
Eq. (2.1) we have two possibilities. 

(a) We can separate Xi from xi, x m, x n, then separate xj 

from x m, x n, and at last separate xm from xn. 
(b) It is possible the other way, namely, we can separate 

Xi, xi from x m, xn and then separate Xi from xi and xm from xn. 
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The indices do not have absolute character as a result of 
covariant consideration. With both possibilities the arbi
trary variables may be taken as the first in the scheme of 
separation of variables. 

A. Separation according to the scheme 
X ,xi,x"',x" ~ X;Xi,x"'x" ~ X;Xi;x"',x" ~ X;Xi;x"';x" 

( 1) Let us consider the separation of variables in Eq. 
(2.1) according to scheme (2.3) given a = xj, {3 = xj, x m, 
and xn. Then, instead of (2.3), we have 

{H}'I':::t {H}rr-I'I':::t (Kj + Kjmn )<1>, 'I' = r<l>, 
(2.6) 

i.e., 

(2.7) 

Assuming that the operators Kj and Kjmn are responsible 
only for their own variables, we need 

KjKjmn - KjmnKj = 0. (2.8) 

From the explicit form ofEq. (2.1) we can see that the sepa
ration of variables according to the scheme (.2.7) is possible 
only if the components of the vector potential separate their 
variables in an analogous way, namely, 

Ak = Ak (xj
) + Bk (xj,xm,xn), k = iJ,m,n. (2.9) 

Indeed even if one of the operators K j or Kjmn contains a 
function where x

j 
is not separated from xj, xm, xn we shall not 

satisfy requirement (2.8). 
Taking into account (2.1) and Q.9) w~ can write the 

most general forms of the operators K j and K jmn : 

Kj = {y(J j - iA j ) - iyj A j - iymAm - iynAn + amo}r, 
(2.10) 

Kjmn = { - iyjBj + yj(Jj - iBj ) + ym(Jm - iBm) 

+yn(Jn -iBn)+{3mo}r, (2.11) 

where a +{3= 1. 
Substituting (2.10) in (2.8) and taking into account 

only nontrivial commutators we have the matrix equation 
system 

(yjrym - ymryj)~ = 0, 
(yjrym - ymryj)AjBm = 0, 
(yjryn - ynryj)~ = 0, 
(yjryn - ynryj)Al.Bn = 0, 
(ymryj - yjrym)Am = 0, 
(ymryj - yjrym)AmBj = 0, 
(ymryn - ynrym)Am = 0, 
(ymryn - ynrym)AmBn = 0, 
(ynryj - yjryn)An = 0, 
(ynryj - yjryn)AnBj = 0, 
(ynrym - ymryn)An = 0, 
(ynrym - ymryn)AnBm = 0, 

( yrym - ymry) = 0, 
(yryn - ynry) = 0, 
(yr - ry){3 = 0, 
(yr - ry){3A j = 0, 
(yjr - ryj){3A-L = 0, 
(ymr - rym){3Am = 0, 
(ynr - ryn){3An = 0, 
(ryj - yr)aBj = 0, 
(ryj - yjr)a = 0, 
(ryj - yjr)aBj = 0, 
(rym - ymr)a = 0, 
(rym - ymr)aBm = 0, 
(ryn - ynr)a = 0, 
(ryn - ynr)aBn = 0. 

(2.12) 

The matrix equations of this system have two solutions: 

2134 J. Math. Phys., Vol. 30, No.9, September 1989 

(2.13 ) 

Taking into account all of the system (2.12) we have 
two possibilities for separation of the variables: 

(a) r = y, 
A j =Aj +Bj> Aj =Bj, Am =Bm , An =Bn; 

(2.14 ) 

Kj =Jj - iAj , 

Kjmn = { - iyBj + yj(Jj - iBj ) + ym(Jm - iBm) 

+ yn(Jn - iBn) + mo}y; (2.15) 

(b) r = yjymyn, 

Aj=Aj, Aj=Bj, Am=Bm, An=Bn; (2.16) 

K j = {y(Jj - iA j ) + mo}yjymyn, 

Kjmn = yj(Jj - iBj ) + ym(Jm - iBm) 

+ yn(Jn - iBn )}yjymyn. 

(2.17) 

It may be demonstrated by reverse consideration that 
the conditions (2.14) or (2.16) are also sufficient for the 
separation of variables (2.7) in Eq. (2.1). Notice that the 
conditions (2.16) are a particular case of conditions (2.14). 

Now we can formulate the following theorem. 
Theorem 1: In order to separate the variables according 

to the scheme 

it is necesssary and sufficient that the components of the 
vector potential satisfy conditions (2.14). 

Remark: It may be that the vector field satisfies both 
conditions (2.14) and (2.16). Then there may be variants in 
the separation of x

j 
from xj, xm, xn. 

(2) Considering that the separation ofx
j 
from xj, x m

, xn 
is fulfilled already let us consider the following step of sepa
ration, i.e., the separation of xj from xm, xn in the operator 
A 

Kjmn · 
Now Eq. (2.7) may be rewritten in the form of the prob

lem on eigenvalues and eigenvectors: 

Kj<l> = - Kjmn <I> = k j<l>, (2.18) 

where k j is an eigenvalue of operators. For the next step of 
separation we have the scheme 

(Kjmn + k j)<I> =} (Kjmn + k j)AA -1<1> ~ (Kj + Kmn )8, 

<I> = A8, (2.19) 

(2.20) 

Assuming that the separation of xi from xm ,xn takes place 
we necessarily have 

KjKmn - KmnKj = 0. (2.21) 

Taking into account the explicit form of the operator 
Kjmn [( 2.15) or (2.17) ], in order to have the separation of xi 
from xm,xn it is necessary that 

Bk (xj,xm,xn) = Bk (xj) + Ck (xm,xn), k = iJ,m,n. 
(2.22) 

According to (2.15)-(2.19) we obtain the most general 
form for the operators 
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Kj = { - irB; + rj(aj - iBj ) - irlT'Bm - iy"Bn 

+ amo + /)yk '}y A, 

Kmn = {- iyC; - irjCj + ym(am - iCm) 

+ y"(an - iCn ) + f3mo + €yk '}yA, 

a + f3 = 1, /) + € = 1. 

(2.23 ) 

(2.24) 

As in the previous step of separation, from (2.21) taking 
into account the explicit form of the operators (2.23) we 
obtain a complex system of matrix equations analogous to 
(2.12) which admits the solutions: 

(a) A = rj
, (b) A = Yr j

, 

(c) A = ymy", (d) A = yymy". 
(2.25) 

We have the following possibilities for separation of 
variables (2.20): 

(a) A = rj
, 

B; = Bi> Bj = Bj' Bm = Cm' Bn = Cn; 
(2.26) 

Kj = { - irB; + rj(Jj - iBj ) + mo + yk '}Yrj, 

Kmn = {ym(Jm - iCm) + y"(Jn - iCn )}Yrj; 
(2.27) 

(b) A = Yr j
, 

B; = C;, Bj = Bj + Cj' Bm = Cm' Bn = Cn; 
(2.28) 

Kj = Jj - iBj' 

Kmn = { - iyC; - irjCj + ym(Jm - iCm ) 

+ y"(Jn - iCn) 

(2.29) 

(c) A = ymy", 

B; = Ci> Bj = Bj' Bm = Cm' Bn = Cn; 

Kj = {rj (aj - iBj ) + mo}yymy", 

Kmn = { - iyC; + ym(Jm - iCm) 

+ y"(an - iCn) 

+ yk '}yymy"; 

(d) A = yymy", 

(2.30) 

(2.31 ) 

B; = B;, Bj = Bj' Bm = Cm' Bn = Cn; 
(2.32) 

Kj = {- iyB; + rj(Jj - iBj ) + yk '}ymy", 

Kmn = {ym(Jm - iCm) + y"(an - iCn) (2.33) 

The possibilities (a)-(d) are connected with the opera
tor Kjmn (2.15) . Yet one possibility follows from (2.17): 

(2.34 ) 
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A A 

Kj + (Jj - iBj )ymy"A, 

Kmn = { - irjCj + ym(am - iCm) 

+ y"(Jn - iCn) 

- rjymy"k '}rjymy"A. 

(2.35 ) 

The conditions of separability of variables are deduced 
from (2.21), i.e., they are necessary. By reverse considera
tion it may be demonstrated that these conditions are suffi
cient, too. So we have the following theorem [note that con
ditions (2.26) and (2.32) are equivalent and (2.30) and 
(2.34) are particular cases of (2.28)]. 

Theorem 2: In order to separate the variables in (2.1) 
according to the scheme 

it is necessary and sufficient that the components of the vec
tor potential satisfy conditions (2.14), (2.28) or (2.14), 
(2.26). 

Remark: The variants are possible for stronger condi
tions. 

( 3) Before beginning the separation of xm from xn in the 
A A 

operator Kmn notice that the operator Kmn contains these 
variables symmetrically independent of the variant of the 
previous steps of separation -of variables (x; and xj from 
xm ,xn). Therefore we shall write only the results that are not 
identical relative to the change m +2 n. Since the procedure to 
separate xm from xn is not different than previously given, we 
will note only the main points and write the results. 

Thus we accept the scheme 

(Kmn + k j)® ~ (Kmn + k j)1:1:- I ® ~ (Km + Kn )!1, 

® = 1:.0., (2.36) 

(2.37) 

KmKn - KnKm = O. (2.38) 

Here kj is an eigenvalue of the operator Kj • 

Combining the requirement (2.38) with each possible 
definition of the operator Kmn we have all the possibilities for 
separation (2.17). 

It may be seen from (2.17) and (2.38) that 

(2.39) 

(2.40) 

Kn = { - iymDm + y"(Jn - iDn) - YrjkJ}Yrj1:; 

Analogously from (2.29) and (2.38) we have 

(a) C; =D;(xn), Cj = Cj(xm), 

Cm = Cm (xm), Cn = Dn (xn); 

Km = { - irjCj + ym(Jm - iCm) + mo 

+ rjkJ}rjym, 

Kn = { - iyD; + y"(Jn - iDn ) 

+ yk'}rjym; 
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(b) C; = C;(xm), Cj = Cj(xm), 

Cm = Cm (xm), Cn = Dn (xn); 

Km = { - iyC; - iyjCj + ym(am - iCm) 

+ yk ; + yjkl}yyjym, 

Kn = {- yn(an - jDn) - mo}yyjym; 

(c) C; =D;(xn), Cj = Dj(xn), 

Cm = Cm (xm) + Dm (xn), Cn = Dn (xn); 

Km =am -iCm, 

(2.44 ) 

(2.45) 

(2.46) 

Kn = { - iyD; - iyjDj - iymDm + yn(an - iDn) 

+ mo + yk; + yjkl}ym; (2.47) 

(d) C; = C;(xm), Cj = C/xm), 

Cm = Cm (xm), Cn = Dn (xn); (2.48) 
A _ A 

Km = - { - iy'C; + ym(am - iCm) + mo 

+ yk I}yym, (2.49) 

Kn = - { :..- iyDj + yn(an - iDn ) + yjkl}yym. 

It follows from (2.31) and (2.38) that 

C; = C;(xm), Cj = Cj(xm), 

Cm = Cm (xm), Cn = Dn (xn); 

Km = {- iyC; - iyjCj + ym(am - iCm) 

+ yk; - yyjymkl}yjymyn~, 

Kn = (an - iDn )yym~; 
~ = yn,yjyn,yym,yyjym. 

We can see from (2.33) and (2.38) that 

Cm = Cm (xm), Cn = Cn (xm) + Dn (xn); 

Km = {ym(am - iCm) - iynCn}ymyn~, 
Kn = {yn(an - iDn) + mo - ymynkl}ymyn~; 
~ = yn,yjyn,yym,yyjym. 

At last we have from (2.35) and (2.38) 

Cj = Cj(xm); Cm = Cm (xm), 

Cn = Cn (xm) + Dn (xn); 

Km = { - iyjCj + ym(am - iCm) - iynCn 

- yjymynk; + yjkl}yj~, 
Kn = yn(an - iDn )yj~; 
~ = ym,yym,yjyn,yyjyn. 

(2.50) 

(2.51 ) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58 ) 

Taking the least strict and different conditions and con
vincing ourselves of their sufficiency we can formulate the 
following theorem. 

Theorem 3: In order to separate all the variables in Eq. 
(2.1) according to the scheme 

it is necessary and sufficient that the components of the vec-
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tor potential satisfy conditions (2.14), (2.28), (2.46), or 
(2.14), (2.26), (2.46), or (2.14), (2.26), (2.42) or (2.14), 
(2.26), (2.44). 

Remark: In the case of more strict conditions the var
iants are possible. 

B. Separation according to the scheme 
x' ~.x"'.x" ~ x'~;x"'.x" ~ x'~;x"';x" 

Let us consider the separation of variables in Eq. (2.1) 
according to the scheme 

{H}rr- 1\11 ~ (Kij + Kmn )ep, \II = rep, 

A A A A 

(2.59) 

(2.60) 

KijKmn - KmnKij = O. (2.61) 

Notice that in this separation we have symmetry relative to 
the change ij +:t m,n. Later in the separation within x; and ~ 
(or within xm and xn ) symmetry such as i +:t j (or m +:t n ) 
takes place. Therefore from now on we shall write only re
sults that are not identical relative to the above-mentioned 
changes. 

In order to provide the commutation requirement 
(2.61) 

A k(x;,~,xm,xn) = Vk (x;,~) + Wk (xm,xn), 

k= i,j,m,n, (2.62) 

must hold. 
A 

A Writing the most general form ofthe operators Kij and 
Kmn and taking into account the commutator (2.61), analo
gously to our previous discussions, we have 

A; = V;, Aj = Jj, Am = Wm, An = Wn; (2.63) 

K .. = {y'·(a. - iV) + yj(a. - iV) + mo}y"yj, 
A'l I 'll .. (2.64) 
Kmn = {ym(am - iWm) + yn(an - iWn )}y'yl. 

After the change ij+:tm,n we have the identical variant. 
Now we are led to Theorem 4. 
Theorem 4: In order to separate the variables into pairs 

in Eq. (2.1) according to the scheme 

it is necessary and sufficient that the components of the vec
tor potential satisfy conditions (2.63). 

The variables x;,~ are separated according to the 
scheme 

A A 1 
(Kij + k)ep ~ (Kij + k)AA - r 

~ (K; + Kj )0, ep = A0, 

(K; + Kj )0 = 0, 
A A A A 

K;Kj - KjK; = o. 

Here k is an eigenvalue of the operator Kmn. 
After this separation we have 

(2.65) 

(2.66) 

(2.67) 

V; =A;(x;) +B;(~), Jj = Bj(xj); (2.68) 

K; = y(a; - fA; )A, _ (2.69) 

Kj = { - iyB; + yj(aj - Bj ) + mo - yyjk}A; 

A = yj,yjymyn,yym,yyn. (2.70) 
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We must remember about variants connected with the sym
metry relative to the changes i,j+'!m,n, i+'!j. 

Analogously 
A A -1 

(Kmn - k)<I> ~ (Kmn - k)l:l: <I> 

~ (Km + Kn )0, <I> = l:0, 

A A A A 

KmKn - KnKm = 0; 

Wm = (;m (xm) + Dm (xn), Wn = Dn (xn); 

Km = y"'(am - i(;m )l:, 

Kn = {- iy"'Dm + y"(an - iDn) + yyjk}l:; 

l: = y"',yy"',yjy"',ryjy"'. 

(2.71 ) 

(2.72) 

(2.73 ) 

(2.74) 

(2.75) 

(2.76) 

Again we remember the symmetric-variants (the changes 
iJ+'!m,n, m+'!n). 

Combining the results (2.63), (2.68), and (2.74) we 
have the following theorem. 

Theorem 5: In order to separate all the variables in Eq. 
(2.1) according to the scheme 

it is necessary and sufficient that the components of the vec
tor potential satisfy conditions (2.63), (2.68), and (2.74). 

Analyzing the conditions of Theorems 3 and 5 while 
taking into account the equivalence of the variables we can 
see that the conditions of Theorem 3 contain conditions of 
Theorem 5. So if the conditions of Theorem 5 are fulfilled we 
have additional possibilities for separation in comparison 
with Theorem 3 connected with pair separation in the first 
step. The mathematical realization of the pair separation is 
simpler and therefore more preferable. Taking into account 
the least strict conditions on the components of the vector 
potential we can formulate the general theorem. 

Theorem 6: In order to separate all the variables in Eq. 
(2.1) it is necessary and sufficient that the components of 
the vector potential satisfy conditions (2.14), (2.28), (2.46) 
or (2.14), (2.26), (2.46) or (2.14), (2.26), (2.42) or 
(2.14), (2.26), (2.44). 

The explicit form of the operator connected with the 
concrete set of conditions takes into account a concrete way 
of separating variables. In the case of stronger conditions on 
the vector potential we obtain weaker conditions on the op
erators, and then the different variants of separation ofvari
abIes in the equation investigated [( 2.1 )] are possible. 

III. CURVILINEAR COORDINATES 

When we write the Dirac equation in curvilinear coordi
nates, Lame's coefficient functions appear. More precisely, 
we find that each partial derivative is multiplied by a linear 
combination of ''flat'' Dirac matrices where the coefficients 
are related to Lame's functions. Therefore we can consider 
each linear combination as a matrix which depends on the 
curvilinear coordinates. Such a situation introduces some 
additional limitations into the problem of separation ofvari
ables, but as before the requirements of partial or complete 
separability of variables in the Dirac equation allow us to 
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find the conditions on the components of vector potential 
and to select the concrete types of orthogonal curvilinear 
coordinates allowing such separations. It has been shown in 
Ref. 13 that the linear combination of Dirac matrices before 
a concrete curvilinear derivative through any unitary trans
formation may be reduced to one constant matrix with any 
functional coefficient. Together with the transition to a new 
unknown function this allows us to simplify the Dirac equa
tion as much as possible. We will consider that such a proce
dure for simplification of the Dirac equation is already ful
filled. However, we should notice that the unitary 
transformation used here for simplicity leads us to the 
framework of the natural Cartesian gauge of a space triad 
and when we solve the simplified equation we cannot require 
that the wave function be single-valued with respect to the 
variables connected with the above-mentioned unitary 
transformation. Therefore after solving the simplified equa
tion it is natural to do the inverse unitary transformation of 
solutions, and afterward the correct boundary conditions 
may be imposed. 

Investigating the Dirac equation in the vector fields on 
the subject of separation of variables in the curvilinear co
ordinates we select two groups of coordinates including all 
the known concrete orthogonal curvilinear coordinates. 

A. Coordinates f.L, v, Z, T=it[x=f( f.L,v), y=g( f.L,v)] 

Here the curvilinear coordinates are introduced on the 
XY plane. In particular, the well known cylindrical coordi
nates are of this kind. 

The Dirac equation in the coordinates ft, v, Z, and 7 takes 
the form 

{
ffLyl+gfL Y (afL A) 
(f! + g! ) 1/2 (f! + g! ) 1/2 - 1 fL 

+ fvyl + gvY (av A ) 
(f~ +~)1/2 (f~ +~)1/2 -1 v 

+ r(az - iA z ) + '1(ar - iA4 ) + mo}'I' = O. (3.1) 

HereffL,fv' gfL' and gv are the curvilinear derivatives of the 
functionsf and g on the corresponding variables. After some 
unitary transformation through the operator S and transi
tion to the new unknown function (see Ref. 13) according to 

y~S -lyS, 'I' = [S I( f! + g!) 1/4] \Ii, 
;: = exp{ - !cpyly}, cp = cp( ft,V), 

we have 

(3.2) 

{1'( (f! :fLg! )1/2 - iAfL) + yv( (f~ :~)1/2 - iAv) 

+ r(az - iAz ) + '1(aT - iA4 ) + mo}\Ii = O. (3.3) 

All the matrices yare now constant. Naturally, the compo
nents of the vector potential are determined here through 
curvilinear variables. 

From the orthogonality of curvilinear variables we have 
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4 =gv' Iv = -gJt; 

{I! + g!}'12 = {I; + g;}'12 = Y( /1-,V) = Y. 

(3.4) 

(3.5) 

Since the variables Z and r are not "spoiled" by curvilin
earity we can separate them from /1-, v and later separate 
between them corresponding to the conditions of Sec. II. 

If the conditions of Theorems 1 and 2 are fulfilled we 
separate first r and then Z (due to the symmetry Z~ r the 
sequence may be reversed) and combining requirements 
(2.14), (2.26) or (2.14), (2.28) we have all the possibilities 
for such a separation: 

(a) AJt = CJt (/1-,v), Av = Cv ( /1-,v), 

Az = Ez (z), A4 = A4( r) + E4(z); 
(3.6) 

KJtv = {Y'(aJtIY - iCJt) + yV(aJY - iCv)hl'y'; 
(3.7) 

(b) AJt = CJt (/1-,v), Av = Cv( /1-,v), 

Az = Ez (z) + Cz (/1-,v), A4 = A4( r) + C4( /1-,v); 
(3.8) 

KJtv = {- iJl'C4 - iy'Cz + Y'(aJtIY - iCJt) 

+ yV(aJY - iCy) + mo + Jl'dy'; 

(c) AJt = CJt (/1-,v), Av = Cv( /1-,v), 

Az = Ez (z), A4 = A4( r) + C4( /1-,v); 

[(Jtv = {- iJl'C4 + Y'(aJtIY - iCJt) 

+ yV(avlY - iCy) + Jl'dJl'Y'Yv; 

(d) AJt = CJt (/1-,v), Av = Cv( /1-,v), 

Az =Ez(z), A4=A4(r) +C4(/1-,v); 

KvJt = {Y'(aJtIY - iCJt) 

+ yV(aJY - iCy) + mo}Y'Yv; 

(e) AJt = CJt (/1-,v), Av = Cv (/1-,v), 

Az = Ez (z) + Cz (/1-,v), A4 = A4( r); 

KJtv = { - irCz + Y'(aJtI Y - iCJt) 

+ yV(aJY - iCy) - y'Y'yVdr, 

r = y', Jl'y', Y'Yv, - Jl'Y'Yv. 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

(3.15 ) 

(3.16) 

Here E is an eigenvalue of the operator responsible for 
the variable separated first, for example, KT • 

If the requirements of Theorem 5 are fulfilled on the 
variables r,z, separating first r,z from /1-, v and using the con
ditions (2.62), (2.68), we have 

AJt = CJt ( /1-, v), Av = Cv ( /1-, v), 

Az = Ez (z), A4 = A4( r) = E4(z). 
"'-

There are two possibilities for the operator KJtv: 

( 3.17) 

{
/Jt cos q; yl + IJt sin q; r + gJtT( aJt _ iA ) 

(I! +g!)1/2 (I! +g!)1/2 Jt 

KJtv = {Y'(aJtIY - iCJt) + yV(aJY - iCv)}y'JI' 
(3.18 ) 

or 

KJtv = {Y'(aJtIY - iCJt) + yV(aJY - iCy) + mo}Y'Yv. 
( 3.19) 

Also, it should be noticed that conditions (3.6), (3.12), 
and (3.17) coincide and conditions (3.10) and (3.14) are 
included in (3.8). 

The Lamls function Y, appearing in the expression for 
the operator KJtv ' depends on two variables, and, in general, 
the separation of /1- and v is impossible. The separation of /1-
and v in Eq. (3.3) is possible ifthe function Y depends on 
one variable only, as for example, for the cylindrical vari
ables 

x=pcosq;, y=psinq;::::} (/~ +~)1/2=p. (3.20) 

Because of the symmetry between /1- and v, without loss of 
generality for the separation /1-, v we take 

Y = Y(v). (3.21) 

The presence of the function Y requires the introduc
tion of some functional factor G in the scheme of separation 
that must be defined. So we now take the scheme 

"'- "'- "'-
G(KJtv + k)~~-I<I> ::::} (KJt + Kv)n, <I> = ~n. 

(3.22) 
"'-

Here k is an eigenvalue of the operator KJtv if we use (3.7), 
0.9), (3.13), and (3.15) or is an eigenvalue of the operator 
K

TZ 
if we use (3.18) and (3.19). In both cases the separation 

is possible if 

AJt = CJt (/1-)/Y(v) + DJt (v), Av = Dv(v). (3.23) 

We do not write the operators KI'c and Kv. They may be 

taken from the operators K m and K n (Sec. II) after the 
changes i -+ 4, j -+ z, m -+ /1-, n -+ v, k i 

-+ E, and kj 
-+ k' , or else 

"'- -
the operator K n must be multiplied on Y ( v). Because of the 
specification of the scheme (3.22) only the variants (2.40), 
(2.47), (2.51), and (2.57) are realized. So we have the fol
lowing theorem. 

Theorem 7: In order to separate all the variables in Eq. 
(3.3) under condition (3.21) it is necessary and sufficient 
that the components of the vector potential satisfy condi
tions (3.8), (3.23) or (3.6), (3.23). 

Remark: The variants are possible for stronger condi
tions on the components AJt' Av (see Sec. II). 

B. Coordinates .... , v, cp, T, [x=f( .... ,v)cos cp, y=fsin cp, 
z=g( .... ,v)] 

The Dirac equation in the variables /1-, v, and q; takes the 
form 

+ Iv cos q; yl + Iv sin q; r + gvT ( av _ iA ) 
(f! +g!)1/2 (f! +g!)1/2 v 

+ ( - sin q; yl + cos q; r)( a; - iAcp) + JI'(aT - iA4) + mol\{! = o. (3.24) 
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After the unitary transformation and transition to the new 
unknown function, according to13 

A 

r-+S -11/S \Ii _ Sa 'I' 
I , - (f; +i;.)114j1l2 ' 

S = exp { - ; rlr }exp { ~ r1y}, 

K = X( jl,V), () = ()( jl,V) , 

a = !(r1r + ry + y1r l +1), 

we have the simplest form ofthe Dirac equation: 

(3.25 ) 

Now, as before, the matrices r are constant and Hermitian. 
Here only the variable r has an unspoiled form and 

therefore it is natural first to separate rfromjl, v, qJ, i.e., now 
we follow the scheme 

r,qJ,jl,v => T,qJ;jl,V => r;qJ;jl,v => r;qJ;jl;v. 

Then according to (2.14 )-(2.17) we have the following 
possibilities of separation of r from jl, v, qJ: 

(a) A!, = B!, (jl,v,qJ), Ay = By( jl,V,qJ) , 

A~ = B~ (jl,v,qJ), A4 = A4( r) + B4( jl,v,qJ); 
(3.27) 

A { •• .4 (a!,,) K!,y~ = - ly B4 + yP- y - IB!, 

+rv(~ -iBy ) 

+ y4( ~ - iA~) + mo}y4; 

(b) A!, =B!'(jl,v,qJ), Ay =Bv(jl,v,qJ), 

A~ =B~(jl,v,qJ), A4 =A4(r); 

Kr = {y4(ar - iA4) + mo}yP-rY~, 

+ + ~( ~ - iA~ )}yP-ry~. 
The complete separation is possible only if 

(3.28) 

(3.29) 

(3.30) 

As above we remember the possibilities of symmetrical var
iants (jl+=!v). 

We have from (3.28) 

(a.a) 
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K~ = a~ - ijj~, 
K!'y = f{ - iy4C4 + yP-(a!,IY - iC!') 

+ ry(aJY - iCy) - i~C~ 

+mo+y4d~; 

(a.b) C!'=C!'(jl)/Y, Cy=Dv(v), 

C~=C~(jl)/Y, C4 =D4(v); 

(3.33 ) 

(3.34) 

K!, = {yP-(a!, - iC!') - i~C~ + ~k ~ IF}rYy4; 
(3.35) 

Ky = Y{ - iy4D4 + ry(aJY - Dy) 

+ mo + y4dryy4. 
From (3.30) it follows that 

(b.a) B!, = C!, (jl,v), By = Cv( jl,v), 

B~ = jj~ (qJ)lf + C~ ( jl,v); 

K~ = (a~ - ijj~ )yP-rv A, 

K!'y =f{yP-(a!'IY - iC!') 

+ ry(aJY - iCy) 

- i~C~ - yP-ry~dyP-rYA; 

A = ~,y4~,yP-ry,~yP-ry; 

(3.36) 

(3.37) 

(3.38 ) 

(3.39) 

(b.b) C!'=C!'(jl)/Y+D!'(v), Cy=Dy(v), 

C~=D~(v); k~=O; (3.40) 

K!, = yP-(a!, - iC!' )~, 
Ky = Y{ - iyP-D!, + ry(ay/Y - iDy) (3.41) 

- i~D~ + yP-ry~d~; 
~ = ry,ry~,ryy4,ry~y4. (3.42) 

Other variants of the scheme of separation with pairwise 
separation as the first step are identical to the above or lead 
to weaker conditions on the vector potential. Using the sepa
ration scheme outlined above, we encounter the following 
cases. 

(a) A!, = C!, (jl,v)/Y, Av = By (v,r), 

A~=C~(jl,v)IY, A4 =B4(v,r); 

Kvr = Y{rY(ay/Y - iBy) 

+ y4(ar - iB4) + mo}rYy4, 

(3.43) 

K!,~ = {yP-(a!, - iC!') + ~(a~iF - iC~) }rY y4; 
(3.44) 

(b) Bv=By(v), B4 =A4(r)+B4(v); 

Kr = (ar - iA4)y4~yP-rv, 
Kv = {rV(ay/Y - iBv) - iy4B4 

- ryy4k!'~ IY + mo}yP-rv~; 

(3.45 ) 

(3.46) 

(c) C!'=C!'(jl), C~=C~(jl)+D~«({J)IF; 
(3.47) 

K~ = ~(a~ - iD~)ryy4A, 
K!, = F{yP-(a!, - iC!') - i~C~ 

+ ryy4k!'~}ryy4 A; 
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( 3.49) 

Notice that conditions (3.29), (3.37), and (3.40) are 
included in (3.27), (3.32), and (3.34). Thus we have the 
following theorem. 

Theorem 8: In order to separate all the variables in Eq. 
(3.26) under conditions (3.31) it is necessary and sufficient 
that the components of the vector potential satisfy condi
tions (3.27), (3.32), (3.34) or (3.43), (3.45), (3.47). 

IV. SPECIAL CASES OF SEPARATION 

As has been shown in Sec. III, the presence of Lame's 
functions connected with the curvilinear coordinates leads 
to additional difficulties in the separation of variables in the 
Dirac equation and the requirements (3.21) and (3.31) 
must be satisfied in order to separate all the variables in Eqs. 
(3.3) and (3.26), respectively. Therefore the results of Sec. 
III do not contain the oblate spheroidal coordinates success
fully used by other authors. 2

-4.11 As will be shown in this 
section the separation of variables in the Dirac equation may 
be realized even ifthe conditions (3.21) and (3.31) are not 
satisfied by means of some additional similarity transforma
tion. It is advisable first to consider the most complex or
thogonal curvilinear coordinates. 

A. Coordinates~, v, cp, T, [x=f( ~,v)cos cp, y=fsin cp, 
z=g( ~,v)] 

The free Dirac equation in the coordinates p" v, q;, and 7 

in the diagonal gauge tetrad has the form 

(4.1 ) 

As Lame's functions for all the known orthogonal curvi
linear coordinates depend on a maximum of two variables 
the unknown additional similarity transformation must de
pend, in general, on the same two variables. So we make the 
transformation 

A A A AA 

y-S-lyS, <I>=S-I'I', SS-I=1; (4.2) 

S= exp(ty'i'0/2)exp(t"yvy'i't02/2); (4.3) 

01 = 0l( p"v), O2 = 02( p"v). (4.4) 

It is easy to see that 

t"S -I aI's + yVS -I avs = 0, (4.5) 

a a a a -01 =-02, -01 = --02, (4.6) 
av ap, ap, av 
Equation (4.1), after such a transformation, takes the 

form 

I
t" ~ + yV ~ + eXP(ty'i'OI)(y'i' ~ + taT) 

h h h3 

+ mo eXP(t"yvy'i't02)}<I> = 0. (4.7) 

Here we have taken into account that, because of the ortho
gonality of coordinates, hi = h2 = h. 

The separation of variables in Eq. (4.7) is possible if 
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exp(ty'i'OI) = (a + bty'i')/h, 

exp(t"yvy'i't) = (e + dt"yvy'i't)/fz, 

a2 _ b 2 = e2 + d 2 = h 2. 

(4.8) 

(4.9) 

(4.10) 

Here a, b, e, and d are functions of separated variables. 
Indeed now we have from (4.7) 

It" a" + yVav + (a + bty'i')(y'i' ~: + taT) 

+ mo(e + dt"yVy'i't) }<I> = 0, 

and the separation is possible if 

(4.11 ) 

h3 = ab, (4.12) 

where each of the functions a and b depends only on one 
variable (p, or v). 

In the case when the Dirac equation contains the vector 
potential, in order not to disturb the conditions of separabil
ity it is necessary to require 

(4.13 ) 

Further we shall study Eq. (4.11), introducing into it 
the vector potential taking into account (4.12) and (4.13). 
Then we have 

{t"a" +yVav + ((l/b) + (l/a)ty'i')y'i'a<p 

+ i(a + by4y'i')(y'i'A<p + tA4) + (a + bty'i')t aT 

+ mo(e + dt"yvy'i'y4)}<I> = 0. (4.14) 

Demanding 

(a + bty'i')tArp + (a + bty'i')tA4 

= y'i'(aA<p - bA4) + t(bA<p + aA4) = y'i's + tt; 

aArp - bA4 = 5, bA<p + aA4 = t; 
A<p = (as + bt)/(a2 + b 2), 

A4 = (at - bS)/(a2 + b 2), 

Dirac equation takes the form 

{t" a" + yVav + y'i'(arp/b + baT - is) 

+ t(arp/a + a a4 - it) 

+ mo(e + dt"yvy'i't)}<I> = 0, 

( 4.15) 

(4.16 ) 

( 4.17) 

(4.18 ) 

which allows the complete separation of variables in the fol
lowing cases: 

(a) a=a(p,), b=b(v), c=e(p,), d=d(v); 
( 4.19) 

A = {t" a" + t(a<p/a + a aT - it) + modr, 

B = {yVav + y'i'(a<p/b + b aT - is) 

+ modt"yvy'i't}r; (4.20) 

r = t"t, [A,B L = 0; (4.21) 

(b) a=a(v), b=b(p,), c=c(p,), d=d(v); 
(4.22) 
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A = {Y' ap' + y"'(atplb + baT - is) + moc}r, 

B = {yYay + -/<atpla + a aT - it) 

+ modY'yYy"'-/}r; (4.23) 

r = Y'y"', [A,B ] _ = 0; (4.24) 

(c) a=a(IL), b=b(v), c=c(v), d=d(IL); 
(4.25) 

A = {Y' ap' + -/(atpla + a aT - it) 

+ modY'yYy"'-/}r, 

B = {yYay + y"'(atplb + baT - is) + moc}r; 
(4.26) 

AA 

r = yYy"', [A,B ] _ = 0; (4.27) 

(d) a=a(v), b=b(IL), c=c(v), d=d(IL); 
(4.28) 

A = {Y' ap' + y"'(atplb + baT - is) 

+ modY'yYy"'-/}r, 

B = {yYay + -/(atpla + a aT - it) + moc}r; 
(4.29) 

(4.30) 

Two well known systems of coordinates allow us to rea
lize these conditions of separation. 

Namely, (b) is realized in the oblate spheroidal coordi
nates that have been used by Cook in the scalar fields, 4 by 
Bagrov et al. in the electromagnetic fields,3 and by Chandra
sekhar in the gravitational Kerr's field.5

•
6 

Case (c) is realized in the prolate spheroidal coordi
nates. 

2141 

Thus we have 

(b) x = a sin IL cosh v cos qJ, 

y = a sin IL cosh v sin qJ, 

z = a cos IL sinh v; 

hi = h2 = a (cosh2 v - sin2 IL)1/2, 

h3 = a sin IL cosh V; 

a = a cosh v, b = a sinIL, 

c = a coslL, d = a sinh v; 

0 1 = arctanh«sinIL)/(coshlL»), 

O2 = arctan(sinh v)/(cOSIL»); 

(4.31) 

(4.32) 

(4.33 ) 

(4.34) 

A = {Y' ap' + y"'(atpl sinIL + a sinIL aT - is) 

+ moa cos IL }Y'y"', 

B = {yYay + -/(atplcosh v 

+ a cosh VaT - ILit) 

+ moa sinh v Y'yYy"'-/}Y'y<P; 

(c) x = a cos IL sinh v cos qJ, 

y = a cos IL sinh v sin qJ, 

z = a sin IL cosh v; 

hi = h2 = a(sinh2 v + cos2 IL) 1/2, 

h3 = a cos IL sinh v; 
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(4.35 ) 

(4.36) 

(4.37) 

a = a coslL, b = ia sinh v, 

c = a cosh v, d = ia sinIL; 

° I = i arctan( (sinh v) I ( cos IL )j, 

O2 = i arctanh( (sin IL) I (cosh v) ); 

(4.38) 

(4.39) 

A = {Y' ap' + -/(atplcos IL + a cos IL aT - it) 

+ imo sin IL Y'yYy"'-/a}yYy"', 

B = {yY a y + y<P(atpl(i sinh v) ( 4.40) 

+ ia sinh v - is) 

+ moa cosh v}yYy"'. 

The cases (a) and (d) are equivalent to (b) and (c) in 
the sense of the change IL +=! v. Finally the same results may be 
deduced to do the redefining of 0 1 and O2 in the sense of the 
symmetry 0 1 +=! (J2' 

Returning to (4.16) we notice the configurations of the 
vector fields Atp and A4 allows the complete separation of 
variables in the Dirac equation according to (4.19)-( 4.40). 

B. Coordinates j..L, v, Z, 1', [x= t{ j..L,v), Y=9( j..L,v)] 

The Dirac equation in the absence of fields in the cylin
drical orthogonal coordinates IL, v, and z in the diagonal 
tetrad gauge takes the form 

{(Y'lh)ap. + (yYlh)ay + yaz + -/ aT + mo}\jJ = O. 
(4.41 ) 

Here the pairwise separation of variables is trivial: 

{(Y'lh)ap. + (yYlh)ay)y-/}<I> = - k<l>, 

{( y az + -/ aT + mo)y-/}<I> = k<l>, 

<I> = y-/\jJ, 

where k is an eigenvalue of the operators. 

(4.42) 

(4.43) 

(4.44) 

If we introduce the vector potential, further separation 
is possible only under the conditions 

Az=Az(r), A4=0 or Az=O, A4 =A4(z). 
(4.45) 

Because of the separation between IL and v in (4.42) we 
can again perform the similarity transformation (4.2)
( 4.4) because here we again have Lame's functions depend
ing on IL and v. Then we have 

{(Y'lh)ap. + (yYlh)ay)Y-/ 

+ kexp(Y'yYy-/02)}<I> = O. (4.46) 

In order to separate IL and v in (4.46) we must require 

exp(Y'yYy-/(J2) = (a + bY'yYy-/)lh, (4.47) 

a = a(xi), b = b(xi), xi=l=xj
• (4.48) 

The separation is realized if 

(a) a=a(IL), b=b(v); 

A = (Y'Y-/ ap' + ak)yYy, 

B = (yYy-/ ay + bkY'YYY-/)YYY ; 

[A,B]_ = 0; 

(b) a=a(v), b=b(IL); 
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(4.50) 

(4.51 ) 

(4.52) 

(4.53 ) 
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A = ( - tap + bky"t) , 

B = (t'yvt av + akt'y"), 

[A,B] = o. 

( 4.54) 

(4.55) 

(4.56) 

Requirements (a) are satisfied by the parabolic cylin
drical and elliptic cylindrical coordinates. Namely, 

(a.a) x=(J-l2-v)/2, Y=J-lv; (4.57) 

a = J-l, b = v; (4.58) 

01 = ~ In( v + J-l2), O2 = arctan(;) ; (4.59) 

A = t'tyVap + kJ-lYvy", B = - t av + kvtt'· 
( 4.60) 

(a.b) x = a sinJ-l cosh v, Y = a cosJ-l sinh v; (4.61) 

a = a cos J-l, b = a sinh v; (4.62) 

01 = arctan( sinh v), O2 = arctanh( sin J-l ); 
cos J-l cosh v 

A = t'ty" ap + ka cos J-lYvy", 

B = - t av + ak sinh vtt'. 

(4.63) 

(4.64) 

Case (b), after the redetermination of variables J-l and v 
in the sense of symmetry J-l <=t v, again leads to the same re
sults. 

v. DISCUSSION 

The results ofSecs. II-IV contain all the possibilities for 
separation of variables in the Dirac equation in the presence 
of vector fields in the framework of the method of noncom
muting first-order matrix differential operators. All the re
sults known to us using the first-order operators may be 
found in our scheme. Indeed the first-order symmetry opera
tors of Ref. 2 are equivalent to ours within unitary transfor
mation if the external field is removed in our results. The 
similarity of the results ofSecs. II and III to the correspond
ing results of Ref. 4 can be seen. The same may be noted 
about a series of other results. 

Notice that in the detailed analysis of the separation of 
the variables in the free Dirac equation2 the equivalence of 
information contained in the second- and first-order opera
tors has been demonstrated. In the presence of vector fields 
according to our consideration it is evident from (2.8) that 

[K(I) K(I)] =0 -->.. [K(2) K(2)] =0 
a'/3 -~ a'f3-' 

K'" (2) = K'" 2 K'" (2) _ K'" 2 
a a' /3 - /3' 

(5.1 ) 

However, if we have 
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[K(2) K(2)] =0 K(2) =K(I)K(I) 
a' /3 - , a al a2 , 

K (2) - K (I)K (I) 
/3 - /31 /32' 

(5.2) 

it is not obligatory that 

[K"'(I)K"'(I)] =0 ( .. 12) 
ai' /3J - , IJ = , . (5.3 ) 

The upper indices in parentheses denote the differential or
der of operators. 

For example, for the KGF equation in the absence of 
fields we have 

(a 7 + a J + a;,. + a ~ + m~ ) 'I' = 0, 

[aLan _ = 0, k,/ = iJ,m,n. 

For the corresponding Dirac equation we have 

(5.4) 

(5.5) 

(yaj + yj aj + ym am + 1'" an + mo)'I' = 0, (5.6) 

[r"ak,yad#O. (5.7) 

However, notice that the dynamical information in both 
(5.4) and (5.6) is identical if we neglect proper degrees of 
freedom in the case (5.6). In general, the introduction of 
fields may disturb this identity. Thus the separation ofvari
abIes in the Dirac equation in the presence of fields by means 
of the second-order matrix differential operators requires a 
special investigation. 

The method proposed here may be useful for the investi
gations of separation of variables in the more general systems 
of differential equations with partial derivatives in the search 
for exact solutions. 
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The recently introduced 8-expansion (or logarithmic-expansion) technique for obtaining 
nonperturbative information about quantum field theories is reviewed in the zero-dimensional 
context. There, it is easy to study questions of analytic continuation that arise in the 
construction of the Feynman rules that generate the 8 series. It is found that for six- and 
higher-point Green's functions, a cancellation occurs among the most divergent terms, and 
that divergences that arise from summing over an infinite number ofintemallines are illusory. 
The numerical accuracy is studied in some detail: The 8 series converges inside a circle of 
radius one for positive bare mass squared, and diverges if the bare mass squared is negative, but 
in all cases, low-order Pade approximants are extremely accurate. These general features are 
expected to hold in higher dimensions, such as four. 

I. INTRODUCTION 

In a recent series of papers 1-9 we have developed a new 
artificial perturbation technique that can be applied to quan
tum field theory. The technique relies upon the introduction 
of an artificial perturbation parameter 8, which describes the 
exponent of the interaction term. We have established that 
the Green's functions of the theory can be expressed as series 
in powers of 8. Moreover, in some model field theories that 
we have explored, the 8 expansion has a finite radius of con
vergence. This is to be contrasted with the conventional 
weak-coupling series, which is known to have zero radius of 
convergence. Even when the 8 expansion is only asymptotic 
or when one needs information outside the circle of conver
gence, one can extract accurate information from the 8 ex
pansion using Pade approximants. Another important fea
ture of the 8 expansion is that it does not force a polynomial 
dependence on the physical coupling constant, as does the 
weak-coupling expansion, but instead allows a functional 
dependence on this and other physical parameters of the the
ory that can be highly nontrivial. The principal disadvantage 
of the 8 expansion is that, even in finite order in the expan
sion parameter 8, it produces sums over infinite classes of 
graphs. In order to perform practical calculations in the 8 
expansion it is essential that one have techniques at hand for 
evaluating these infinite sums. Techniques for performing 
these sums have been partly developed in Refs. 2 and 6. We 
will further elaborate upon these techniques in this paper. 

Recently we have developeds a new and simplified for
mulation of the 8 expansion that does not require the explicit 

a) Permanent address: Department of Physics and Astronomy, The Univer
sity of Oklahoma, Norman, Oklahoma 73019. 

introduction of the provisional Lagrangian in terms of which 
the theory was originally formulated. Although quite equiv
alent to the original scheme, a set of Feynman rules for the 8 
expansion can be derived that requires a knowledge of only 
the original Lagrangian and is entirely analogous to the con
ventional weak-coupling Feynman rules for field theory. 

The basic structure of the 8 expansion (Feynman dia
grams, symmetry factors, summation constraints, etc.) re
mains unchanged, as one considers field theories in various 
dimensions. Therefore we expect the techniques and insights 
developed in the study of zero-dimensional field theory to 
have a large carryover to more realistic field theories in high
er dimensions. For example, the 8-expansion sums for the n
point functions are divergent for n>6. These sums are Borel 
summable and we will exhibit techniques for evaluating 
them. The divergent nature of these sums arises from the 
forms of the vertices in the Feynman rules for the 8 expan
sion and graph-counting arguments that are independent of 
the dimensionality of the field theory . We will also see that 
these divergences are illusory, and arise from the analytic 
continuation to the simplified Feynman rules. Of course, in 
higher dimensions, true divergences emerge from the inte
grals over closed loops; these divergences must be removed 
by renormalization. 7

•
8 

We are interested in the self-interacting scalar field the
ory in d dimensions, defined by the following generating 
functional: 

z = f Dq7 exp{f[ - ~ JJlq7 JJlq7 - ~ Jl2q7 2 

_J.M2q72(M2-dq72)p+Jq7 ]ddX}, (1.1) 

where f..l is the bare mass, J. is the bare coupling constant, and 
M is an arbitrary scale mass, introduced so that the coupling 
constant is dimensionless. For positive values of the bare-
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mass squared, the usual way of attacking this field theory is 
by the weak-coupling expansion, producing a series in pow
ers of A. Weak-coupling perturbation theory gives an asymp
totic expansion for the Green's functions of the field theory. 

The 8 expansion is obtained by replacing the exponent p 
in (1.1) by 8, which we regard as a small parameter, and 
expanding the functional integral in powers of 8: 

Z = f Dcp exp{f[ - ~ BI' cpJl'cp - ~ (f-lz + UMz)cp Z 

_AMzcpZ[8In(Mz-dcpz) + ... J ]ddX }. (1.2) 

In the case when the bare-mass term is negative, f-lz -+ - p,z, 
the weak-coupling expansion does not exist because the un
perturbed theory is undefined. The 8 expansion, however, is 
well defined as an asymptotic series and can be used to give 
very accurate results. When the bare mass vanishes, the 
weak-coupling expansion is also undefined, but the delta ex
pansion remains well defined, and is convergent. This inde
pendence of the 8 expansion, from constraints imposed by 
the values of the bare mass, is a powerful advantage. 

In this paper we will further illustrate the features of the 
8 expansion by fully exploring its application in the simple 
case of scalar field theory in zero dimensions. For this case 
the generating functional for the field theory reduces to an 
ordinary integral, which we write as 

Z A,~,8,J = -- dx exp - ~ ( 
Z ) m f + 00 {ZXZ 

M /iii -00 2 

- AMzxz(Mzxz)O + JX}, (1.3 ) 

where 

(1.4 ) 

The normalization has been chosen for convenience so that 
Z(J = 8 = 0) = 1. 

The integral (1.3) converges for all real values of 8 if f-lz 
and A are positive. For A negative the integral (1.3) is unde
fined, indicating that Z has a cut singularity along the nega
tive real A axis and the expansion of Z as a series in A has a 
zero radius of convergence. 

II. DELTA EXPANSION 

To obtain the 8 expansion we will use the Feynman 
graph techniques developed in Ref. 5 and summarized here. 
The rules are an abbreviation of, but equivalent to, the origi
nal provisional Lagrangian technique described in Refs. 1 
and 2. Although an infinite class of graphs is summed in each 
order, the rules for calculating any given diagram are similar 
to the standard rules for a scalar field theory, except for the 
specific form of the vertex factor and the mass term in the 
propagator. (For the zero-dimensional theory treated in this 
paper, the propagator reduces to a simple inverse mass fac
tor). 

To obtain the expansion of G (2n), the 2n-point one-par
ticle-irreducible (IPI) Green's function, to order 8k, we in
clude all IPI diagrams with up to k vertices, 2n external 
lines, and any number of internal lines. To obtain the contri
bution of a givenj-vertex diagram, to the order 8k, one uses 
the power series expansion of each vertex factor V21 ( 8) in the 
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diagram and retains, in the expansion of the full diagram, all 
terms of order 8k or lower. For the theory defined in (1.3) 
the vertex factor for vertices with 21 external legs is given by5 

V21 (8) 

21+1 
=--AMz(mz)I-I(8+ 1)8(8-1)"'(8+2-/) 

J1T 

( 
3 )(2MZ)O 00 8

k 
(k) Xr (8+- -Z- = L ,V21 • 

2 m k=lk. 
(2.1 ) 

Here the "loop integral" that is associated with each closed 
loop has reduced, because we are in zero dimensions, to the 
simple propagator factor m-z, where mZ is defined in (1.4). 
The expansion ofthe "interaction" term, AM Z XZ (M 2 XZ ) ° , in 
(1.3) about the point 8 = 0, introduces a termAMzxz, which 
combines with the "free Lagrangian" to produce a shift of 
the bare-mass term f-l Zx 2/2 by this amount. Therefore the 
"propagator" that enters the 8-expansion calculations is 
(f-lz + UMz)-I. 

We shall calculate the 2n-point functions for the zero
dimensional field theory defined by (1.3) for n = 0,1,2,3, 
through second order in the 8 expansion, by summing the 8-
expansion Feynman diagrams. These results will be com
pared with the analytic results obtained by directly evaluat
ing the integrals that result from expanding (1.3) in powers 
of J and 8. In all these calculations we include only the one
particle-irreducible graphs. 

A. Zero-point function 

The Feynman graphs that contribute to the 8 expansion 
of the zero-point function through order 82 are given in Fig. 
1. The contribution of the graph in Fig. 1(a) is given by 

8z 
- 8v(\) - - V(2) 

o 2 0 

= _ 8~2 {¢( ~) + InC~Z)} 

- 8~A ~:{¢,( ~) + [¢( ~) + InC~Z)]l (2.2) 

The diagrams in Fig. 1 (b) contribute 

1 ~ 8z 1 1 [(\)] 2 
2" I~I (m 2 )21 (2/)! V

21 

= 8Z:~4[ ¢( ~) + 1 + InC~2) r 
82..1. 2M 4J1T 00 r(l- 1) 

+ 2m4 1~2/(l- 1) r(l + !) (2.3 ) 

4t (a) 

21 
FIG. 1. Feynman graphs that contribute to the zero-point function through 
0(.52 ). Here, the vertices are obtained by expanding V21 (.5) [Eq. (2.1) lout 
to the requisite order in .5. 
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To evaluate the sum that appears in the above expression we 
recognize the ratio of gamma functions that appears in the 
sum as a beta function, 

(2.4) 

and use the integral representation for the beta function 

B(a,b) = fdX(1-X)a-lXb-l, Re(a,b) >0. (2.5) 

Then we separate the factor 1(/ - 1) by partial fractions, 
perform the sums under the integral, and evaluate the inte
gral to obtain 

f r (/ - 1) = 1T2 [ 2
3 t/JI( 23 

) - 1]. 
1~2 1(/-1)r(/+p 

The same technique is used to evaluate all the sums that 
appear in the expressions for the two-point and four-point 
functions. In the six-point and higher functions the 0 expan
sion produces sums that are formally divergent but Borel 
summable. These are treated below by a variation of this 
technique. 

Our final expression for the zero-point function through 
order 02 is 

In Z = - 0~~2 [ t/J( ~ ) + Ine~2)] 

- 0:~2{[ t/J( ~) + Ine~2) r + t/JI( ~ )} 

+ 02:~4{[ ~ ~) + 1 + Ine~2) r 
+ ~t/J1(~)-1}. (2.6) 

Note that this reduces to the case treated in Ref. 2, when 
M2 = 1, ,1.= 1, and m2 = 2. 

B. Two-point function 

The o-expansion Feynman diagrams that contribute to 
the two-point function through order 02 are given in Fig. 2. 
The graph in Fig. 2(a) is of order 00 and its contribution is 
just the propagator term m- 2

• The graph in Fig. 2(b) con
tributes 

(2.7) 
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(8) 

• (b) 

(d) 

FIG. 2. Feynman graphs that contribute to the two-point function through 
o(lf). 

The contribution of the graphs in Fig. 2 (C) is given by 

~ 1 1 [(1)]2 
I~l (m 2 )2/+ I (21 + 1)! V

2l
+

2 

202,1. 2M4 00 r(/ - 1) 
= fiiI----

m2 1~2(/-1)r(/+~) 

_ 4{)2A zM 4 ,(1.) - t/J. 
m2 2 

(2.8) 

(The sum here is given in Ref. 3.) The contributions of the 
graphs in Fig. 2(d) are 

(2.9) 

The final expression for the 0 expansion of the two-point 
function through order 02 is the sum of (2.7 )-( 2.9) : 

G(2) = - 20AM
2
[ t/J( ~ ) + 1 + Ine~2)] 

- 02AMZ{ [t/J( ~) + 1 + Ine~2) r + t/JI( ~) - 1} 
+ 4{)2~:M4[ t/J( ~) + Ine~2) + ~ t/JI( ~)]. 

(2.10) 
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c. Four-point function 

The 8-expansion graphs that contribute to the four
point function through order 82 are given in Fig. 3. The dia
gram in Fig. 3(a) contributes 

_ 8vl l
) - 8

2 

v12
) = - 48AM 2m2 - 482AM2m2 

2! 

x [ ¢( ~ ) + 1 + Ine~ 2) ] . 

The graphs in Fig. 3 (b) contribute 
00 482 
" v(1) v(1) 
I~I (m2)2/+1(2/+ I)! 21+2 21+4 

= - 2482A 2M4,!iT f r(l) 
I~I r(/+~) 

The contribution of the graphs in Fig. 3 (c) is 

(2.11) 

(2.12) 

~ 38
2 

[V(I)]2 = 1282A 2M4,fii ~ r(l) 
I~I (m2)2/(2/)! 21+2 I~I Ir(l + p 

= 1282A 2M4¢'( ~). (2.13) 

The graphs in Fig. 3 (d) contribute 

00 82 
" v(1)v( I) 
I~I (m2)21(2/)! 21 2/+4 

= -882A2M4[¢(~)+I+lne~2)] 

+ 482A 2M4.[ii f r(l-!) 
1~2 r(l + 2) 

= - 882A 2M4{[ ¢( ~) + 1 + lne~2)] - 2}. 

(2.14 ) 

The final expression fo the four-point function through or
der 82 is obtained as the sum of (2.11)-(2.14): 

G(4) = _ 48AM 2m2 

- 482AM2m2[ ¢( ~) + 1 + lne~2)] 

- 82A 2M48[ ¢( ~) + lne~2) + 1 - ~ ¢,( ~)]. 
(2.15 ) 

D. Six-point function 

The 8-expansion graphs that contribute to the six-point 
function through order 82 are given in Fig. 4. The contribu
tion of the graph in Fig. 4(a) is 

_ 8v~1) - 8
2 

V~2) = 88AM 2m4 + 882AM 2m4 
2 

The graphs in Fig. 4(b) contribute 
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(2.16) 

X (a) 

C X (b) 
• • • 

21 +1 

)(:1:>( (c) 

21 

(d) 

FIG. 3. Feynman graphs that contribute to the four-point function through 
0(02

). 

We note that the summand in the expression above be
haves asymptotically as I - 1/2, so the sum is divergent. There 
are two ways to address this potentially embarrassing prob
lem. First, as will be seen below, the other graphs that con
tribute to the six-point function in this order also produce 
divergent sums. The divergences exactly cancel so that the 
sum of all the 8-expansion graphs to order 82 is finite. Sec
ond, we can formally sum the divergent expression by using 
the beta-function technique and ignore the divergence. The 
(finite) result is the final expression given above. 

The graphs in Fig. 4(c) contribute 
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(a) 

(b) 

21 

FIG. 4. Feynman graphs that contribute to the six-point function through 
0(82

). 

00 6l)2 

'" vi: ~ 2 vi: ~ 6 1~1 (m 2 )2/+1(21+ I)! 

= 4882Ji. 2M4mV1i f r(l) (l + 1) = O. 
1~1 r(l+~) 

(2.18) 

Again, the final expression above is the result of ignoring the 
divergence of the series and formally evaluating the sum us
ing the beta-function technique. The graphs in Fig. 4(d) 
yield 

00 15 
'" vi: ~ 2 vi: ~ 4 1~1 (m 2 )2/(21)! 

= - 15·2282Ji. 2M4mV1i f r{l) 
I~ 1 r(l +!) 

= 15'2482Ji. 2M4m2, 

while the graphs in Fig. 4(e) give 
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(2.19) 

(2.20) 

It is easy to see that when the sums that appear in 
(2.17)-(2.20) are combined, the result is a finite expres
sion. \0 The result is the same as the sum of the analytically 
continued results found above. Our final expression for the 
delta expansion of the six-point function through order 82 is 

G(6) = 88Ji.M 2m4 + 882Ji.M2m4[ t/{ ~ ) + InC~2)] 

+ 2482Ji. 2M4m2{ 2[ ¢( ~) + InC~2)] - 5}. 

III. DIRECT EXPANSION OF THE GENERATING 
FUNCTION 

(2.21 ) 

We now verify that the Feynman rules for the 8 expan
sion used in Sec. II correctly produce an expansion in powers 
of 8 of the connected, one-particle-irreducible Green's func
tions of the theory defined by the generating function 
Z(Ji.,f,l2 I M 2,8,J). To do this we first recall that In Z contains 
only the connected graphs of the theory and that the con
nected Green's functions are defined by 

r(n) = (!...)n In Z I . 
aJ J=O 

(3.1 ) 

The resulting expression for r(n), however, contains one
particle-reducible graphs that must be removed. Finally, we 
must remove the external propagator factors to obtain a 
form that can be compared directly with the results for 
G (n)(Ji.,m2,M2,8) obtained in Sec. II. 

We first expand Z in powers of J through all orders and 
in powers of 8 through second order. The result is 

Z(J) = _1 f (>f2J Im)2n {r(n +.!..) 
[iT n=O (2n)! 2 

_ 8( U';2 )r( n + ~ )F(n) 

_~2(U';2)r(n + ~) 

X[F
2
(n)+¢'(n+ ~)] (3.2) 

X[F2(n+ 1) + ¢'(n + ~)]+ ... }, 
where F(n) = In(2M2Im2) + ¢(n + D. Because Z(Ji.,f,l21 
M2,8,J) contains only even powers of J, only even deriva
tives of Z survive at J = O. One finds the following expres
sions for r(n) for n = 2,4,6 in terms of derivatives of Z at 
J=O: 

r(2) = Z" (O)/Z(O), (3.3a) 

r(4) = Z"" (0) _ 3(Z" (0»)2 (3.3b) 
Z(O) Z(O)' 

(6) _ Z(6)(0) Z" (0) [Z"" (0) (Z" (0»)2] r - - 15 -- - 2 -- . 
Z(O) Z(O) Z(O) Z(O) 

(3.3c) 
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Inserting the expansion (3.2) for Z(J) into the expressions 
(3.3) one obtains the connected Green's functions of the 
theory as follows. The two-point function is 

r(2) = _1 _ ~( UM
2 
)[.,f~) + 1 + In(2M2)] 

m2 m2 m2 '1"\ 2 m2 

- 2:2(U;2 )[ (¢( ~) + 1 + Ine~2)r 

+¢'(~)-1] (3.4) 

+ !22(~~2r[(¢(~)+I+lne~2)r 

+ ¢( ~) + Ine~2) + ~ ¢,( ~)]. 
The first term above is simply the bare propagator. In each of 
the remaining terms there is an extraneous factor of m-4 

corresponding to the two external propagators. These pro
pagator factors we remove. Then, we note that the coeffi
cient of 8 is exactly the same as the coefficient of 8 in (2.10), 
which corresponds to a contribution of the graph in Fig. 
2(b). This same term occurs squared in the coefficient of 82 

in (3.4), where it represents the iteration of the graph in Fig. 
2 (b) and is a one-particle-reducible term. When this term is 
removed along with the external propagator factors, (3.4) 
agrees exactly with the expression for G (2) in (2.10) obtained 
from the 8 expansion. 

From (3.2) and (3.3b) the expression for the four-point 
function is 

_ ~:(U;2)[¢( ~) + 1 + Ine~2)] 

+ ~:Ct~~2r[¢(~) + 1 

+ Ine~2) + + ¢,( ~)]. (3.5) 

There are four extraneous factors of m - 2 to be removed, 
corresponding to the four external propagators. Thus m8r(4) 
must agree with the expression for G (4) given in (2.15) when 
the one-particle-reducible terms are removed. Equation 
(3.5) contains four such terms, each given by the graph in 
Fig. 5 with the propagator modification on a different leg. 
The required modification corresponds to the product of the 
contributions from the graphs in Figs. 2(b) and 3(a), which 
are given in (2.7) and (2.11), respectively. When these mod
ifications to (3.5) are made, we obtain exactly the 8-expan
sion result for G (4), given in (2.15). 

From (3.2) and (3.3c) the six-point function is 
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FIG. 5. One-particle-reducible graphs in rl4l. 

To remove the six external propagator factors, we consider 
m 12r(6). From this expression it is necessary to remove the 
one-particle-reducible terms corresponding to the graphs in 
Fig. 6. The graph in Fig. 6(a) is the square of the graph in 
Fig. 3(a) divided by m2

• Its contribution is given by the 
square of the expression in (2.11) with a combinatorial fac
tor of 6!/3!3!2! corresponding to the various ways of rear
ranging the external legs. The graph in Fig. 6(b) is the prod
uct of the graphs in Figs. 2(b) and 4(a). Its contribution is 
given by the product of the expressions in (2.7) and (2.16) 
divided by m2 with a factor of six for the six possible propa
gator insertions. When these modifications are made, (3.6) 
yields an expression for G (6) that agrees exactly with that in 
(2.21) obtained from the 8 expansion. 

This completes our demonstration that, for the zero
dimensional field theory defined by (1. 3 ), the F eynman 
rules for the 8 expansion produce exactly the correct expres
sions for the n-point functions of the theory for n = 0, 2, 4, 
and 6 through order 82, for any value of 8. The nontrivial 
nature of this verification lies principally in the analytic con
tinuation implicit in the Feynman rules, which becomes 
especially apparent in the six-point function, where the indi
vidual classes of graphs diverge. The calculation given above 
does not address the question of for what values of 8, if any, 
the 8 expansion converges or yields an asymptotic series for 
the Green's functions of the theory. This issue was addressed 
in Ref. 2 where we demonstrated, inter alia, the convergence 
of the 8 expansion for simple model field theories. We will 
discuss this issue further in the following section. 

IV. CONVERGENCE OF THE I) EXPANSION 

In Ref. 2 we studied the convergence of the 8 expansion 
of the generating function Z in (1.3) for zero bare mass, 

) (a) 

* 
(b) 

FIG. 6. One-particle-reducible graphs in rib). 
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J.L2 = O. We found that the series in powers of 8 converged 
inside a circle of radius 1 about the origin, and that both 
inside and outside this circle, low-order Pade approximants 
offered a spectacularly good numerical approximation. It 
was easy to discuss the analytic structure in that case, be
cause a closed form exists for Z: 

Z(A,0,8,0) = (21jiT)r[ (3 + 28)/(2 + 28)]. (4.1) 

Here we will generalize this discussion to the J.L =I 0 situation, 
with particular emphasis on what happens when J.L2 < O. 

In a variety of field theory contexts it is interesting to 
consider the case when the sign of the bare-mass squared 
term, J.L2q; 2/2 in ( 1.1 ) is reversed. The quantum potential for 
a physical system may have more than one minimum. This 
may give rise to spontaneous symmetry breaking. The study 
of phase transitions is closely related to the study of the tran
sitions between multiple minima. It is well known that ~his 
problem cannot be attacked by weak-coupling techniques. 
This is well illustrated by the zero-dimensional theory de
fined by ( 1.3), where the weak coupling expansion does not 
exist then, because the unperturbed (A = 0) integral does 
not converge. The negative mass-squared case has been suc
cessfully attacked by a variety of nonperturbative tech
niques, such as the introduction of kink solutions or pseudo
particles. II These nonperturbative solutions exhibit an 
essential singularity in A at the point A = 0, which is, of 
course, the reason that the weak-coupling solution fails. 

With negative mass squared, the generating function 
( 1. 3) becomes 

where m2 = UM 2 - J.L2. In Sec. II we pointed out that the 
lowest term of the 8 expansion shifts the bare mass by an 
amount UM 2, so that the propagator in the 8 expansion has 
a mass term given by m2 = - J.L2 + UM2. Recall, also, that 
the parameter M is a totally arbitrary scale l2 mass intro
duced for convenience so that the coupling A is dimension
less. Therefore M can always be chosen so that m2 is positive. 
(Such a choice of M will not alter the theory at, say, 8 = I, 
but changes the 8 expansion.) Because of this flexibility, the 
8 expansion is a useful perturbation technique for the "dou
ble-well" problem. We will demonstrate this by calculating 
the 8 expansion for zero-dimensional theories defined by 
(4.2) and comparing the results with explicit numerical in
tegration of (4.2). 

We remark here that at 0 = 0 the integral (4.2) is con
vergent (for sufficiently large M), but this is not so for 0 < O. 
Therefore we must expect that Z, defined by (4.2), has sin
gularities on the negative 0 axis, with 0 = 0 as a limit point. 
Accordingly, the 0 expansion for (4.2) will not yield a con
vergent series. Nevertheless we will see that the (asympto
tic) series produced by the 0 expansion defines Pade approx
imants that give very accurate numerical results. 

First, however, let us tum to the numerical accuracy of 
the 0 expansion for J.L2 > O. Without loss of generality we may 
set M 2 = 1 and evaluate 
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TABLE I. The eight-term power series, [4,4) Pade approximant, and the 
exact value ofZ(8) [Eq. (4.3») forJl2= 1 and,{= I. 

8 p.(8) pd'4.41(8) Z(8) 

0.5 1.04631 1.04630 1.04630 
1.0 1.077 19 1.07436 1.07436 
2.0 1.810 47 1.106 47 1.10649 
5.0 745.176 1.14253 1.14285 

Z(8) = m(!) 112 L'" exp [ _ ~2 x2 
_ AX2

(1 +.5) ]dx. (4.3) 

In Table I we show representative values ofZ(o) for the case 
of J.L2 = I,A = 1. These are to be compared with the eight
term power series obtained by expanding (4.3) in powers of 
0, Ps (0), and the [4,4] Pade approximant obtained from 
that series, pd[4,4] (8). It will be seen that the power series is 
convergent for 181 < 1 and divergent for 101> 1. However, 
the [4,4] Pade approximant is spectacularly good for all 
positive values of 8. (It is off by only - 0.03% at 0 = 5.) 

The corresponding results for J.L2 < 0 are quite different. 
In Table II we show the same quantities for the case 
J.L2 = - I,A = 1. It is apparent, as expected, that the power 
series no longer converges for any value of 8. However, the 
[ 4,4] Pade approximant remains excellent: in spite of the 
series being hopelessly divergent, the Pade is off by less than 
1.5% at the large value of 8 = 5. 

It is useful to examine the "potential" that appears in 
(4.2) in the case 0 = 1. That potential is 

V(x) = - }iJ1?x2 +A(M2x2)2. (4.4) 

The depth of the potential minima is given by 

D=J.L4 /16AM 2, (4.5) 

and the location of the minima is ± xo, where 

(4.6) 

Thus the situation illustrated in Table II is that for a shallow 
well of depth D = rt,. The contrast with the case of a deep 
well, say with D = 1, is brought out in Table III, where we 
compare Z(O) with a six-term and a seven-term power se
ries, P6(0), and P7(0), respectively, and with the corre
sponding [3,3] and [3,4] Pades,pd[3.3](0) andpd[3,4](0). 

TABLE II. The eight-term power series, [4,4) Pade approximant, and the 
exact value of Z(8) [Eq. (4.3») for Jl2 = - 1 and,{ = I. 

0.1 
0.5 
1.0 
2.0 
5.0 

0.94808 
137.697 
40109.3 

1.10761 X 10' 
1.774 23 X 10'0 

0.94790 
0.88388 
0.87323 
0.88334 
0.91830 

Z(8) 

0.94790 
0.88381 
0.872 53 
0.87974 
0.905 17 
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TABLE III. The six-term power series, seven-term power series, [3,3] Pade 
approximant, [3,4] Pade approximant, and the exact value of Z(t5) [Eq. 
(4.3)] for 11-2 = - 16 and A = 16. 

15 P6(t5) p,(t5) pd[J.3) (15) pd[3.4)(t5) Z(t5) 

0.5 2.30687 2.30565 2.30570 2.30588 2.30630 
1.0 4.33733 4.18400 4.23369 4.24568 4.28078 
1.5 7.79945 5.18709 6.46974 6.59555 7.00806 
2.0 15.518 - 4.033 26 7.96741 8.49063 10.49554 

There the series gives a quite good asymptotic approxima
tion, leaving only a relatively small improvement for the 
Pade approximants. 

v. CONCLUSIONS 

In this paper we have treated the 8 or logarithmic ap
proximation in detail for the simple situation of zero space
time dimension. We believe that many of the features illus
trated here have general validity, and will enable new light to 
be shed on problems in four- and higher-dimensional field 
theories. Let us summarize those features here. 

( 1) The terms in the 8 series may be readily computed 
using standard Feynman rules on graphs derived from a 
"provisional Lagrangian," or, more directly, from graphs 
having an infinity of vertices, and an unlimited number of 
internal lines. 

(2) The sums over the number of internal lines may be 
carried out in closed form. 

(3) Although the line sums diverge in general for each 
graph, this divergence is illusory, and at least one cancella
tion occurs among the most divergent terms. 

( 4) A simple analytic continuation based on a beta
function representation in any case yields the correct result. 

(5) When the bare mass f.l satisfies f.l2>0, the 8 series 
converges for 181 < 1. 

(6) When the bare mass f.l satisfies f.l2 < 0, the 8 series 
diverges for all 8. 
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(7) In all cases, low-order Pade approximants are ex
tremely accurate. 
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The mass spectrum of pure three-dimensional SU (2) lattice. gauge theory in the adjoint 
representation is studied. An exact analysis in an approximate model predicts the existence of 
highly excited bound states. The existence of this bound state in a high-spin state is proved and 
a convergent expansion for its mass is obtained. 

I. INTRODUCTION 

The investigation of the particle spectrum in lattice 
gauge field theories is by now a subject in itself, the goal 
being to understand quantitatively the rich spectroscopy of 
continuum QeD. Most of the effort in this direction is done 
through numerical calculations; see Ref. 1 for recent ad
vances in the field. 

Lattice gauge field theories, on the other hand, are also 
quite suitable for a theoretical study of the particle spectrum 
per se, where the emphasis is in understanding the formation 
of bound states and resonances not necessarily connected 
with real particles found in nature. This is because these 
theories are simple to rigorously construct-because of the 
lattice cutoff-yet they possess a rich structure of stable and 
unstable particles. 

Basically, there have been two routes used in the rigor
ous study of the particle spectrum in lattice theories. One of 
them is based on methods reminiscent of continuum field 
theories (Euclidean subtractions). 2-6 The other uses statisti
cal mechanical methods (random surfaces).7-11 In this pa
per, we follow the former approach. 

In Ref. 4 we pointed out that the transfer matrix of a 
lattice gauge theory acting on gauge invariant states can be 
explicitly diagonalized if the chromomagnetic interaction is 
turned off. The resulting spectrum of particles is very rich, 
and is expected to persist (up to the removal of degener
acies) in the original theory in the strong coupling regime. 
Unfortunately, we are still very far from a general proof of 
this statement. What has been verified3

.4 is that it holds for 
the spectrum associated to the two lightest particles. 

In this paper, we go a step further and consider the per
sistence of the spectrum up to the three lightest particles. 
Thus we study one of the simplest models, where two bound 
states of glueballs are expected to exist, namely, a lattice 
gauge field with the Wilson action in the adjoint representa
tion of the gauge group SU (2), and restrict ourselves to 
three Euclidean dimensions to further simplify combinator
ial estimates. Nevertheless we should stress that the methods 
used here work in any dimension. 

The proof of the existence of the highly excited bound 
states follows the general strategy of Refs. 2-5, as remarked 
before. In particular, we use the Z ( 4) symmetry of the theo
ry associated to successive rotations R of 1T/2 around an axis 
of the lattice to decompose the space of states into four sub
spaces, H = };1 = I Hi' each transforming according to the 
irreducible representations of Z ( 4 ). These associate to the 
abstract group {R 0 = I,R,R 2,R 3}, respectively, {1,1,1,I}, 

{I, - 1,1, - I}, {1,i, - 1, - i}, and {I, - i, - 1, + i}. Here 
HI corresponds to spin-O, since its states are rotation invar
iant. The lightest particle (the basic glueball) has mass 
- - 4 log /3 and lies in H/. Note that /3 is related to the 
coupling constant g by /3 = l/2g2, see Sec. II. The basic glue
ball has the approximate wave function X(gp) (which be
comes exact when the chromomagnetic interaction is turned 
off), where X is the character of the representation of the 
gauge group in the Wilson action andgp is the oriented prod
uct of the group elements around the boundary of the pla
quette P, see Fig. 1. Next, we find two nearly degenerate 
bound states of the basic glueball, with masses - - 6 log /3, 
living in the subspaces HI and H 2 , with approximate wave 
functions X(gw), where w is the window shown in Fig. 2.3

•
5 

Depending on the gauge group and its representation in the 
Wilson action, these are the only strongly bounded states of 
glueballs. An example of such a situation is SU (2) in the 
fundamental representation.4 We remark that there might 
be weakly bounded states, with masses - - 8 log /3, but 
these have not yet been investigated. 

If we consider an SU (2) gauge theory with Wilson ac
tion in the adjoint representation, then we expect an addi
tional strongly bounded state with mass - - 7 log /3, whose 
approximate wave function is not a loop, see Fig. 3. Using 
the bond assignment shown in Fig. 3, the wave function is 

(7=G. i3 i:)C i4 i:)U(glgzg3)i'i' 
XU(g4)i,i, U(g~~7)i,i", 

where U(g) is the spin 1 representation of SU(2) and 
C J k) is a 3-) Wigner coefficient. 12 

In this paper, we prove the existence of this excitation by 
showing its presence in the subspace H 2• We also show that 
the excitation is absent in the subspaces H3 and H4 • It is also 
expected to be present in HI, but we were unable to prove 
this. The reason is because our method is based on analytic
ity properties of the subtracted Euclidean Green's function, 
a process that introduces spurious poles, whose relations to 

D FIG. 1. Plaquette P. 
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o 
• 

FIG. 2. Window waround the origin. 

the mass spectrum become increasingly more complicated 
and difficult to analyze. Specifically, these relations have 
been established only for the two lowest mass groupS.4 Now, 
as we know, in H2 there is only one excitation below 
- - 7 log {3, whereas in HI there are two. 

The organization of this paper is as follows. In Sec. II we 
define the model, fix notations, recall results obtained be
fore,2-5 and state the new results obtained in the present 
work. The proofs are deferred to Sec. III. 

II. DEFINITIONS AND MAIN RESULTS 

Our model is defined in the finite volume A C Z 3 by the 
Boltzmann factor 

(2.1) 

where the sum is over all nonoriented plaquettes Pin A, gp is 
the oriented product of SU(2) group elements along the 
boundary of P, and X is the character of the adjoint represen
tation ofSU (2), which is a real representation. The expecta
tion of a function t/J of bound variables is 

fA. AA d 
(t/J) A ({3) = ."e gA, (2.2) 

A fe A dgA 

where dgA is the product of Haar measures, one for each 
bond in A. For {3 sufficiently small, the limit of (2.2) as 
A -+ Z 3 exists 13 and is denoted by (t/J). If t/J and t/J depend only 
on a finite number of bond variables, we define their truncat
ed correlation function G",,,, (x), xEZ 3 by 

(2.3 ) 

where t/J(x) is the function t/J translated by the lattice point x. 
It is well known 13 that G",,,, (x) clusters exponentially for 
small beta. 

The lattice quantum field theory associated with the ac
tion in (2.1) is obtained through the Feynman-Kac formu
la.4 Thus the physical Hilbert space H with inner product 
( • , • ) H is composed of gauge invariant functions supported 
in the time-zero plane of Z 3. The energy H and momentum 

o . 4 

FIG. 3. Wave function u for excited state. 
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P = (PI ,P2 ) operators are related to the expectations (2.2) 
by 

(2.4 ) 

where x = (xo,x). By the spectral theorem and uniqueness 
of the vacuum (which follows from the cluster property) we 
have 

G"'t/J (Po) = (21T)3 J J sinh A.o 
(0,00) (- 11',11')' cosh A.o - cos Po 

(2.5 ) 

where 

(2.6) 
x 

Thus the singularities of G "'''' coincide with the energy spec
trum at zero momentum (plotted on the imaginary axis). 

Let Ra denote a lattice rotation by 1T12 along an axis 
parallel to the time (vertical) direction and passing through 
the point (O,a)EZ 3

, which is the center of a horizontal pla
quette. We use the same notation for rotations of configura
tions of gauge fields and functions of configurations. From 
the invariance of the action, it is easy to show3 that 

GRa""Rbt/J (xo) = G""t/J (xo), (2.7) 

where 

x 

Define 

P ~ I) = ! (1 + Ra + R; + R ! ), 
P~2) =!(1 - Ra + R; - R;), 

P~3) =!(1 + iRa -R; -iR!), 

P ~ 4 ) = ! (1 - iRa - R; + iR ! ). 

(2.8) 

(2.9) 

We have p(i)p(j) =8 .. pU) and ~.p(i) = 1 Also 
A ""B a 1J a I a . , 

G p~O"'.t/J (XO) = G",.P~O'" (xo), implying the selection rule re-
ferred to in the Introduction. Thus the spectrum of the ener
gy operator at zero momentum can be analyzed in each sec-

tor Hi separately, where Hi = HiO) [closure in the inner 
product (2.4)] and H iO) consist off unctions t/J depending 
only on a finite number of bond variables at time zero, such 
that t/J = p~i)t/J for some aEZ2. 

The results presented below are valid for beta sufficient
ly small; the constant € appearing in the theorems depends 
on {3 and limplo €({3) = O. 

Theorem 2.1: If t/JElI ;0), i = 3,4, then Gt/>t/> (Po) is analyt
ic on IRepol<1T, IImpol< - 8(1- €)log{3. 

Theorem 2.2: If t/JElIiO),G",,,, (Po) is meromorphic on 
IRepol<1T, IImpol< - 8(1- €)log{3 with possible poles 
(independent of t/J) at Po = - 6ilog {3 + r, ({3) and 
Po= -7ilog{3 +r2({3),whereri ({3)areanalyticat{3=O. 
These poles are present if t/J = P ~2)X(gw) or t/J = P ~2)0'. 

Theorem 2.3: If t/JElI jO), G "'''' (Po) is meromorphic on 
IRe Pol <_1T, 11m Pol < - 7( 1 - €)log{3, with possible poles 
(independent of t/J) Po = - 4ilog {3 + r3 ({3) and 
Po = - 6i log {3 + r4 ({3), where rj ({3) are analytic at{3 = O. 
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These poles occur if if> = p~l)X(gp) or if> = p~l)X(gw) and 
are given by a convergent expansion in /3. 

Our new results are contained in Theorems 2.1 and 2.2. 
Theorem 2.3 was already established.3.5 As mentioned in the 
Introduction, we conjecture the existence of a pole G q,q, (Po) 
atpo""" - 7ilog/3when if> = P~I)O'. 

The proofs of Theorems 2.1 and 2.2 will be given in the 
next section. 

III. TECHNICAL ESTIMATES AND PROOFS 

As in Refs. 3 and 4, the proofs of our main results follow 
after establishing exponential decay properties of suitable 
correlation functions. We introduce a lattice approximation 
to the action with complex parameters {wq},z and periodic 
boundary conditions in the spatial direction, given by 

AA=LWq LX(gp)+zLX(gp), (3.1) 
q PEP; PEP 1 

where P; denote the plaquettes parallel to the time direction 
(xo) between the planes Xo = q and Xo = q + 1, and pi are 
the plaquettes perpendicular to the time direction. The aver
age of a function if>(g) with respect to the Gibbs factor, de
fined by (3.1), is 

(if» A ({wq},z) = _1_ J if>eAA dgA, (3.2) 
ZA 

where ZA is such that (1) A = 1. From the polymer expan
sion,13 <if» A is analytic in all variables {wq },z in a sufficient
ly small neighborhood ofthe origin (independent of A); set
ting all Wq ,z equal to /3, the thermodynamic limit exists and 

I 

is translation invariant. Given if> and t/! of finite support, 
there is a constant mo independent of {wq }, z and A, such 
that 

I (if>(x)t/!(y»A - (if>(X»A (t/!(y»A I<,;;;Cq,.pe-m"lx-YI, 
(3.3 ) 

where if> (x) is if> translated by XEZ 3 and Cq"p depends only on 
if> and t/!. 

As in Sec. II, we define 

Gq,.p(x,y;A) = (¢(x)t/!(y»A - (¢(X»A (t/!(Y»A 
(3.4 ) 

and 

Gq,.p(xo,yo;A) = L Gq,.p(x,y;A). 
YEZ' 

(3.5) 

Notice that (3.3) implies IGq,.p(xo,Yo;A)I<';;;C~.pe-m"lx"-Y"1 
It is useful to represent the truncated correlation (3.4) in 
terms of duplicate variables 

Gq,.p(x,y;A) =_1
2
-J(¢(X) -¢'(x») 

2Z A 

X(t/!(y) - t/!'(y»)e(AA+A;") dgA dg~, (3.6) 

where, e.g., t/!' is t/! at g'. The basic result on the analytic 
structure ofGq,.p (x,y;A) is given in Theorem 1 below. We let 
X be the elementary plaquette function centered around the 
origin in the X 1,X2 plan (Fig. 1), and Xh ,Xv the elementary 
rectangular loop functions in the X 1,X2 plane with long axis 
along X I'X2' respectively, and with the origin 0, as in Fig. 2. 
We make similar definitions for 0' h ,0' v (Fig. 3). 

Theorem 3.1: Let xo<,;;;q <Yo, then 

Gq,.p (x,y;A) = L Gq,x (x,t;A)Gx.p U + eo,y;A) [C44W: + C45W~ + C46W: + C47W;] 
t,,= q 

+ L L Gq,x/x,t;A)GXj.pU+eo,y;A)[C66W:+C67W;] 
j = h~v In = q 

+ L L Gq,u}(x,t;A)GUj.pU+eo,y;A)C77W; +R~~(x,y;A), (3.7) 
j= h.v to = q 

where the c's are combinatorial constants, and C44' C66' and 
C77 are positive, 

a: R ~.~(x,y,A) I = 0, for 0<,;;;n<,;;;7, aWq Wq=O 

and the G 's on the right-hand side are evaluated at Wq = O. 
Proof The proof is an extension of one developed in Ref. 

3, so that we will be very brief. The idea is to expand the term 
proportional to Wq in both the numerator and denominator 
of (3.6). The coefficients of the resulting terms can then be 
calculated explicitly using the Peter-Weyl orthogonality 
theorem. For example, the term proportional to C44 comes 
from integrating the vertical bonds of the form 
[(q,X I ,X2 ),(q + 1,x 1,x2 )] when four plaquette variables, 
parallel to the time direction, are disposed along the sides of 
a cube. The C45 term corresponds to five plaquettes occupy
ing the four sides parallel to the time direction of a cube, and 
similarly for C46 and C47. For C66' six plaquettes are disposed 
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I 
along the sides parallel to the time direction of an elementary 
parallelepiped and C67 corresponds to seven such plaquettes. 
Finally, in C77 seven plaquettes are positioned along the seven 
faces parallel to the time direction of a parallelepiped with 
one face at its center. 0 

The finite volume correlation functions Gq,.p (x,y;A) 
with complex parameters {wq },zstill have the Z( 4) symme
try corresponding to successive rotations of 1T12 along the 
time axis. With the same notation as in Sec. II, we have 

(3.8) 

and 

(3.9) 

Taking the partial Fourier transform (at zero spatial 
momentum) (3.5) of (3.7) and denoting the new constants 
again by C44' ... 'C77 , we have the following. 

Corollary 3.2: Let xo<,;;;q<,;;;yo' Then 
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2 '" '" 
+ L G"'X;(Xo,q;A)GX;1P(q+ 1 ,Yo; A) [C66W: +C67W;] 

i=l 

2 A........ A 

+ L G"'a;(xo,q;A)Ga;t/J(q+ l,yo;A)c77w; +R~~(xo,Yo;A), 
;=1 

where C44' C66' and c77 are positive, 

a:R~~(XO'YO;A)1 =0, forO<,n<,7, 
aWq Wq=O 

and the G's on the right-hand side are evaluated at Wq = O. 
Also, 

o 
We remark that the sums in (3.10) only involve 

X;,~ for ;= 1,2. This is because Gif>x;(xo,yo;A) 
= G.po; (xo,yo;A) = 0 when; = 3,4, as a result of translation 
invariance in the spatial direction. 

Proof of Theorem 2.1: If ¢ = P ~;) ¢ for; = 3,4, then be
cause of (3.9), G",x = G.px; = G",a, = O. From Correlation 
3.2, we see that for xo<,q <Yo, 

a: G",,,, (xo,yo;A) I = 0 
aWq Wq=O 

for 0<,n<,7. Now, as remarked before, G",,,, (xo,yo;A) is ana
lytic in {wq},zon IWq 1,lzl </30 (/30 is fixed and is given by the 
polymer expansion) and uniformly bounded there, say 
IG""" (xo,yo;A) I <,C.p.p- From the maximum modulus 
theorem, it follows that 

IG",.p (xo,yo;A) I <,C",,,, II IWq//301 8
• 

xo<q<y" 

SettiI~ all W q ,z equal to /3, 0 < /3 < /30 and taking A -+ Z 3 we 
~et IG",,,, (xo) I <,C""" (/3 //30)8 Ixol, proving the analyticity of 
G",,,,(po) on IRepol<'1T, IImpol < - 810g(/3//30)' 0 

We now begin the proof of Theorem 2.2. The existence 
of the pole near (0, - 6; log /3) was already established3

-
5 by 

exhibi,!ing the corresponding zero of r x,x, (Po) 
::: - Gx,)(, (Po), Here, we look for an additional zero of 
r H, (Po) near (0, - 7; log /3). To this end, introduce the 
function 

Fa,a, (Po) = Ga,a, (Po) + Ga,x, (Po) 

( 3.11) 

Theorem 3.3: Fa,a, (Po) is analytic on IRepol<'1T, 
11m Pol <, - 7(1 - E)lOg-/3. 

Proof Introduce the finite volume approximation 
Fa,a, (xo,yo;A) with parameters {wq },z by (in matrix nota
tion) 

2154 

Fa,a, (A) = Ga,a, (A) + Ga,x, (A)i\,x, (A) Gx,a, (A). 
(3.12) 

By a direct calculation we have, if xo<,q <Yo, 
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(3.10) 

and 

a
6

6 
r H, (xo,yo;A) I = 6!C66D(Xo,q)D(q + l,yo)' 

aWq Wq=O 

Such calculations are lengthy but straightforward, and were 
explained in detail in Ref. 3. Here and in the sequel, we just 
present the final results. Using this result and Corollary 3.2 
in Leibniz's formula, 

am '" am '" 
a

m Fa,a, (A) = a m G",,,, (A) + L 
Wq Wq n l +n2 +n.l=m 

X m! ~Ga (A) 
n In In I awn, ,x, 

l' 2' 3' q 

X a n, '" a n, '" 
-a rx,x, (A)'-a Gx,a, (A), W;2 W;.l 

(3.13 ) 
we show that 

a: Fa,a, (xo,yo;A) I = 0 
aWq Wq=O 

if xo<,q <Yo and 0<,m<,6. The proof now follows from the 
reasoning used in Theorem 2.1 above. 0 

The next result shows that, in fact, Fa,a, (Po) has a pole 
near Po = - 7;(1 - €)log/3. - -

Therorem 3.4: F ;;,,;, (Po) is analytic on IRe Pol <,1T, 
O<,Impo<' - 8(1- €)log/3 and has precisely one zero at 
Po = ;Pa, = ;[ - 7 log /3 + r a, (/3)], where r a, (/3) is analyt-
icat/3~O. - -

Proof Taking the seventh derivative of Fa,a, (A) m 
(3.12), we get after a lengthy calculation - -

a
7 

'" I -a 7 Fa,a, (xo,yo,A) 
Wq Wq=O 

= c77Fa,a, (xo,q,A)Fa,a, (q + I,Yo;A) I Wq=O' 

This result, together with (3.13), implies that 

am '" I --m F ;;,,;, (xo,yo;A) , 
aWq Wq=O 

for 0<,m<,6 

and 

ifyo;;;'xo + 2. 

The analyticity of F ;:~, (Po) follows then as before. Now, 
from the structure of the derivatives, the infinite volume 
F ;,~, (O,xo) =F ;,~, (xo) with all {wq},z equal to the same 
(complex) /3 has the form 

F;'~,(xo=O) = f cn /3 n
, co>O, 

n=O 
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F ;,~, (ixol = 1) = n~7 dn{3 n, d7 = - ;! C77 < 0, 

IF;,~,(xo)l<kl(k21{31>81X.'I, if IXol>2. 

Thus 

F ;,~, (Po) = (co + d7 {37e- iPo) + C~I cn{3n + d7 {37e+ ipo) 

+ C~8 dn{3n)(eiPO + e- iPo ) 

co 

+ L F ;,~, ( Ixo I ) (eiPolxol + e - ip"Ix.,1 ) 
Ix,,1 =2 

where g(po) = Co + d7{3 7 e - ip". It is easy to see that on the 
boundary aR of 

R = {Po: IRepol<1T,0<Impo< - 8(1- €)log{3}, 

Ig(po) I >Col2. 

Also, for small {3, Ih(po) 1< CoI2. It follows from Rouche's 
theorem that F ;,~, (Po) has a unique zero inside R. Finally, 
letting 

H( w = Co + d7{3 7 e - ip" ; {3) = F ;,~, (po;/3) , 

the analytic implicit function theorem gives an analytic 
function w({3) around{3 = 0, such that H(w({3),/3 )=0 and 
w(O) = O. The proof of the theorem is complete. D 

Let 

I = r G F- 1 I =F- 1 G G 
X1 U 2 X2X2 X.:!O"] 0'20"2' U:!X2 U:!O'!. U 1X2 X2X2 

and 

M= r G F- 1
• 

X2X2 U 2U 2 U 2U 2 

Multiplying (3.11) by r x,y,F ;,~, we obtain 

r y,y, = M + Iy,u,Fu,u,Iu,x,' (3.14) 

The basic results about M and I are given in the following. 
Theorem 3.5: (a) M and I are analytic on IRepol<1T, 

0<Impo<-8(1-€)log{3, (b) I(iPu,)=l-O, and (c) 
M(po) =1-0 for IRe Pol <17', - 6(1 + €)log {3<Im Po 
< - 8(1 - €)log{3. 

Proof' (a) This proof follows from the explicit calcula
tions 

and 0<m<7, (3.15 ) 

and 

and 0<m<5, 

am M(xo,yo;A) I = amo(xo,q)o(q + l,yo) 
aw';' w.=o 

for m = 6,7, (3.16) 

where am =1-0 are numerical constants. 
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(b) Here, we use the fact [which goes beyond (3.15)] 
that Ly,u, (xo,yo;A) = O({39) when we set all Wq,z equal to 
{3. The mechanism responsible for this is the same as in Ref. 
3. It implies that for Po = iP2 + r, with Irl < 1, 

- A I 2 ILy,u, (Po) - L y2U, (xo = 0) = O({3 ). 

Since ILy,u, (xo = 0) I>const, {3, the result follows. 
(c) Write 

IM(po) - 2M( IXol = 1 )cos Pol 
A A 

<IM(xo = 0) 1+ 2 '} IM(lxol ) IcosPolxol I· 
Ix~2 

From (3.16), jM(xo) I <rl{38 IX,,1 for some constant rl' 
and also IM(lxol = 1)1>rfl 6

• Now, if IImpol 
< - 8(1- €)log{3, we have IcosPolxoll<e- 8

(1-E)lx"lIogj1 

and 

L IM( IXol> IIcos polxoll<r:JJ 16E. 
1x.,1>2 

Also, if Impo> - 6(1 + ~log{3, then IM(lxol = 1) 
xcospol>~rfl-6E. Since IM(xo = 0)I<r4' the proof is 
complete. 

From (3.14) and Theorem 3.5, we see that r y,y, is ana
lytic on IRe Pol <17', O<Impo< - 8(1 - €)log{3, except 
for a pole at Po=ipu,. For -6(1 +€)log{3<Impo 
< - 8(1- €)log{3, rewrite (3.14) as 

r x,x, = MFu,u, (F ;,~, + Iy,u,M-1lu,y,>. (3.17) 

In this form, we c~n i?ent~ a ~ero ?,.f r y,x, in the above 
region as a zero of F ;'u, + Ly,u,Lu,y,M -I. 

Theorem 3.6: Note that r y,x, (Po) has precisely one zero 
in the region IRe Pol <17', - 6(1 + €)log{3<Impo 
< - 8( 1 - €)log{3, at Po = im = i[ - 7log{3 + r({3)], 
where r({3) is analytic at {3 = O. 

Proof: The proof uses the same arguments developed in 
the proof of Theorem 3.4, with the additional remark that 
from Theorem 3.5, IIy,u,Iu,y,M- 11<const{3 (cOnstE). D 

Theorem 3.6 establishes the most important result stat
ed in Theorem 2.2. The other statements now follow by a 
standard argument, which is presented in detail at the end of 
Sec. 4 of Ref. 3. 

'International Symposium on Field Theory on the Lattice, NucJ. Phys. B, 
Proc. Suppl. 4 ( 1988). 

2R. Schor, Nucl. Phys. B 222, 71 (1983). 
3R. Schor, Commun. Math. Phys. 92, 369 (1984). 
4R. Schor and M. O'Carroll, Commun. Math. Phys. 103, 569 (1986). 
SM. O'Carroll, J. Math. Phys. 26, 2342 (1985). 
6J. C. Barataand K. Fredenhagen,Commun. Math. Phys.113,403 (1987). 
7J. Bricmont and J. Frohlich, Nucl. Phys. B 251,517 (1985). 
"J. Bricmont and J. Frohlich, Commun. Math. Phys. 98, 553 (1985). 
9J. Bricmont and J. Frohlich, Nuc1. Phys. B 280,385 (1987). 
lOp. A. Marchetti, Commun. Math. Phys. 117, 501 (1988). 
"C. King and J. Frohlich, NucJ. Phys. B 290,157 (1987). 
12E. Wigner, Group Theory (Academic, New York, 1959). 
13E. Seiler, Lecture Notes in Physics (Springer, Berlin, 1982), Vol. 159. 

Ferreira, Schor, and O'Carroll 2155 



                                                                                                                                    

Cluster expansion in terms of knots in gauge theories with finite non-Abelian 
gauge groups 

K. Szlachanyi 
IL Institut fur Theoretische Physik der Universitat Hamburg, Luruper Chaussee 149, D-2000 Hamburg 
50, Federal Republic of Germany 

P. Vecsernyes 
Central Research Institutefor Physics, Budapest, P.O. Box 49, H-1525 Budapest 114, Hungary 

(Received 18 January 1989; accepted for publication 5 April 1989) 

The cluster expansion is developed in lattice gauge theories with finite gauge groups in d>3 
dimensions in which the clusters are connected (d - 2)-dimensional complexes, i.e., connected 
(d - 2) surfaces that can branch along (d - 3) cells. The interaction between them has a knot 
theoretical interpretation. It is a many-body interaction, depending on the type of knot they 
form together. For small enough gauge coupling g analyticity of the correlation functions in 
the variable exp( - l/gl) is proven. 

I. INTRODUCTION 
In this paper we give a reformulation of lattice gauge 

theory in terms of purely geometrical, gauge invariant ob
jects: the sets of plaquettes where the field strength can be 
nontrivial. The coconnected components of these plaquette 
sets will be called vortices. The interaction between the vorti
ces depends both on the gauge group and on the topology of 
how each vortex is embedded in the complement of the oth
ers in space-time. This advocates the importance of knot 
theoretical I considerations in gauge theory, at least in the 
case of finite gauge groups when the vortices can be dilute. 
This is indeed true in the weak coupling regime where we can 
construct a convergent expansion using knots. But it may 
also give new insight on the structure of the phase(s) at 
stronger coupling where the vortex knots "percolate." 

There is an interesting theorem ofZeeman,2 which sug
gests also that knot theory should be relevant to gauge theo
ry. According to this theorem the knotting of n-dimensional 
spheres in d-dimensional space is always trivial if n i=d - 2. 
Therefore, with their (d - 2)-dimensional vortex sheets, 
gauge theories are associated with precisely the nontrivial 
knotting problem. 

In constructing a cluster expansion the first step is to 
find a procedure that splits any configuration into parts 
(clusters) in such a way that the different clusters are locat
ed far enough from each other in order to be considered as 
independent excitations with respect to the Boltzmann mea
sure. In our case the configurations are gauge equivalence 
classes and the problem is how to split a gauge equivalence 
class in space-time. For Abelian gauge theories the answer 
has been well known for a long time: the clusters are gauge 
equivalence classes with field strengths F having coconnect
ed support, i.e., the set P = Supp F of plaquettes p where Fp 
== U(ap) i= 1 can be walked by using a nearest neighbor pla
quette-cube-plaquette-cube' .. walk, which hits only the pla
quettes of P. That these clusters are independent, i.e., that 
they factorize the Boltzmann weight, is a consequence of the 
following properties of Abelian gauge theories. 

(i) An Abelian gauge equivalence class can be uniquely 
characterized by its field strength configuration F; (ii) ifF is 
a field strength configuration with support P and P' is a co-

connected component of P, then the restriction F' ofF to P' 
is again an allowed field strength configuration; and (iii) if 
FI, ... ,Fn are field strengths with supports that are pairwise 
not coconn,ected, then their (plaquettewise) product is again 
a field strength. 

This allows one to rewrite the system as a (dilute for 
weak coupling) gas of coconnected plaquette sets with only 
hard core pair interaction. 3 

If the gauge group G is non-Abelian one faces the diffi
culty that even property (i) breaks down. On the one hand, 
only the conjugacy class [ Fp ] of Fp is gauge invariant; on the 
other hand, one can construct examples showing that differ
ent gauge equivalence classes may possess identical [F) con
figurations. That is, [F) alone does not determine a unique 
gauge equivalence class. One has to use a nonlocal character
ization of the gauge equivalence classes: for each closed 
curve C starting at a fixed base point, the parallel transport 
U( C) along C should be given. 

The notion of coconnectedness is also not satisfactory 
for non-Abelian theories. It does not give rise to independent 
clusters; in fact, there is an action at a distance between the 
coconnected components of P = Supp F. Consider the 
three-dimensional example shown in Fig. 1 where the dual of 
P consists of two circles. If these circles are not linked with 
each other [Fig. I (a)) then arbitrary values of the "magnet
ic" fluxes U(CI ),U(C2 )EG \ {l} are possible. However, as 
we shall see later, if PI and P2 are linked [Fig. 1 (b)], then 
U( C I ) and U( C2 ) have to commute, otherwise the corre
sponding gauge equivalence class does not exist. 

That this type of knotting interaction is a genuine many
body interaction can be seen from the following example. 
There exists a P (Fig. 2) consisting of n coconnected compo
nents PI, ... ,Pn , such that for any i = 1, ... ,n, P \Pi is com
pletely unknotted but P constitutes a single knot in the sense 
that no part of P can be pulled out from the rest without 
intersecting it. 

II. GAUGE THEORY AS A GAS OF KNOTTED 
MAGNETIC VORTICES 

Let G be a finite group and ~ and f§ be the sets of G
valued functions with finite support on the lattice links and 
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c 

(a) 

(b) 

FIG. 1. (a) The fundamental group of the complement of the two unlinked 
circles is the free group with two generators: Y(P, UP,) = (a"a,I-). (b) 
If they are linked, then the fundamental group is the Abelian group with 
two generators: Y (P, UP,) = (a"a,la,a2a,- 'a2- '). 

lattice sites, respectively. Here [1 acts as a gauge group on 
the configuration space Crff • Let !l I be the one-skeleton of the 
lattice, that is, the union oflinks as a subset ofRd and denote 
by Y the fundamental group 'TTl (!l I) of!l I with base point 
Xo = 00. One can show that there is a one-to-one correspon
dence between the [1 orbits in ~ (the gauge equivalence 
classes) and the homomorphisms VEHom(Y,G) from the 
fundamental group Y to the gauge group G. 

We denote by Supp v the set of plaquettes p, such that if 
Cp isa plaquettecurve aroundpthen v( Cp ) =/= 1. ("Plaquette 
curves" are the closed curves like C I and C2 in Fig. 1.) If 
Supp v = P is fixed then v can be considered a homomor
phism from Yep) = 'TTl (!l2\p) to G, where!l2 denotes the 

FIG. 2. A knot of n circles, which is irreducible in the sense that it has only 
trivial subknots. 
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two-skeleton of the lattice. Since any plaquette set can be 
decomposed into coconnected components, one can rewrite 
the partition function as 

Z = L <I>(r), <I>(r) = <l>hc (r)<I>k (r), 
rc:1I'c 

<l>hc(r) = II Op_p" , 
p.p"Er 
P#,P' 

veHom(.7(Pr ).G) 

Supp V= P r 

(1) 

Here & c denotes the set of coconnected finite plaquette sets, 
Pr = U{P IPEr}, and P-P' means that P and P' are not 
coconnected. 

In order to enlighten the nature of the interaction be
tween the plaquette sets ofr, we note that if Y (Pr ) is a free 
product Y(Pr , )* .. '*Y(Pr ) for an appropriate partition 
{rl, ... ,rn} of r, then <l>k(r) factorizes <l>dr) 

= <I> k (r I) ... <I> k (r n ). This corresponds to decomposing r 
in such a way that the parts r I, ... ,r n are completely unknot-
ted, that is, they can be separated from each other arbitrarily 
far away without producing any intersection. Among such 
decompositions there exists a unique finest one, which we 
call the fundamental partition of r. For example, if 
r = {PI,P2} with PI and P2 being the circles of Fig. 1 (a) or 
l(b), then the fundamental partition of r is {PI ,P2} or 
{PI UP2}, respectively. As a matter of fact, in case of Fig. 
1 (a), Y (PI UP2) is the free group generated by al and a2, 
where a l and a2 are the homotopy classes of C I and C2, re
spectively, thereforeY(PI UP2) = l*l. On the other hand, 
Y(PI ) =Y(P2) =l.InthecaseofFig.l(b),Y(PI UP2 ) 

is again generated by a I and a2, but now a relation emerges: 
ala2al-Ia2-1 = 1. Thus Y(PI UP2) = l2=/=l*l. The sub
sets r c & c' the fundamental partition of which consists of 
one element, namely, P r, will be called knots [e.g., the ones 
on Figs. 1 (b) and 2]. These knots are the clusters that we 
were looking for. The many-body interaction <l>dr) can 
then be interpreted as a knotting interaction. 

There is a nice explanation of why the knotting interac
tion is absent in Abelian gauge theories. lJsing the Wirtinger 
presentation I of the fundamental group, one finds that all 
the relations that connect generators belonging to different 
coconnected components are generated by commutators; 
therefore, they are mapped to the unit element by any 
VEHom(Y(P),G). 

III. THE CLUSTER EXPANSION 

Formula ( 1 ) represents the weak coupling gauge theory 
as a gas of vortex lines (sheets, etc.), i.e., a gas of the pla
quette sets PE& c' with the two-body hard core interaction 
<l>hc and the many-body knotting interaction <I> k' In such a 
system one is interested in calculating the correlation func
tions 
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(2) 

These correlation functions satisfy the Kirkwood-Salsburg 
type of equation 

p(r) = <I>(r) + I K(r,r')p(r'), (3) 
r'c ~:I) c 

where the kernel K has the form 

K(r,r') = <I>(r) ~ I (- 1)/roI8ror, + I Ko(r,r l ) 

rocr r 1 c·o/'c 
r

o
",,,, 

where 

Ko(r,r l ) =8rnr,,,,(1-8r ,,,,) 

X I (- 1)/r"rol <I>(rUro) . 
rocr, <I>(r)<I>(ro) 

Using standard methods4 one can show that the iterative 
solution of Eq. (3) converges if there is an upper bound on 
the generator function of the number of knots of the form 

I e- bl/rll <F(b), b>bo· 
rs5l' 

PuEPr 

(4) 

Here % denotes the set of knots, IWII = ~PEr IP I is the 
"length" of r, and p is a fixed plaquette. 

By analyzing the infinite hierarchy to be found inside 
the knots we introduced the notion of "the order of a knot" 
and then proved recursively in the order that an upper bOlJnd 
F(b)=F(O)exp{-b(2d-2)} satisfies (4) (e.g., 
bo = 5.87 for d = 3). 

Our main results can be formulated in the following 
way. Let the action have the form 

S(U) =fJIX(dUp ), 

p 

where X is a positive linear combination of characters. Let 

ll. = min [X( 1) - X(g)]· 
gEG, {I} 

Then there exists a constant fJo(d), depending only on the 
dimension d such that for arbitrary finite gauge group G the 
cluster expansion converges for fJ> [In ( I G I - 1) 
+ fJo(d) ]Ill. [e.g., fJo(3) = 6.08]. This implies exponential 

clustering and analyticity of the correlation functions in the 
variable exp ( - fJ). 

IV. OUTLOOK 

There are several possible applications of this weak cou
pling cluster expansion. One of them would be the construc
tion of charged sectors with non-Abelian gauge charge in the 
weak coupling regime. Physically this would correspond to a 
discrete example of what is called the free gluon in QCD. 
Operators creating the free "gluons" can be constructed in 
these discrete models if the dimension d>4 using the nonlo
cal fields introduced in Ref. 6. By studying such a model one 
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hopes to get an answer to the important question: in what 
sense can a non-Abelian gauge charge be observed? 

In the "free charge" phase the gas of knots is dilute and 
the average size of the knots is finite. So it seems natural to 
suppose that a confinement transition occurs when the knots 
percolate. However, one can imagine at least three types of 
percolation: (A) the probability that a plaquette belongs to 
an infinite coconnected component is positive, (B) there is 
no percolation in the sense of A, but the probability that a 
plaquette belongs to an infinite knot of infinite order (e.g., a 
closed chain whose links are closed chains whose links are ... ) 
is positive, and (C) the same as case (B) but with an infinite 
knot having finite order (e.g., a long chain made of infinitely 
many finite circles). It requires further study as to which one 
of the above types of percolations is responsible for confine
ment and which one describes a possible intermediate phase. 

At the end let us mention how gauge symmetry breaking 
could be explained in terms of the knotting of vortices. Let us 
call the "flux group" of a knot the subgroup of G one obtains 
as the image of the fundamental group under a homomor
phism v. This is the group generated by the fluxes flowing 
through the various parts of the knot (holonomy group). 
There are two mechanisms that increase the flux group. The 
longer the vortex the higher the probability of finding a knot 
on it.? A knotted vortex, however, has more flux degrees of 
freedom. For example, in three dimensions, if G is the tetra
hedron group A4 , an unknotted circle can have only Z (2) (in 
three cases) or Z(3) (in eight cases) as its flux group, while 
a circle with a trefoil knot yields Z (2) or Z (3) in 11 cases 
and A4 in 24 cases. If the gauge group is larger, let us say S4' 
then the trefoil knot seems to be not "very knotted," in the 
sense that its flux group is a proper subgroup of S4 in 71 cases 
while it is equal to S4 in only 24 cases. (This is only an en
tropy argument, so the energy functional may modify these 
probabilities to some extent.) The other mechanism is the 
branching of vortices that obviously increases the flux 
group. At strong coupling, where one has an (A) type of 
percolation, this latter mechanism will bring about the effect 
that the flux group of the infinite cluster is G with probability 
1. The mechanism that works against these two and de
creases the flux group is the linking of vortices. As an exam
ple, Fig. 1 shows linking implying constraints between the 
fluxes of different vortices. Suppose that there is a phase with 
a (C) type of percolation, where the typical vortex is not 
very knotted, so its flux group (with highest probability) is a 
proper subgroup H of G or one of its conjugates. Then the 
linkings in the infinite cluster may give rise to strong flux 
correlations, even at large distances. Up to a global G sym
metry the system will behave as if it were a gauge theory with 
gauge group H. 
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String wave equations in Polyakov's path integral framework for string quantization are 
studied. This analysis is applied to formally solve the quantum chromodynamic [SUe 00)] 

(bosonic) contour wave equation by means of a self-avoiding string theory possessing intrinsic 
fermionic degrees of freedom. 

I. INTRODUCTION 

In the Feynman path integral formulation for (first) 
quantization of a physical system,' the central object is the 
transition amplitude for the system evolution from a pre
scribed initial state to a prescribed final state. Its explicit 
expression is given by the continuous sum over all system 
trajectories connecting these states and weighted by the clas
sical system action. This quantization procedure does not 
rely on the conventional operator Heisenberg-Schr6dinger 
formulation of quantum mechanics. However, for most of 
the physical systems analyzed up to the present time, the 
formal equivalence between these two alternatives is imple
mented by showing that the above-mentioned Feynman 
transition amplitude satisfies the associated wave equation 
obtained from the operator approach. 

The purpose of this paper is to describe a simple proce
dure for writing string wave equations directly from the 
Feynman path integral for the covariant bosonic and fer
mionic string transition amplitude presented by Polyakov 
some years ago. 2 In Sec. II we present our ideas in the simple 
case of covariant particle dynamics. The reason for writing 
wave equations in the Polyakov path integral is that it may 
shed some light on the role of the Liouville conformal free
dom degree in the string quantization below the critical di
mension. This study is presented in Sec. III. Another more 
important motivation is that the quantum chromodynamic 
[SUe 00)] (bosonic) contour average satisfies a closed 
stringlike evolution equation. 3 With a general procedure for 
writing string wave equations directly from the string path 
integral, the search for its (string) solutions becomes a sim
ple and transparent task. This analysis is presented in Sec. 
IV. Finally in Sec. V we deduce a kind of Dirac-Ramond
Marshall string wave equation by extending the bosonic 
path integral formalism to the fermionic case. 

II. THE WAVE EQUATION IN COVARIANT PARTICLE 
DYNAMICS 

In the covariant description of a relativistic bosonic par
ticle,4 the particle trajectory is described by two degrees of 
freedom: the usual vector position XI' (;-), with 0 <;-< 1, and 
an additional one-dimensional metric e (;-). The parameter ;
describes the evolution of the system and the particle trajec
tory XI' (;-) does not change its orientation in space-time 
[XI' (;-) #XI' (;- '),;- #;- '] (see Ref. 1). 

The covariant classical action for this particle, moving 
under the influence of an external potential V(x), is given by 

S [XI' (;-), V(x)] = (' (~ XI' (;-) 2 + ~ m2e(;-) 
Jo 2 e(;-) 2 

+ e(;-) V [XI' (;-)]) , (1) 

where m2 is the particle mass. 
Following Feynman, the transition amplitude for which 

a particle initial state (X!:"ein ) propagates to a final state 
(X~U"eout) is given explicitly by the path integral: 

G [(X~U"eout);(X!:"ein)] 

= ~:,~/,o»: ;£..) dll [ XI' (;-)] ~;\o:: e~:') dll [e(;) ] 

X exp{ - S [XI' (;), V(x) ]} . (2) 

Here the covariant Feynman measures dll[e(;)] and 
dll [XI' (;)] are, respectively, defined as the volume element 
of the covariant functional metrics 

11&11 2 
= f (&&) (;)d; 

and 

It is possible to evaluate explicitly the above transition am
plitude in the proper-time gauge e(;) = const, thus produc
ing the (Euclidean) Green's function of the Klein-Gordon 
operator in the presence of the external potential Vex). 

An alternative way to obtain the above result is by close
ly following Feynman, ' and by considering the identity that 
results by making variations of the intrinsic metric at the 
end-point trajectory. Since a gauge exists where e(;-) can be 
fixed as the trajectory proper-time parameter, we expect that 
this identity should produce a covariant wave equation that 
(in the proper time gauge) reduces to the usual Klein-Gor
don equation (see the Appendix of Ref. 1). 

As a consequence of the invariance under functional 
translations of the functional measure dll [e(;)], we show 
that the following relation holds true: 

0= fr(XI'(O)=x;~)dll[X(;-)] fr(e(o)=e;n)d,u[e(T)] 
X,u(l) =x~ut eel) =eout 

Xexp{-S[XI'(;)'V(x)]}. (3) 
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By considering the boundary ~ -+ 0 in Eq. (3) we show 
that transition amplitude, Eq. (2), satisfies the identity 

ft::«~: : :{u,) dJi [ XI' (t) ] 

X ~:«~:: e::,)dJi[e(t) ]exp{S [XI' (t), V(x)]} 

(4) 

where III' (t) = XI' (t)le(t) denotes the classical canonical 
momentum of the covariant particle. 

In order to translate the path integral constraint equa
tion (4) into an operator statement, we have to use the co
variant Heisenberg commutation relation 

[III' (t),Xv(t')] 

= - [ile(t)']D(t' - t)Dl'v (i = FI), 
which in the Schrodinger representation is given explicitly 
by 

After fixing the particle proper-time gauge [since Eq. (4) is 
invariant under the group of the trajectories reparametriza
tion] and taking into account that the particle trajectory 
does not self-intersect in "time" [XI' (t) #XI' (t') if t #t'], 
we finally obtain that Eq. (4) reduces to the Klein-Gordon 
wave equation in the presence of the external potential V(x), 
namely, 

( - OX'" + !m2 - V(xin) )G(Xout;Xin) = O. (5) 

It is instructive to point out that by considering func
tional variations of the functional metric dJi [XI' (t)] we ob
tain constraints without dynamical content that are associat
ed to the invariance of the theory under the action of the 
space-time translation Poincare group. 

III. THE WAVE EQUATION IN THE COVARIANT 
BOSONIC STRING DYNAMICS 

The basic object in the Polyakov approach2.5 for the 
string covariant quantization (in the trivial topological sec
tor) is that the following transition amplitude for an initial 
string state 

C in = {(X::'(u),ein(u»); O<;u<;l} 

propagates to a final string state [c out 

= {(X~ut(u),eout(u»)}] 

G[eout;cin] = f dJi[gab]dJi[¢I']e- /o
(ga",,pp>, (6) 

where the covariant string action is given by 

I o(gab'¢1' ) 

= L (~,[g~b aa~ ab~ + Ji6,[g)(U,t)dudt· (7) 

The string surface' parameter domain is taken to be the rec
tangle D = {(u,t), O<;u<; 1, O<;t<;T}. The functional mea
sures df-l [gab] and df-l [ 1,61'] are defined over all cylindrical 
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quantum surfaces without holes and handles having as a 
boundary the string end configurations {Cin;cout}; i.e., 
1,61' (u,O) = X::,(u) and 1,61' (u,n = x~ut(u). The intrinsic 
metric {gab (u,t)} (which, roughly, plays the role of the co
variant string proper-time parameter) can be chosen to satis
fy the conformal gauge 

gab (U,t) = exp {3(u,t) Dab 

and the initial end-point boundary condition ein(u) 
= exp(p(u,O»). 

At this point a fundamental difference appears between 
the string and particle case (Sec. I). In the last case it is 
always possible to fix the proper-time gauge 
e(t) = const = 1, where the intrinsic metric decouples from 
the dynamical description of the theory. This result reveals 
itself in the form ofthe associated wave equation [Eq. (5), 
Sec. II], where it does not have any functional dependence 
on the intrinsic metric. This decoupling phenomenon will 
not happen in the string case due to the conformal anomaly 
of the theory2.5 unless it is canceled. Further, the associated 
string wave equation will depend on the intrinsic Liouville 
field at the boundary {3(u,O) = {3 in(u), as we will show ex
plicitly below. 

Let us now proceed as in the particle case by considering 
the following identity related to the integrand invariance un
der translations in the conformal factor {3( u,t) functional 
space [gab (U,t) = exp(p(u,t)Dab )] in the string propagator 
Eq. (6): 

f D [{3(u,t) ]exp{ - :8~ L (~ (aa{3f + ~ Ji~eP)} 
(8) 

F(¢I',gab) = f df-l[¢I']exp( -Io(¢I',gab») (9) 

denotes the pure string vector position term in Eq. (6). 

It is worthwhile to remark that this procedure for de
ducing a dynamical (wave) equation is the two-dimensional 
analog of that used to write the Wheeler-DeWitt equation 
four-dimensional quantum gravity from the path integral 
expression for the universe propagator. 6 

The variation associated to the Faddeev-Popov term is 
given by 

f D [{3(u,t)] { - ~ f (~ (Ja{3f + ~ Ji2eP ) 
281T JD 2 2 

X (u,t)du dt} 2~~ (R(eP) + Ji2)(u,~)F(¢I',gab)' 
(10) 

where R (eP) = - (e - {3 atJ)( u,t) denotes the scalar of cur
vature associated to the metric gab (u,t) = exp(p( u,t) )15 ab' 

The D! D{3( u,?) functional derivative of the term 
F(¢I',gab = ePDab ) is more subtle since the covariant func
tional measure dJi [ 1,61'] [see Eq. (9) of Ref. 2] depends in a 
nontrivial way on the conformal factor {3( u,t) as a conse
quence of its definition as the functional volume element 
associated to the covariant functional metric 
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I 10¢!'1 I = 1 (ePo¢!'o¢!')(u,~)dud~. 
Its evaluation proceeds in the following way: 

d,u [¢!" (ec5h + .B) Dab ] - d,u [¢!"ePOab ] 

(11 ) 

def 0 2 

= 0{3 d,u [¢!"ePOab ] + O(h ). (12) 

Since, as a consequence of Eq. (11), we have the result 

d,u[¢!"ec5h+.BOab] =d,u[ec5h12¢!',ePOab]' (13) 

and the effect of the functional string vector position mea
sure under a conformal scale was evaluated exactly by Fu
jikawa [see Eqs. (38) and (39) in Ref. 5], 

d,u [ec5h/2¢!"ePOab] 

= exp{~ f ~ (aa{3)2 + ~,u2eP)Oh } d,u [¢!"ePoab ], 
481T JD 2 2 

(14) 

we thus have the following result by taking 
h(u,~) = €o(u - u)o(~ -;) and considering the linear 
term in €: 

o d [AJI- ePo ] 
o{3(u,~) ,u '1', ab 

= ~ lim (d,u[ ¢!"ec5h+.BOab] - d,u[ ¢!"ePoab P 
€ E-O+ 

= (D 1241T)(R(eP(a,;» + ,u2)Xd,u [¢!"ePOab ]. (15) 

Finally the term [OIo{3(u,;) ] Io(¢!"gab = eP0ab ) is giv
en by the diagonal component of the string energy momen
tum tensor: 

(16) 

By grouping together Eqs. (10), (15), and (16), we 
obtain that the string transition amplitude in the conformal 
gauge satisfies the dynamic constraint 

0= f d,u [gab] 1 gab = hab f d,u [cPl' ] 

{ 
26 -D -

xexp( - Io(gab'cPl'») Jim (R (u,~») + ,u2) 
481T ;-0+ 

+ 0 n~(u)2 - !IX[.;(u)1 2
)}, (17) 

where d,u [gab] 1 _ h means that the functional measure 
gab - ab 

over the intrinsic metric field {gab (u,;)} is defined in the 
conformal gauge, 

denotes the string canonical momentum and 

X[';(u) = Jim aacPl' (u,;). 
;-0+ 

In order to translate the above path integral relation into 
a wave equation form, 7 we introduce covariant string com
mutation relations8 
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[n~(u),xV(iT)] = [1I1i(D)] [lIein (u) ]O(u - iT), 
(18) 

with 1i(D) being the Planck constant in the physical space
time R D. Using the Schrodinger representation for this com
mutation relation, 

nin(u) = i 0 (19) 
I' Ii(D)ein(u) OX~(u) 

we can express Eq. (17) in the following form, which gener
alizes the usual D = 26 Nambu-Virasoro wave equation7

: 

{
I e - 2.B;n(<7) 02 1 'in 2 

- 2 (1JD)2 OX~(u)OX~(u) - 2 1X (u) 1 

+ 26-D (_~nin(u)2_~{3! (U)2+~,u2e.B;n(a»)} 
241T 2.B 2 In 2 

X G (X~(u) ,e.B;n(<7»; (X~ut(u),?<>ut«7») = 0, (20) 

where we have written the conformal contribution in Eq. 
( 17) in the Polyakov proposed Liouville Hamiltonian,2 with 

n;;(u) = lim a;{3(u,~) 
;_0+ 

being the canonical momentum associated with the Liouville 
field{3(u,~) at the boundary. We note that it has the follow
ing representation: 

nin() i 0 .B U =(2) . 
Ii o{3in (u) 

(21) 

Here 1i(2) now denotes the Planck constant associated with 
two-dimensional string space-time D. 

It is worth mentioning that the dynamical status ac
quired by the metric gab (U,~) = exp({3(u,~) )Oab in Eq. (20) 
induced pure quantum gravity in D as a result of the dynami
cal breaking of the complete diffeomorphism ground of the 
action in Eq. (7), denoted by Gdiff (D), to the subgroup 
Gdiff (D)IGweil (D)diff' where GWeil.diff (D) is the subgroup of 
Gdiff (D) that acts on the metric field as a Weil scaling. 

As a consequence of these remarks we can see that only 
at D = 26 can we choose the proper time string gauge 
gab (U,~) = Dab in an analogous way as in covariant particle 
dynamics (see Sec. II), since now the invariance of the theo
ry under Gdiff (D) is preserved by quantization. 

IV. A STRING SOLUTION FOR THE QCD [SU(oo)] 
BOSONIC CONTOUR AVERAGE EQUATION 

There are several compelling arguments for the exis
tence of a string representation for quantum chromodyna
mics (QCD) at the 't Hooft large number of colors. One of 
these arguments is that the QCD [SU ( 00 )] covariant loop 
average with an additional intrinsic global SO(M) flavor 
group (see Appendix A), 

Wik [C{f X( _ 1T),X(1T) ] 

= _1_ (TrCOlor exp(i,c AI'(XI' (u») dXI' (U»)) , 
Nc ):";'X(-ffl.X(ff) e(u) 

(22) 

satisfies the following (formal) stringlike contour equation3 

[e(u)=I]: 
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{)<2) 

------ Wik [Ctff X( - 1T),X(1T) ] 
t>Xp (U)t>Xp (U) 

= A. 6f
x

( _ ").x(")x~ (U)t>(D)(Xp (U) - XI' (u»)X~ (0') 

X (Wij [Ctff X( -1T),X(a) ] W;k [Cfi X(a),X(1T) ] ) 

- rIX~(u)12WidCfi X(-1T),X(1T)]' (23) 

where the contour integral{> 'C means that the coin-
X( -'/T),X(rr) 

cident u = 0' does not contribute for the integrand (Cauchy 
principal value). 

It is thus conjectured that some sort of string propagator 
should solve Eq. (23) in some sense. Our aim in this section 
is to present an interacting string theory with an intrinsic 
fermionic structure that possesses as a string wave equation 
(in our proposed framework of Sec. III) Eq. (23) with a 
fixed flavor group SO(22). 

Let us start our analysis by describing the covariant 
string action of our proposed QCD [SU ( 00 )] string: 

S [<PI' (u,t),tP(k) (u,t),gab (u,t)] 

= So[ <PI' (u,t),gab (u,t)] 

+ SI [tP(k) (u,t),gab (u,t)] 

+ Sin! [<PI' (u,t),tP(k) (u,t),gab (u,t)], (24) 

where 

SO[ <PI' (u,t),gab (u,t)] 

= ! (L (.figab aaifJ" abifJ")(u,t)du dt ) , (25a) 

SI [tP(k) (u,t),gab (u,t)] 

= ! L (.fi~(k) Ya (u,t)aa tP(k) )(u,t)du dt, 

Sin! [<PI' (U,t),tP(k) (U,t),gab (U,t)] 

= /1 (L du dt.fi( ~(k) tP(k) ) Tpy(<pp )(U,t) 

X (L ~ g(U,t) t>(D)(<pp (U,t) - <PI' (U,t») 

(25b) 

(25c) 

The notation is as follows: The bosonic degrees of free
dom are {<PI' (U,t),gab (u,t)} as in Sec. II. Additionally we 
introduce a set of intrinsic two-dimensional Weyl spinors in 
the string surface and belonging to the SO(M) fundamental 
representation. They are denoted by 
{tP(k) (u,t), k = l, ... ,M}. We impose on them the Neu
mann boundary condition 

lim aatP(k) (u,t) = o. 
~_o+ 

The bosonic {tPk (u,t),gab (u,t)} string sector interacts 
with fermionic {tP(k) (u,t)} sector through a self-avoiding 
interaction involving the surface orientation tensor 

Tpy(<pp (u,t» = (E"b aaifJ" ab<pY/...[h) (u,t), 

h = det hab , hab = aaifJ" ab<pY, 

and an attractive (/1 < 0) delta function potential supported 
at the self-intersecting lines of the string surface. These non
trivial self-intersections are supposed to arise at those sub
manifolds where XI' (u,t) = XI' (o-',t') with u=/=u' for every 
tE [0, T]. We notice that self-intersections of the form 
XI' (u,t) = XI' (u,t) with t =/= t ' arise only in the case where 
the string surface possesses holes and handles, which is not 
the case here. 

After having described our string theory, we consider 
the following OeM) string transition amplitude9

: 

Zkl[Cfi X(_1T),X(1T)] = f d,u[gab]d,u[<pp] 

Xd,u[tP(k) ](tP(k) ( -1T,0)~1(1T,0») 

Xexp{ - S [<Pp,tP(kl'gab p. (26) 

In order to write the wave function equation associated 
with the above string Green's function, in the physical space
time R 4, we proceed as in Sec. III by considering the analo
gous identity ofEq. (8), namely, 

f d,u [gab] d,u [ <PI' ] d,u [tP(k) ] (tP(k) ( - 1T,0) ~(l) (1T,0) )exp{ - S [<Pp,tP(kl'gab P 

Xl! n~(U)2 - !IX~ (U) 12 + lim (~(k) YI aatP(k) )(u,t») 
T-O+ 

=!!... J1T dO' X'p(U)t>(D)(Xp (u) - XI' (0') )X'p(u) f d,u [gab ]d,u [<PI' ]d,u [tP(k) ] 
2 -1T 

X ( I tP(P) ~(P) ) (U,O)(tP(k) ( - 1T,O)~(l) (1T,0) )exp{ - S [<Pp,tP(kl'gab p. 
(p) ~ 1 

(27) 

Our choice of the intrinsic "flavor" group to be SO (22) is dictated by the fact that the QCD [SU ( 00 )] string should 
preserve the full invariance under the diffeomorphism group and this happens only in the case where the conformal anomaly 
of the theory vanishes (see Sec. III). Since, in our proposed theory (D = 4), the anomalous term is proportional to 
[26 - (D + M) ]l241T we see that only for M = 22 can we preserve the above-mentioned symmetry. 

We thus can rewrite Eq. (27) in the form 

( _~ t>(2) _~ IX' (u)1 2)Z [Ctff ] 
2 t>Xp (u)t>Xp (u) 2 I' kl X( - 1T),X(1T) 
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= ~ I~ 1T du X ~ (u)t5(D)IXI' (u) - XI' (U»)X ~ (U)(Zkp ['1;r X( - 1T),X(U) ]Zpd '1;r X(U),X(1T) p, 

where we have used the string measure factorization properties 

I _ U<1T IdtP(k) ({3,~) HtP(k) ( - 1T,O)¢(I) (1T,0) HtP(p) (u,O)¢(P) (u,O) )exp{ - S [ifJl',tP(k) ,gab]} 

O<~<T 
1<k<22 

and 

Here 

= I II IdtP(k) ({3,~)HtP(k) ( - 1T,O)¢(p) (u,O»)exp{ - SO)[ ifJl',tP(kl'gab]} 
- 1T<I3<u 
O<~<T 
1<k<22 

xI II IdtP(k) ({3,~)HtP(p) (U,O)¢(/) (1T,O»)eXp{ -S(2)[ifJl',tP(kl'gab]) 
u<I3<1T 
O<~<T 
1<k<22 

= I( -!lI3<U difJll({3'~)I.p!'(I3'O)='f-x(_~).x(u»)exp{ - ~ l[_~'U[X[O'1'J (aaifJll)2} 
O<~<T 

( lIp difJll ({3,~) 1,f'(I3,O) =f- X( _ ~)X(~) ) 

-11'< <1T 
0< ~<T 

means that the functional integration is done with the boundary condition ifJIl({3,O) = '1;r X( -1T)X(1I')' 

(28) 

(29a) 

(29b) 

We remark that these factorization properties hold true only in the case that the split string surfaces ifJl' (D[ _ 1T,U] x [O,T]) 
and ifJl' (D[U,1T]X[O,T]) possess the same topology as in our case of trivial topology. 

Let us now identify the string wave equation [Eq. (28)] with the QCD [SUe 00)] contour average equation [Eq. (23)]. 
The first step is to identify the SU ( 00 ) gauge coupling constantA ~ with the string interaction coupling - {3. Second, we make 
the identification of the constant - yz (the Euclidean gluon condensate-see Appendix A) with the Regge slope parameter 
l1Ta', which was adjusted to unity in our study. 

After these coupling constant identifications we see that the Euclidean self-suppressing string theory should represent 
Euclidean QCD [SU ( 00 )] in the gauge invariant observable algebra (color singlet currents, espectrum, etc. ). 

V. THE NEVEU-SCHWARZSTRING WAVE EQUATION 
Let us start by considering the open fermionic string action in a D-dimensional Euclidean space-time lO (f.L = 1, ... D, 

(A) = 1,2, a = 1,2): 

S [ifJl' (u,~),tPl' (u,~),e~A)(u,~),Xa (u,~)] 

= f du d~ e(u,~) [J..- aaifJll abifJll ~b + J..- itPl' (r a) tPl' JD 2 2 

- ~ p 2
_ ~ i(Xayhyot/Jl')(abifJll- : iXbt/Jl')](U,~) + boundary terms. (30) 

Here the fermionic string is characterized by two (external) fields: the usual bosonic vector position ifJIl(u,~) and the 
Majorana spinor t/JI'( u,~) describing the string Lorentz spin. The presence of the vierbein e~A) (u,~) and of the two-dimension
al vector Majorana spinor X a (u,~) together with the auxiliary scalar field P( u,~) ensures, respectively, the action's invariance 
under general Lorentz and coordinate transformations together with the world-sheet local supersymmetric transformations. 

Following Polyakov the (formal) fermionic string propagator is given by the following path integral connecting the 
initial C in string state to a final string state C oU': 

(31) 
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(here the boundary terms were absorbed in G [Cout;cin]). 
In order to write dynamical wave equations we exploit the invariance under translations in the superconformal factor 

(cp(u,~); ~(u,~») functional space of the fermionic string propagator [Eq. (31)] 

[gab (u,~) = exp(2cp(u,~)8ab)' Xa (u,~) = y~B)~(B) (u,~)], 

which produces the following identities: 

f
dll[,/Jl.,Pe(A)x ]e-S[cf"rfI',e~A)'XQ](_ 8S[¢/"r/I',e~A)'Xa])=f( 8 dl,[,/Jl.,Pe(A)X ])e-S[cf"rfI',e~A)'XQl (32a) 
r- 'I' ,'1' , a , a 8cp(u,~) 8cp(u,~) r- 'I' ''1' , a , a 

and 

f
dl,[,/Jl.,Pe(A)X ]e-S[cf"rfI',e~A)'XQ](_ 8S[¢/"r/I',e~A>'Xa])=f( 8 dll[,/Jl.,Pe(A)x ]e-S[cf"rfI',e~A)'XQ]). 

r- 'I' ,'1' , a , a 8~(B) (u,~) 8~(B) (u,~) r- 'I' ,'1' , a , a 

(32b) 

By noting that the fermionic string is defined at the quantum level only at D = 10 (the so-called Neveu-Schwarz string) 
or at D-+ - 00, II we will consider D = 10, which means that the functional measure variations in the right-hand side ofEqs. 
(32a) and (32b) vanish. In the superconformal gauge and using the Euclidean identity Y(A) Y(B) = iE(A)(B) Y .. we rewrite Eqs. 
(32a) and (32b) as 

f dp[¢/',r/I']e-S[cf',rfI'l ~ ((a~¢/')2 - (au¢/,)2 + r/l'Y(1) aur/l')(u,;) = 0, (33a) 

f dp [¢/',r/I']e- S [cf',rfI'l ~ (1 + Y5)r/I'(U,;)(a~¢/' - au¢/')(u,;) = 0, (33b) 

respectively. 
In order to translate the above-written string path inte

gral identities into a wave equation form we take its bound
ary limit; -+0+ and translate the result into an operator 
equation by using the Schrodinger quantum representation 

(34a) 

(34b) 

lim r/I'(u,~) ¢} rfn (0'). (34c) 
~-o+ 

Here the quantum C in string state in the operator frame
work is characterized by the coordinates (rfn (u),¢i., (0') ) 
where the rfn (0') are string valued Dirac matrices obeying 
the space-time anticommuting relations8 

{r1A),in (U),r~B),in (o")} = 28(0' - O")8Jl,AA),(B)' 

By noting that the Neveu-Schwarz string fermion field 
r/I'(u,r) satisfies the Neumann condition 

lim aur/l'(u,r) = 0, 
r ..... O+ 

we obtain a fermionic string wave equation 

D ~r.;)G [cin,cout] = 0, (35) 

where 

D ~r.;) = ~ (1 + Y5)(/i/D) rfn 8~ - rfntP:: )(0'). (36) 

It is instructive to remark that in Eq. (35) the same 
rfn (0') used in the momenta operator is also used in the 
string length factor tP~in(u), opposite to the earlier proposed 
Ramond-Marshall fermionic string wave equation8 where 
two different sets of r Jl (0') matrices are used. 
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Finally we note that the formal anticommutator 
{D ~r.; )(0'); D ~r.; leu)} is equal to the bosonic 

I 8(2) 1 Wine ) 12 
- 2 8tP~(u)8tP~(u) - 2 Jl 0' 

string wave D' Alembertian since we have preserved the su
perdiffeomorphism group of the theory, which, in tum, 
manifests itself in the following constraint imposed in the 
physical Hilbert space of Neveu-Schwarz string states: 

( tP::(U) 8 )G [Cin,cout] = O. (37) 
8¢i., (0') 
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APPENDIX A: THE QCD (SU( (0» BOSONIC CONTOUR 
AVERAGE 

The basic dynamical variable in the loop space formula
tion for Euclidean QCD [SU ( 00 )] is the amplitude for a 
quark loop propagating in the quantum (confining) vacuum 
of a pure Yang-Mills field, since at the 't Hooft limit for a 
large number of colors the second-quantized quark matter 
effective action reduces to the quark first-quantized action, 
namely,9 

lim (det(ial'(aJl + AI'))) 
(g'Nc)fixed 

Nc-oo 

= f d DX ( 'C ~~::.:~:)~) ~ x (Tr U ['6' X(7T),X( - 7T) ]) )

(Al) 

where 
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U ['1: X( -1T),X(1T)] = P {eXPJ1T du A~(X~ (U»)_dX--,~_(_U_)} 
-1T e(u) 

(A2) 

denotes the covariant Wu-Yang phase factor defined by the 
closed (covariant) quark trajectory 

C(j X( -1T),X(1T) = {(X~ (u),e(u»); - 1T<;U<;1T} 

tP 
lim (Tr U ['1: X( _ 1T),X(1T) ] ) 

a-o' 8x~ (u)8x~ (0') 

and representing the interaction of the pair with the Yang
Mills external field A~ (x). The notation ( ) means the 
quantum average defined by the Yang-Mills functional inte
gral at Nc -+ 00 (planar graphs). 

In order to deduce a closed contour functional equation 
for the amplitude inside Eq. (A2), we remark the validity of 
the classical second-order functional derivatives results3 

[e(u)=l] 

= lim 8(u - o')Tr( (V ~F~" )(x(u) )X '''(u)( U ['1: X(a),X(1T) ] U ['1: X( -1T)X(a) ]» 
u-o' 

+ lim (J(u - o')Tr( U [C(j X( -1T),X(o') ] Fap(X(u'»)X'P(o') U [C(j X(o'),X(u) ]Fap(X(u»)X'P(u) U [C(j X(U),X(1T) ]) 

u-o' 

+ lim(J(o' - u)Tr(above written expression with u exchanged by u'). (A3) 

By using that (J(o' - u) = ! if u = u' and imposing the loop periodicity property 

U [ '1: X(a),X(a + 21T) ] = U ['1: X( _ 1T),X( 1T) ] (- 1T<;a<; 1T), (A4) 

we can finally rewrite Eq. (A3) in the loop invariant form 

8
2 

T U ['1: ] 8X~ (u)8X~ (u) r X( - 1T),X(1T) 

= Tr(V~F~" )(X(u»)X'''(u)(TrU ['1: X( -1T),X(1T) ]») 

+ Tr(Fap(X(u»)X'P(u)FaP(X(u»)X; (u)(TrU [C(j X( -1T),X(1T) ]». (AS) 

In order to write the (unrenormalized) quantum analogous loop equation, we take the quantum (Nc -+ (0) average of 
both sides ofEq. (4a) and observe the quantum results 

(Tr(V ~F~" )(X(u»)X'''(u)TrU ['1: X( _ 1T),X(1T) P 

= A ~ "" X ~ (u)8(D)(X~ (u) - X~ (u»)X ~ (u) (Tr U [C(j X( -1T),X(U) P (Tr U ['1: X(U),X(1T) P 
"'X( -1T),X(1T) 

(A6) 

and 

(Tr(FaP(X(u) )X'P(u)FaP( (u) )X; (u) U [C(j X( - 1T),X(1T) ] » 

= (f dDx(Tr(FapFaP)(x» )ix'(U) 12(Tr U [C(j X( -1T),X(1T) p. (A7) 

Equation (A 7) was obtained by supposing the very exis
tence of confining in QCD [SU(N)] for any value of the 
color parameter N signaled by the (formal) nonvanishing 
gauge invariant SU (N) gluon condensate in R D: 

(A8) 

By making the assumption that confining persists at 
Nc -+ 00 we obtain the QCD [SUe (0)] loop wave equation 
[Eq. (23)] intheproper-timegaugee(u) = 1. 

APPENDIX B: THE P TERM 

In this Appendix we present the calculations leading to 
thef3 term in Eq, (27). 

Therefore let us consider the boundary value of the fol
lowing quantity: 
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!~~ L du i; T~,,(<p~ (u,;») 

X8°)(<p~ (u,;) - <p~ (u,;) T~" (u,;»). (Bl) 

We can evaluate Eq. (Bl) by taking into account the 
following results. 

First, formally 

(B2) 

since our topologically trivial string surface does not possess 
self-intersections in the intrinsic string time variable ;, 
which in turn, is related to the nonexistence of handles and 
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holes in the string world sheet. 
Second, in the asymptotic limit ~ ..... 0+ the string surface 

has the behavior 

lim tPl-' (u,~) = lim XI-' (u) (1 + ~), 
r_O+ r_O+ 

since the string surface is a homotopical (contractible) de
formation of its boundary. 

As a consequence of the above-mentioned remark, we 
obtain, in the string isothermal gauge [X ~ (u) 'XI-' (u) = 0], 
the value in Eq. (Bl): 

'" "'-lim TI-'V(tPl-' (u,~))T(tPl-' (o-,~)) 
r-O+ 

= [X~ (u)/~X~ (U)2] [X~ (o-)/~X~ (U)2], (B3) 

where we have taken into account that XI-' (u) = XI-' (0-) in 

Eq. (Bl). By making Eq. (B3) covariant, i.e., ~(X~(U))2 
..... e(u), we obtain the,8 term in Eq. (27), which for M = 22 
[e(u) = const], is simply given by 

!if'" do-X~(u)(8(D)(XI-'(U) -XI-'(O-)))X~(O-). (B4) 
2 - '" 

APPENDIX C: THE MIGDAL-ELFIN STRING AS A 
PARTICULAR CASE 

Our aim in this Appendix is to show how to obtain the 
proposed Migdal-Elfin string for QCD [SU ( 00 ) ] 12 as a par
ticular case of our proposed self-suppressing fermionic 
string when the string world sheet does not possess nontri
vial self-intersections, i.e., tPl-' (u,~) = tPl-' (0-,;) means that 
u=o-,~=;. 

In order to analyze this case let us introduce orthonor
mal coordinates on the string surface {tPl-' (u,~)}: 

JutPl-' J~t/JI-' = 0, (Ju t/Jl-')2 = (a~tPl-')2, 
h(u,~) = det{hab (u,~)} = det{J at/Jl-' Jbt/Jl-'} 

= (Ju t/Jl-')2 = (J~t/JI-')2. (Cl) 

Note that this is possible since we have concealed the mod
el's conformal anomaly by choosing M = 22. 

By introducing a tangent vector along coordinates lines 
Jt/JI-' /J~ and Jt/JI-' /Ju, we have the relationship (see the Ap
pendix of Ref. 13) 

8(D)(t/JI-'(U,~) - t/JI-'(o-,;)) 

2167 

= 8;D- 2) (0)( [1/h(u,~)2]8(2)( (U - o-),(~ - ;))), 
(C2) 
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where 8; D - 2) (0) means a regularized form of the delta func
tion singular value 8(D - 2) (0) (See Ref. 13). 

Substituting Eq. (C2) into the string self-interaction 
term [Eq. (25) ] we obtain the more invariant expression for 
the fermion action: 

,8 (R) L (¢(k) "'(k) )(8,~) 

X ( I __ TI-'V(tPl-' (u,~))TI-'V(tPl-' (0-,;))), (C3) 
{.p,,(u.~) = .p,,(u.~)} 

where,8(R) =,8 8;D- 2)(0)is the regularized string constant. 
At this point we can see that Eq. (C3) reduces to a mass 

term for the intrinsic SO (22) fermion field '" ~ (u,~), which, 
in the case of the string world sheet has only the trivial self
intersection 

tPl-' (u,~) = tPl-' CO',;) => u = 0-, ~ = ;, 

since 

TI-'V(tPl-' (u,~))Tl-'v(tPl-' (u,~)) = 1. 

We thus get 

k~1 ,8 (R) L (¢(k) "'(k) ) (u,~)du d~. (C4) 

For the nontrivial self-intersecting case [u multi valued 
t/JI-' (u,~) functions] we have to add to Eq. (C4) the term 
responsible for the theory's interaction, which is supported 
at the nontrivial string's surface self-intersection lines 
tPl-' (u,~) = tPl-' (0-;) with u::j=o- as given by our interaction 
action [Eq. (25C)] and previously conjectured in Ref. 14. 
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In this paper, p-brane field theory is constructed in terms of functions of geometric p-surfaces. 
Nambu-Goto p-brane dynamics is incorporated in the Dirac form. The field equation for 
toroidal p-branes in p + 2 dimensions is exactly solved for, and is shown to admit an equally 
spaced mass-squared spectrum containing massless states. 

I. INTRODUCTION 

The successes of string theory 1 have inspired interest in 
the theory of higher dimensional objects, generally known as 
p-branes. Considerable progress in understanding p-brane 
theory has been made in the past year or SO.2 Particularly, 
super-p-brane theories have been constructed. 31t is also real
ized that these super-p-brane theories are closely related to 
the four classical superstring theories.4 More recently, it was 
realized that the area-preserving membrane algebra contains 
the Virasoro algebra as a subalgebra.5 It is therefore hoped 
that a better understanding of p-brane theory could provide 
new insights into string theory. As a first step in this direc
tion, various schemes of quantizing membrane theory have 
been proposed.6 Despite all these attempts, two important 
issues have not yet been settled, namely, the existence of 
massless particles, and the consistency of quantum p-brane 
theory.4,7 

In a previous paper,s we proposed a quantum theory of 
geometric membranes which generalizes the line functional 
approach to string theory proposed by Carson and Hoso
tani,9 which is a reparametrization-invariant formulation of 
string field theory. 10 There we formulate our membrane field 
theory as a theory of surface functionals (functions of geo
metric surfaces) which reproduces classical Nambu-Goto 
membrane dynamics in a certain limit. The connection of 
our field theory with classical membrane dynamics is done in 
accordance with Dirac's treatment of spino! particles. Our 
membrane fields therefore transform non trivially under 
Lorentz transformations. As such, the basic entities of our 
theory are multicomponent surface functionals. This is the 
main difference between our approach and the standard 
ones, such as light-cone formulation. Reparametrization in
variance is kept manifest in our approach. We solve the field 
equation exactly in 1 + 3 dimensions for toroidal mem
branes. We find that the solution contains massless states 
and that it admits equally spaced mass-squared spectrum 
which is characteristic of free string theories. 

Similar results were also obtained in the line functional 
theory of string in 1 + 2 dimensions.9 One immediately real
izes that there is something in common for a string in two
space and a membrane in three-space; they are both hyper
surfaces in their respective embedding spaces. A question 
naturally arises: Do the same results generalize to p-branes 
which are hypersurfaces in p + 2 space dimensions? The 
purpose of this paper is to show that our theory for toroidal 

a) Address after September 1, 1989: Institute of Physics, Academia Sinica, 
Taipei, Taiwan 11529, Republic of China. 

p-branes in p + 2 dimensions does admit an equally spaced 
mass-squared spectrum containing massless states. 

This paper is organized as follows. In Sec. II we give a 
brief review of surface functional theory of p-branes, which 
was presented in Ref. 8. We then discuss in Sec. III our theo
ry in p + 2 dimensions and in Xo = r gauge. Connection of 
our theory with various differential-geometric quantities of 
hypersurfaces is discussed in great detail. In Sec. IV, the field 
equation for toroidal p-branes is solved exactly, yielding an 
equally spaced mass-squared spectrum with massless states. 
Section V summarizes the paper. In Appendix A, we outline 
calculations of principal and total curvatures of an n-torus 
Tn. Appendix B gives the explicit forms of function U, de
fined in Sec. IV, that are required to solve the field equation. 

II. COVARIANT FIELD EQUATIONS OF CLOSED p
BRANES 

In this section, we shall review briefly the derivation of 
covariant equations for multicomponent fields \II of closed p
branes in d-dimensional spacetime, as presented in Ref. 8. 

We start with the classical Nambu-Goto action for p
branes given by 

s= - ~JdP+lt~(-I)Pdethap, (2.1) 

hap(t) = aaX"apx", (2.2) 

where X" (t) (J-l = O, ... ,d - I) and sa = (r,CT1,· .. ,CTp ) 

(a = O, ... ,p) are space-time and world volume coordinates, 
respectively. Canonical conjugate momentapi' (CT), where CT 

denotes collecti vel y the set {CT I'''''CT p }, are defined to be 8S / 
8 aTx" (CT).1t can be shown that the canonical Hamiltonian 
vanishes. 

There are p + 1 sets of primary constraints, 

Xo(CT)=~{p2- [( -1)P/';]h}=O, 

Xk (CT) =p·akx = ° (k = I, ... ,p), 
(2.3 ) 

where h = det h jk (j,k = I, ... ,p) is the cofactor of hoo. The 
Poisson-bracket algebra of these constraints is given by 

{X; (CT),X j (CT')} 

a 
= Xj (CT) - 8(CT - 0-') 

aCT; 

+ X; (CT') aa 8(CT - 0-'), 
CTj 

{xo(CT),Xj (o-')} 

(2.4a) 
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where 

P 
8(0' - 0'/) = II 8(0'; - 0';). 

;=1 

In terms of the integral transforms of X's, 

Xa[{]= f dPO'I(O')Xa(O')' 

the algebra reads 

and 

{x; [{],X j [g]} = Xj [I ajg] - X;[ga/], 

ho [{],Xj [g]} = Xo [/ajg - ga/], 

ho [{],Xo [g]} 

= (_l)p+1 ?X; [(jOjg-gaJ) ah ]. 
,(2 ',J ahij 

(2.4b) 

For p>2, the algebra closes only weakly. This is due to 
the fact that the right-hand side of the Poisson bracket of 
Xo(O') and Xo(o') involves P-dependent coefficients. This 
makes the equations essentially nonlinear. Furthermore, in a 
quantum theory the commutator algebra of the constraints 
would give rise to operator anomalies. 

We avoid these difficulties by proposing a field theory of 
geometric p-branes. The fundamental objects in the theory 
are p-dimensional surfaces, or p-surfaces in short. Fields are 
functions of p-surfaces, which are invariant under O'-repara
metrization (0'-RP). The theory is required to reproduce the 
Nambu-Goto dynamics in the Xo = 7' gauge. In this gauge, 
dynamical variables are spatial coordinates X(O'), and their 
conjugate momenta p(O') = 8S /8X(0'). Now there are only 
p sets ofconstraints'Xk (0') = - p·akx = 0, and thecanoni
cal Hamiltonian is nontrivial, 

Ho= f dPO'J( -l)Ph J( -1)P(p2/h) + 1/,(2' (2.5) 

I t can be checked that the Poisson bracket of X k (0') and H 0 

vanishes. The Schrodinger equation and constraints for the 
field 'I' x" ~ T = 'I' x" ~ T [7'; X ( 0')] are 

i~'I' =H'I' aT XII = 'T 0 Xu = r' 

akx·p 'l'x,,~ T = 0 (k = 1, ... ,p), 

(2.6) 

(2.7) 

withp = - i [8/8X(0')]. According to Eq. (2.7), 'l'X"~T is 
O'-RP invariant, and is therefore a function of spatial p-sur
faces. The second square root in Eq. (2.5) is replaced, ac
cording to Dirac's treatment of relativistic point particles, by 

vU'(0') = a (O')'p/J ( -1)Ph +/3(O')(1/K), (2.8) 

withvU'2(0') = (-I)P(p2/h) + 1/,(2. Note that a(O') and 
/3(0') are matrices to be determined. This then leads to the 
covariant equation of motion for multicomponent fields 'I' of 
space-time p-surfaces: 
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f d PO'[ rp(O')pp (0') - ~ ( -) )ph A(O')] 

x'l'[XP(O')] =0, (2.9) 

(akxP)pp'l' = 0 (k = 1, ... ,p). (2.10) \ 

HerePp = i[8/8P (0')], and r p (0') andA(O') are general
ized Dirac matrices. 

In order to determine the forms of r p (0') and A ( 0'), we 
impose the following requirements!!: 

(i) Equation (2.9) must be Lorentz covariant, transla
tion invariant, and manifestly O'-RP invariant; 

(ii) In the Xo = 7' subspace, Eq. (2.9) reduces to Eqs. 
(2.6)-(2.8) with a(O') and/3(O') local in 0'; 

(iii) P (0') and A(O') depend on 0' only through 
XP (0'); 

(iv) P (0') and A(O') commute with 

[1/J( -1)Ph ]Pp . 
Note that in transition to the Xo = 7' gauge, we make the 

following replacements: 

'I' [X P( 0') ] ..... 'I' x" ~ T [ 7'; X( 0') ], 

i 8 i a (2.11 ) 

--;J =( -==1 =)P:;::h -8X~O (-0'-) ..... -V-p -a-7' ' 

where 

Vp = f dPO'J( -l)ph. 

It turns out to be convenient to define a totally antisym
metric tangent tensor by 

1 a(Xp, , ... ,xp) 
tp '''p = , (2.12) 

, p J ( - l)Ph a(O'I""'O'p) 

with t 2 = ( - I)Pp!. Then the conditions (i), (iii), and (iv) 
imply that P (0') and A(O') depend on 0' only through 
tp , ... Pp [to arrive at this, one needs to make use of the fact 
that 8/8P (0') and (a /aO'k )Xv (0') commute]. Derivatives 
of tp , ... Pp are excluded by the condition (iv). One can there
fore expand r p (0') and A(O') in a Taylor series in tp, ... Pp (0') 

with constant matrix coefficients. To fulfill condition (ii), 
terms involving products of tp , ... Pp in the expansion of 
r p (0') must be discarded, since they will lead to a(O') and 
/3 ( 0') matrices which are nonlocal in 0' in general. The condi
tion (ii) places no restriction on the form of the A(O') ma
trix: A(O') can contain terms of an arbitrary poweroftp,'" Pp 

For simplicity, we set A(O') = 1. We thus arrive at the fol
lowing forms: 

rp(O') = a P + (a / !)rpv, ... vPt 
I 2 P A v, ... vp 

A(O') = 1. 
(2.13 ) 

Here aI' a2, and a3 are arbitrary constants. r p are the usual 
Dirac matrices. r~' ... Pp+' and r~ ... Pp+' have the symmetry 
represented by the following Young tableaux: 

~ ... Pp+ ': p boxes 

~~ 
~8 
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Algebra satisfied by the r M-piece is generally very com
plicated, and an equation which involves the r M -piece is 
also difficult to solve in general. Hence we shall consider 
only the pt and the totally antisymmetric r~' ... ,"p + I piece in 
this paper, and we shall drop the subscript A from now on. 

We can now write Eq. (2.9) as 

[a,r'"p," + (a2/p!)r'"'···'"p+'P,", ... ,"p+, - Vp/K]'I'=O, 
(2.14 ) 

where 

P," = f dPup," 

and 

P,"'···,"P+I = p~ 1 f dPu[~Sign(p)t,"" .. ,"'p,"p+,]. 

Here p represents the cyclic permutation of the indices 
p"".,pp +,. The two constants a, and a2 satisfy 

ai + ( - 1 )Pa~ = 1. (2.15) 

The r's matrices obey 

{p,rv} = 27fv, (2.16) 

{r'"' ... '"p+ I,rv, ... Vp+ I} = 21]'"' ... '"p+ I' v, ... Vp+ I, (2.17) 

where the generalized 77-tensor is defined by 

(2.18 ) 

The algebras (2.16) and (2.17) are Clifford algebras of di
mensions d and d(d - 1) .. , (d - p)/(p + 1 )!, respective
ly. 

Finally, we note that the field functions 'I' transforms 
non trivially under Lorentz transformations, as a result of 
the generalized Dirac algebras (2.16) and (2.17). It can be 
checked that the generators of d-dimensional Lorentz trans
formations are given by 

J'"v= f dPu(X'"pv-xvp'") + ! [p,rV] 

i [yVt,t ... ,t ] + - 1 ' p,rv,t ... ,t • 
4p! ' P 

(2.19) 

1II.p-BRANE FIELD EQUATIONS IN d=p+ 2 ANDXo=T 
GAUGE 

The covariant field equation (2.14) derived in Sec. II is 
in general difficult to solve. However, it can be greatly sim
plified if one considers closed p-brane theory in (p + 2) di
mensions, and in the Xo = 'T gauge. In this case, p-surfaces 
become hypersurfaces in EP + I, and only one component of 
the operator P" ... " is relevant. This operator is closely 

r-I '-p+l 

related to some differential-geometric quantities of p-dimen-
sional hypersurfaces, such as total mean curvatures. 

In this section, we shall first write down the field equa
tion in (p + 2) dimensions and in the Xo = 'T gauge. We then 
relate the relevant component of P" . ." which appears in 

,-1 r-p+ I 
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the field equations to various geometric quantities of p-sur
faces. Exact solutions of the field equation will be given in 
the next section. 

A. Field equation 

In d = p + 2 dimensions, one can replace the matrices 
r'"' ... ,"p + I by the dual matrices defined as 

A'" 1 €"'"'···'"P+T (3.1) 
(p+l)! '"'···,"p+l· 

Using Eqs. (2.17) and (2.18), one obtains the algebra satis
fied by A'", 

{A'",Av} = (- 1)p+ '277'"v, (3.2) 

which is, up to a sign, just the usual Dirac algebra. Replacing 
the r'"' ... ,"p +- I matrices in Eq. (2.14) by their duals, we ar
rive at the following simpler equation: 

[a,r'"p," +a2A'"F," - Vp/K] '1'=0, (3.3) 

where 

F'" = ( - l)P+ 1 €",", ... '"p+ If dPut ... D • (3.4) 
p! ,", '"JF ,"p + I 

It follows from Eq. (2.19) that the fields 'I' describe bosonic 
p-branes. 

Let us now restrict our theory to the Xo = 'T subspace. In 
this subspace, the only non vanishing component of the tan
gent tensor defined in Eq. (2.12) is 

1 a(Xj , ... ,Xj ) 
t; ... ; = - I P (ik #0, k = 1, ... ,p), (3.5) 

, P fh a(ul, ... ,up ) 

whereh = det h jj = det(ajX·ajX). It then follows from Eq. 
(3.4) that only the zero component of the operator F'" sur
vives in the field equation. Equation (3.3) now reads 

[a,PP," +ia2AoQ- Vp/K] '1'=0, (3.6) 

where 

Q= -iFO=fdPUN(u)._tJ-. 
tJX(u) 

(3.7) 

N(u) is the unit normal vector at each point of the p-surface 
in EP + , , and is related to the tangent tensor by 

Nj . = (l/p!)€; ... ; jt; ... ; (j,ik = 1,2, ... ,p + 1). (3.8) 
I pip 

Equations (3.6)-(3.8) give the field equation in 
d = p + 2 dimensions and in the Xo = 'T gauge. The operator 
Q is in fact the generator of a small deformation of p-surface 
along the normal direction at each of its points. It is therefore 
not surprising that Q is related to the differential-geometric 
properties of p-dimensional hypersurfaces. This will be dis
cussed in the next subsection. 

B. Differential-geometric quantities 

In this subsection, we shall derive useful identities relat
ing the operator Q with various differential-geometric quan
tities of p-surfaces. 

As mentioned before, in the Xo = 'T gauge and in 
(p + 2) dimensions, a closed p-brane, specified by points 
X (u), becomes a closed hypersurface in EP + I. According to 
the theory of surfaces, the geometry of hypersurfaces de-
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pends only on two quadratic differential forms. These are 
called the first and second fundamental forms, denoted, re
spectively, by I and II. They are defined by 

l=dX·dX = hij delda j 
(i,j = 1, ... ,p) (3.9) 

and 

11= - dN·dX = bij del da j 
(i,j = 1, ... ,p). (3.10) 

The coefficients hjj's and bjj's are given by 

h jj = JjX·J jX (3.11 ) 

and 

bjj = - JjN·JjX = N·JjJjX = bji. (3.12) 

The second equality in Eq. (3.12) follows from the relation 

N·JjX = 0 (j = 1, ... ,p), (3.13) 

which can be easily proved from Eqs. (3.5) and (3.8). Also, 
since N2 = 1, we have 

N·JjN = 0 (i = 1, ... ,p). (3.14 ) 

Combining Eqs. (3.13) and (3.14), we obtain 

JjN= -B!JjX, (3.15) 

where B! is apXp matrix. 
Equation (3.15) is called the Weingarten formula. 

Eigenvalues of the matrix B give the principal curvatures, 
denoted by KI, ••• ,Kp. We define the rth mean curvature Hr as 

1 
Hr=-ar (r= 1, ... ,p), (3.16) 

e) 
where a r is the rth elementary symmetric polynomial in K'S, 

ar = I Ki,Ki~'" K ir · 

f. < i~ ... < i,. 
(3.17 ) 

Gauss curvature is given by Hp = det B. For later conven
ience we define Ho= 1. 

We shall now derive some useful identities which relate 
the operator Q and the differential-geometric quantities de
fined so far. First, we have 

QX(a) = N(a), 

QJjX(a) = JjN(a). 

From Eqs. (3.11) and (3.19), we obtain 

(3.18 ) 

(3.19 ) 

(3.20) 

Using Eqs. (3.11), (3.12), and (3.15), we can show that 

bij =B:hlj (3.21) 

and 

B! = buh Ij, 

where h jj is the inverse of hij . 
With the use ofEq. (3.21), we have 

Qh = - 2hh ikbik = - 2hB; = - 2h Tr B 

and 

Q$ = -$TrB. 

Also, one can easily check that 

QN=O, 
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(3.22) 

(3.23 ) 

(3.24 ) 

(3.25 ) 

Qb jk = -JjN·JkN= -bjkhklblk, 

Qh jk = 2h jlb,mh m\ 
(3.26) 

(3.27) 

QB! = B 7B i. (3.28) 

Repeated use ofEq. (3.28) gives the important identity 

QSn = nSn+ I' 

where 

SII =Tr Bn 

p 

== I K7· 
i= I 

(3.29) 

(3.30) 

We now use Eqs. (3.24) and (3.29) to prove an impor
tant identity which relates Hr to Hr + I: 

Q($Hr) = - (p - r) ($Hr+ I) (r = O,I, ... ,p), 
(3.31a) 

or equivalently, 

Q($ar) = -(r+l)($ar + l ) 

(3.31b) 

in view ofEq. (3.16). This identity reduces to Eq. (3.24) 
when r = o. The proof of Eq. (3.31b) is very simple by in
duction using Newton's formula. The Newton formula re
lates the a:s and the S:s as follows: 

SI-al=O, S2- S la l +2a2=0, 

S3 - S2al + S Ia2 - 3a3 = 0, 

Sr-Sr~lal+Sr~2a2- ... +(-I)r~ISlar~1 

+(-I)rrar =O (r=I, ... ,p). (3.32) 

Let us assume that Eq. (3.31b) is truefor requals 1, ... , up to 
(r - 1). Multiplying Eq. (3.32) by $ and operating on the 
resulted expression by Q, we obtain, after some cancellations 
of terms, 

( - l)r+ IQ($ar) 

=$[Sr+1 -Sral +Sr~la2 ... 

= {$[ (- 1)'+2(r+ l)ar+ I l, 
0, 

r#p, 

r=p. 
(3.33) 

In obtaining the second equality ofEq. (3.33), we have used 
Eq. (3.32) for the case r# p and the following identity for the 
case r=p: 

(3.34) 

Equation (3.31b) is easily proved to be truefor r = 1. Hence 
by induction it is true for r = 1, ... ,p - 1, and also for r = 0 
and r = p, if we define ao= 1, and ap + I =0. 

In order to solve the field equation (3.6), one still needs 
to express the operators P and Q in terms of some convenient 
coordinates. Let us define the following a-RP invariant co
ordinates, 

hi = f dPa$H, (/ = O,I, .. ,p), 

Y=~fdPa$X, 
ho 

Ar=(~) f dPa$(X-y)H" 
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and 

~r = e) J dPu$NHr (r= 1, ... ,p). (3.35 ) 

Note that ho = Vp, hp is the total Gauss curvature and y is 
the center-of-mass coordinates of the p-surface. 

It follows from Eq. (3.31) that 

Qh, = - (p -l)h,+ I (l = O, ... ,p). (3.36) 

Using the identities derived in the last subsection, it is easy to 
show that 

and 

Qy = (lIho)A I , 

Q Ar = - (r + 1 )Ar+ I + ~r + (p) AI hr 
r ho 

+[1- +Alh ]o~_pl- o_a_ 
~p ho P a Ap ~p a ~p _ I . 

(3.37) 

and 

(r = 1, ... ,p - 1), 

Q Ap = ~p + AI hp , 

ho 

Q~r = - (r+ 1)~r+1 (r= 1, ... ,p-1), 

(3.38 ) 

(3.39) 

Finally, in terms of the coordinates {T,h"y,Ar,~J, we 
have 

P I" _ (. a . a ) - 1- -1-
aT' ay 

(3.40) 

(3.41 ) 

We note that the total Gauss curvature hp and the coordinate ~p are constants of motion, as can be easily checked. 

IV. EXACT SOLUTIONS 

We proceed to solve the field equation (3.6) in this sec
tion. In general, the field equation (3.6) with Eqs. (3.40) 
and (3.41) is still difficult to solve. It can, however, be exact
ly solved for in a special case for which 
h2 = h3 = ... = hp = 0, and hI #0. It follows from Eq. 
(3.41) that these values of h 's are constants of motion. We 
show in Appendix A that the p-dimensional torus T p pos
sesses this set of values of total mean curvatures. 

We now look for positive energy solutions which have 
the following form: 

Now we observe the following identities: 

(4.1 ) 

with Yo == T. We require that U satisfies 

Q(e - ipoyU) = o. (4.2) 

If this is so, then one can factor out the factor (e - ipoy U) from 
the field equation. It is not too difficult to find the required 
forms of U that solve Eq. (4.2). Remember that in the case 
we are interested in, the operator Q has the following simple 
form: 

(4.3 ) 

{[-(r+l)Ar+ 1 +~r]o a~r -r~roa~~_I}Lr_1 = -rLr, 
(4.4 ) 

[ ~p 0 a ~ - p~p 0 a I-a ] Lp _ I = - p2~p, 
p ~p-I 

where 
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Lr==-(r+l)Ar+l+r~r (r=I, ... ,p-l). (4.5) with 

These observations enable us to solve Eq. (4.2) for U in 
termsofp, y, hi' AI' ~P' andL r • We present the explicit forms 
of U in Appendix B. 

With Eqs. (4.1), (4.2), (4.3), and (3.40), the field 
equation (3.6) reads 

[alPlPI' _ ;pa2Aohl ..!....- - ho] <II(ho,h l ) = 0, (4.6) 
Jho K 

where PI' is the energy-momentum vector. To solve Eq. 
(4.6), we need explicit representations of the rl' and AI' 
matrices. It is convenient to make the following choices ac
cording to d, the dimensionality of space-time (direct prod
uct of Pauli matrices a's are implied): 

(i) For d = 2n (a l ,a2 real) 

r O = 0"1' r l = ;0"2' r 2 = ;0"30"1' r 3 = ;0"30"2, ••• , 

r 2n - 1= ;0"3 ••• 0"2 

'-v'-'" 
n terms 

- ~ r = 0"3···0"3' 

AI' = ir® p. ( 4.7) 

(ii) For d = 2n + 1 (a l real, a2 pure imaginary), 

r o = 0"2' r l = ;0"1' r 2 = ;0"30"2' r 3 = ;0"30"1' ... , 

r 2n = ;0"3 ••. 0"30"2, 

~ 
n + 1 terms 
~ 

AO = 0"3···0"30"1' 

A I = ;0"3 ••• 0"30"30"2, ••• , 

A 2n =;0" ••••..••• ,...,... 
3 v3V I· "-----'V .... -~; 
2n + 1 terms 

(4.8) 

The choice of the constants a I and a2 in each case is to 
ensure that the mass squared, p2 = m 2

, is bounded from be
low. The wave function <II has 2d components, which can be 
decomposed into four 22n -2 (22n -I) component fields <II ab 

for d = 2n(2n + 1). The indices a and b (= + or -) 
denote eigenvalues ofr and I ® r for d = 2n (l ® r ® 0"3 for 
d = 2n + 1), respectively, whereIis a 2n X 2n matrix of un i
ty. After taking the square of Eq. (4.6) and rearranging the 
components, we obtain 

aim2
(<11++ ± <11+_) 

_ [ 2h 2 I 12 J 2 h ~ _ ph I I I ] - -p I a2 --+-+- a2 
Jh6 ~ K 

X (<11++ ±<II+_), 

ai m2 (<11_ + ± <11 __ ) 

_ [ 2h 21 12 J 2 h ~ ph I ] - -p I a2 --+-+-la2 1 
Jh~ ~ - K 

X(<II_+±<II __ ). (4.9) 

Here la2 1 represents the modulus of a2• Now let us define the 
operators 

( C )=_1 [+ S J ho] 
C + - Ii - Jho + S (4.10) 

2173 J. Math. Phys., Vol. 30, No.9, September 1989 

S==Jpla2 Ih IK, 

and the mass 

m l ==~ (2ph lla2 1IaiK). 

It can be easily checked that C and C + satisfy 

[C,C+] =1. 

(4.11 ) 

( 4.12) 

Also, if we define <Po such that C<po = 0, then the eigenvalues 
of the operator C + C are non-negative integers, n = 0,1, ... , 
with eigenfunctions <P n == ( C + ) n <Po. In terms of the opera
tors C, C + and the mass m l , we can write Eq. (4.9) as 

m2
(<11++ ±<II+_) =mi [~~:] (<11++ ±<II+_), 

m 2 (<11_+ ± <11 __ ) = mi [~c:~] (<11_+ ± <11 __ ). 

(4.13 ) 

It follows that the eigenvalues of p2 = m 2 are quantized with 
values 

m2 = min, n = 0,1,2, .... (4.14 ) 

Hence we conclude that our field equation admits an equally 
spaced mass-squared spectrum, and massless states. 

V. CONCLUSIONS 

In this paper, p-brane field theory has been defined as a 
surface functional theory which incorporates p-brane dy
namics in Dirac form, as given by the covariant field equa
tion (2.14). Connection of this field equation to the N ambu
Goto p-brane dynamics is made in the Xo = 7 gauge. Such 
correspondence necessarily requires introduction of multi
component surface functionals, and new generalization of 
the Dirac algebra, Eqs. (2.16 )-( 2.18). As such, the p-brane 
fields transform nontrivially under Lorentz transforma
tions, and describe either bosons or fermions depending on 
the parameters of the equations and the dimensionality of 
the space-time. This is very different from the conventional 
approaches, where the p-brane fields are always described by 
scalar functionals. Our theory thus represents a new type of 
p-brane theory. 

In Sec. III and IV, we solve the p-brane field equation, 
Eq. (2.14), in p + 2 dimensions in the Xo = 7 gauge. The 
field equation in this case naturally involves various differen
tial-geometric quantities of hypersurfaces. It turns out that 
the field equation can be exactly solved for toroidal p-brane, 
of which all but the first total mean curvature vanish. The 
solutions yield an equally spaced mass-squared spectrum 
that contains massless states. 

While we obtain the stringlike spectrum for toroidal p
brane in p + 2 dimensions, there exists a "dual" approach to 
ours by which Morris 12 constructs string field theory using a 
set of d - 2 functions to describe a string world-sheet em
bedded in d dimensions implicitly. It would be interesting to 
see the connection between these two approaches, which are 
apparently very different in their philosophy. We should 
also mention that Fujikawa 13 has recently suggested that a p
brane in p + 1 dimensions essentially corresponds to a point 
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particle. He has examined this statement for p = 1,2, and 3 
in the light-cone gauge. 

At present, the connection between our surface func
tional approach and the conventional ones, such as the light
cone and BRST schemes, is not clear to us. We hope to clar
ify it in the near future. Our field equations are constructed 
by incorporating the p-brane dynamics in the Dirac form in 
the Xo = 'T gauge. As it is well known, the Dirac equation of 
the point particle can also be obtained from quantization of a 
spinning particle (a particle whose action possesses local 
world-line supersymmetry). 14 It is therefore very tempting 
to see if our p-brane field equation follows from quantization 
of some "spinning p-brane," whose actions possess local 
world-volume supersymmetry.15 To answer this question, 
one would require a Neveu-Schwarz-Ramond type of for
mulation of the spinningp-brane. Such possibility for mem
branes is considered by Castro,16 using the new bosonic p
brane Lagrangians proposed by Dolan and Tchrakian, 17 and 
by Lindstrom and Rocek. 18 However, Bergshoeff et al. 15 

have shown that such models for spinning membranes can
not be constructed within the framework of the three-dimen
sional super-Poincare tensor calculus. 
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APPENDIX A: PRINCIPAL AND TOTAL MEAN 
CURVATURES OF Tn 

We give a brief outline of the calculations of principal 
and total mean curvatures of an n-dimensional torus Tn. 

First we give some formulas from the theory of surfaces 
in the language of differential forms. 

Let X denote a hypersurface in En + I. At each point we 
can set up an orthonormal frame e; (i = I, ... ,n + 1). In 
terms of this basis, we have 

n 

dX = I w;e;. Wn+ I = 0, 
;=1 

n 

de; = I W;jej + W;.n + I en + I , 
j~ I 

W;j = - Wji (i = I, ... ,n), 
n 

den + I = I Wn + I.;e;. 
i= I 

(AI) 

where w;'s and w;/s are one-forms. We also have the follow
ing structure equations: 

" dw; = I Wij 1\ Wj, 
j~ I (A2) 
,,+1 

dW;j = L W;k I\wkj (i,j = I, ... ,n + 1). 
k=1 

Here 1\ represents the exterior (wedge) product of the one
forms. From (A2), we have 
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" 
dw,,+ I = 0 = L W,,+ I,k I\ Wk' 

k=1 

According to Cartan's lemma, Eq. (A3) implies 
n 

W,,+ I,k = - L hjkwj (k = I, ... ,n), 
j~ I 

hij = hj;' 

(A3) 

(A4) 

The principal curvatures KI (i = l, ... ,n) are eigenvalues of 
the matrix (hi)' In terms of the one-forms w;'s and w;/s, 
the "volume" element of the surface and the two fundamen
tal forms are given by 

" 1= dX·dX = L (wy, 
;= I 

" 
II = - dX·de" + I = L h ijw;Wj' 

;.j~ I 

(AS) 

(A6) 

(A7) 

Here the dot· represents the ordinary inner product of vec
tors. 

Next, we shall derive a formula giving the principal cur
vatures of a hypersurface in E" + I, obtained from the rota
tion of a hypersurface in E ", whose principal curvatures are 
known. 

Let X be a hypersurface in E" with basis il, ... .f". Let Y 
be a hypersurface in E" + I (basis i I"".f" + I ) obtained from 
~ w~en the axis i" is rotated through an angle 21T in the 
i" - i" + I plane (all other axes being kept fixed). The angle 
of rotation, measured from 1", is denoted bye". The ortho
normal basis at each point of X and Y are denoted by (e;, 
N(")==e~) and (ej , N(,,+I)==e,,+I) (i=l, ... ,n-I, 
j = I, ... ,n), respectively. We obviously have 

Y = X - (x·i" )i" + R" (cos e)" + sin e)" + I)' 

R" = r" + x.I", 
(A8) 

if the surface X is translated along the axis i" by an amount r" 
before it is rotated. Suppose 

n-l 

dX = L w~ek' 
k~1 

Then we have 
It-I 

dY = L Wkek + wne", 
k~1 

where 

and 

ek ==ek - (ek·i" )i" + (ek·I" )(cos e)" 
+ sin e)" + I) (k = I, ... ,n - 1), 

e" == - sin e)" + cos e)" + I 

W k = Wk k = l, ... ,n - I, 

W" = R" de". 

(A9) 

(AIO) 

(All) 

(AI2) 

Also, for the normal vectors N(") and N(" + I), we have 

N(" + I) = N(") - (N(")·I" )1" 

+ (N(").I,,)( cos e)" + sin e"I" + I ), 
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n-I 
d N(n) = '" w' e' L.. n,k k' 

k~1 

n-I , L h' , W k = - 'k W " ~ J J 
j~1 

dN(n+ I) = _ n~1 (n~1 h ~ w.)e + (N(n)., )d() e 
L.. L.. Jk J k n n n , 
k~ I j~ I 

(A13) 

where in the last expression we have used the fact that 
w~ = W k (k = I, ... ,n - 1) from Eq. (AI2). Now, using 

(AI4) 

and Eqs. (A4) and (A12), we finally obtain 

(AI5) 

The first square bracket on the right-hand side ofEq. (AI5) 
gives the new h ij 's. Hence knowing the principal curvatures 
and the normal vector of X, we can calculate the principal 
curvatures of Y according to Eq. (A 15 ) . 

Now we take the hypersurface to be an n-dimensional 
torus Tn. Let the radius of circle S I on the' k - 'k + I plane be 
rk • We also define 80 =0, and N(J)= - 'I' Then it is easy, 
from the above formulas, to obtain the following results: 

m= 1, 

(ii) For p = 2m + 1, 

m=O, u= 1, 

m = 1, 

(A16) 

Wj = Rj d()j (j = 1, ... ,n), 

According to Eq. (A 15), the principal curvatures of Tn are 
obtained to be 

KI = lIR
" 

K2 = sin ()IIR 2,· .. 

n-I 

Kn = II sin ()kIRn' 
k~1 

(AI7) 

Our final task is to calculate the total mean curvatures 
h/=SH/ dV(/= 1, ... ,n). It is easy to check, with Eqs. 
(A 16) and (A 17), that the only non vanishing integral of the 
forms SKi" 'Kj dV is SKI dV. SinceH/ is the symmetric poly
nomials of I K'S, we conclude that 

hl#O, 
hk = 0 (k = 2, ... ,n). 

(AI8) 

APPENDIX B: EXPLICIT FORMS OF THE FUNCTIONS U 

Let Lr = - (r + 1 )Ar+ I + r~r' 
(i) For p = 2m, 

m>2, U = exp i{ - p·AI + 4 1 [ - p(p·L, ) (p·L2m ) + ~ [1 + 2(m - 2)] (p·L2) (p·L2m _ I ) 
ph I (p hi )(p.~p) 2m 

31 
---' -- [1 + 2(m - 3)](p·L3 )(p·L2m _ 2) + ... 
2m(2m - 1) 

+ ( - 1)mm! ( .L ) (.L )] 2(p·L2m ) [21(.L) ( .L 
2m(2m-l)"'(m+2) p m P m+1 + p6hl(PO~p)2 . P 2 P 2m) 

31 
- 2~ (p·L3 ) (p·L2m _ l ) + ... 

+ (_1)mm! (P.Lm)(P.Lm+2)+~ (_1)m+'(m+I)! (p.L
m

+ I )2]}. 
2m (2m - 1) ... (m + 3) 2 2m (2m - 1)'" (m + 2) 
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It is shown how an arbitrary Lorentz transformation can be expressed in terms of elements of 
Wigner's little group and its cosets. This yields a natural parametrization for the little group, 
while its coset members turn out to be helicity-preserving transformations. The associated 
Wigner angle and its relation to the actual change in helicity are discussed. Finally, the 
extension to zero-mass particles shows how the little group becomes a gauge transformation in 
that limit. 

I. INTRODUCTION 

In a 1957 paper,1 Wigner discusses the role of the Lor
entz transformations in understanding the internal symme
tries of space-time, as they refer to a particle's four-momen
tum and spin state. 

In particular, there are certain transformations that 
leave such quantities invariant after their application. By 
definition, those that leave a four-momentum invariant form 
the so-called Wigner's little group for that momentum. Oth
er transformations change the momentum but leave the heli
city invariant, as, for instance, any rotation would do. A 
generic transformation will then affect both the four-mo
mentum and the helicity. In fact, the resulting state of these 
two quantities will depend on the particles's mass, as well as 
on the "path" it follows, as it is boosted and rotated in the 
momentum space. 

The theorem to be shown in Sec. II states that an arbi
trary Lorentz transformation may be written as the product 
of a member of the little group times a member of its (left or 
right) coset. That coset member is a transformation that 
leaves the helicity invariant. Expressions for the parameters 
of the little group and the coset members can then be calcu
lated. Working in the 0 (3) formalism (Sec. III) we find an 
expression for the Wigner angle l

-4 related to the little-group 
member; subsequently we calculate the actual amount of 
spin rotation relative to the momentum direction now using 
the spinor representation. It is interesting to see how the 
little-group transformation changes form and meaning 
when it is applied to massless particles.5 In Sec. IV we find 
that it becomes a gauge transformation matrix; its different 
contents in the two representations are then discussed. 

The above theorem has been discussed previously in the 
literature,2.4 but this was only done for special cases of the 

I 

1 + (r-l){3;/{32 0 (r - 1){3x{3z/{32 

0 1 0 
B",({3) = 

(r - I ){3x{3z/{3 2 0 1+ (r-1){3;{32 

{3xr 0 {3zr 

where {3x ={3sin(ifJ), {3z = {3cos(ifJ), and r= (1 
_{32)-1/2. 

The resulting momentum state (point p') can be 
reached by other paths on the x-z plane. All of them will have 

parameters involved. This paper aims to generalize those 
results in an attempt to unify them. 

II. COSET DECOMPOSITION OF THE LORENTZ GROUP 

Lorentz transformations can be visualized in the envi
ronment of the three-dimensional momentum space. A mo
mentum state is specified by the triad (Px,Py,Pz) in that 
space. For the sake of simplicity the axial directions will be 
referred to as x,y,z instead of Px,Py,Pz' respectively. Boosts 
are performed by vector additions and rotations refer to the 
origin. Spin and its rotations, helicity, and other features 
related to spin are not shown in such a picture. 

Considering an arbitrary boost B", ({3), of boost param
eter {3, it is interesting to examine ifit can be decomposed in 
parts, each of which keeps either the helicity or the four
momentum constant. The boost changes the momentum 
state of a particle in a well-defined way, bringing it from p to 
p' (Fig. 1). It is not obvious, though, how the helicity 
changes in the process. For simplicity we choose the initial 
state (p) to lie along the z axis, and then that axis together 
with B", define the x-z plane (no loss of generality). The 
angle ifJ can have any value between O· and 180·, measured 
from the z axis. Using the four-vector representation, we first 
construct the state p by applying a boost A z (a) on the unit
mass particle, initially defined to be at rest and in the posi-

:~:::['~lit~~re! ,;a a;a ~ ~ a~J=P (1) 

1 L~ 0 a/a 1/a 1 1/a 
[where a is the boost ve1ocityofAz and a = (I - a 2

) 1/2]; no 
change of helicity has occurred. 

After that, we can apply B", ({3) on state p. Here 

{3xr 

0 

{3zr 
, (2) 

r 

the same effect on four-momentum, but they will affect heli
city differently. A transformation that preserves helicity is, 
for example, a rotation R ( {}) applied in succession to a boost 
in thez direction Bz (E), in such a way that we again reach p' 
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FIG. J. The two-dimensional momentum space for Sec. II. A state p is first 
created by boost Az and then boosted by B~ to p'. Here B~ can be decom
posed in a helicity-preserving part R ({f)Bz (E) and a little-group member. 
The latter is momentum preserving by definition (therefore absent from 
momentum space), but gives an additional rotation to the particle spin. 

eventually, 

! l~e E~']' 
o €Ie lie 

[ 

cos(t?-) 0 sin(t?-) 

R(t?-) = .0 1 0 
- sm( t?-) 0 cos ( t?-) 

o 0 0 

(3) 

with E = (boost velocity of Bz ) and e = (1 - r;2) 1/2. 

Both transformations R( t?-) and Bz (E) are helicity pre
serving, so if the particle follows the second path, its spin will 
not change its orientation relative to the momentum. A di
rect way to show that the two paths B", and RBz are not 
totally equivalent, is to compute the "closed-loop" matrix 
product B ",- IRBz. Thus 

D=B;IR(t?-)Bz 

where 

o 

o 
o 

-u 

F=~(a/3z+1)2-a2b2, u= -/3JF, 

T= 1 + (a +/3z)/F. 

(4) 

In general, matrix (4) is not the identity matrix. We can say 
that D is "equivalent to B", with respect to helicity" (both 
result in the same change of helicity when applied to p). 
Since D maps a point of the momentum space in itself, or 
keeps its four-momentum invariant, it is a member of the 
little group for p, by definition. 

We see that Wigner's little group can be parametrized 
using a (boost parameter of p), /3, ¢ (parameters of the 
helicity-equivalent boost B",) as the relevant quantities [E,t?
are functions of those three variables as follows 

-a+r(a/3z + 1) 
E - --;:---;:----'--_::_ 

- a 2 + r(a/3z + 1)2 ' 

• .Q. /3 a/3 z + 1 + lIy sm( v) = x -------
(a/3z + l)(y+ 1) 

(5) 

also see Fig. 2 for the variation of E with a, ¢ ]. 
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FIG. 2. Boost parameter EofzBz depends on all a,/3,t/J parameters (cf. Fig. 
I). Here E is plotted versus t/J (from 0°_90°) and a. The resulting surface 
corresponds to a /3 of 0.6. Note that E becomes I for a = O,t/J = 0 (irrespec
tive of /3). 

The above choice of parameters is justified if we consid
er the case where E = 0 (no difference between initial and 
final boost parameters). In this case the parametrization of 
D becomes the so-called Eulerian parametrization4 of 
Wigner's little group, which is now locally isomorphic to 
0(3). The D is expressed in terms of the z boost it acts on, 
and an angle around the y direction. 

Now we can easily prove the theorem. We solve the 
above matrix equation for B",: 

B",(/3) = R(t?-)Bz(E)D- I; (6) 

from this we see that arbitrary B", has been broken down in 
two pieces: RBz is helicity invariant and only changes the 
four-momentum, while D -I does not affect the momentum 
state and only transforms the helicity. In the above equation 
the helicity-invariant part is a member of the left coset of the 
little group, but the expression can be rewritten in terms of a 
right coset member [B", = (RBzD -IR -IB z- I )(BzR)]. 

III. WIGNER ANGLE AND CHANGE OF HELICITY 

In this section we go on deriving some results using the 
formalism of Sec. II. Then we see how this approach fits to 
the spinor representation. 

A. 0(3) formalism 

In Eq. (6) the only terms that bring about a change in 
the momentum p are the helicity-preserving R,Bz ; the action 
of D - I does not apply on the kinematics of the particle. 
Therefore, in order to change helicity, D -I can only rotate 
the spin. A measure of this rotation can be obtained if we 
consider an alternative momentum-preserving transforma
tion: AzRwAz -I and set it equal to D. Essentially we move 
the particle to the rest frame, rotate its spin there, and then 
restitute its momentum. Then 

(7) 

The angle <l>w is the so-called Wigner angle correspond
ing to the little-group element D. However, Rw (<I>w) is not 
the actual rotation of the spin as the particle is boosted from 
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1.0 

FIG. 3. When a spinor p is boosted, there is a change in the angle between 
the spin and momentum directions (helicity). This change is expressed by 
means of the conventional (not actual) "Wigner angle" <t>w. Its depen
dence (in radians) on angle t/J and boost parameter a is shown. The boost 
parameter of B¢ is/3 = 0.6. Notice how <t>w goes to zero for a~ I (then D 

beco;nes a gauge transformation of massless particles). 

P to p', but a mere convention. This is so because, in the 
sequence AzRwA z-I, after Rw has rotated the spin, the 
boost A z is not parallel to the spin direction anymore: its 
application now produces an additional spin rotation. The 
actual value(s) of the angle between the spin and the mo
mentum after the boost will be given more elegantly, in terms 
of the spinor formalism below. 

A direct comparison of the rhs of (7) with the rotation 
matrix by angle ~w around the y axis yields 

(8) 

(see Fig. 3). So <l>w gives a measure of the angle by which the 
spin is rotated when a boost with components (fJ x ,0, fJ z) is 
applied on a particle at velocity a [again taking into account 
Eq. (5)]. 

B. SL(2,c) formalism 

For these particles one can use the spinor formalism. 
The spinors obey the Lie algebra: 

[Sj,Sj] = i€ijkSk' 

[SoKj ] = i€ijkKk' 

[KoKj] = - i€ijkSk' 

Sj = !O'j, K j = ± (1/2)O'j' 
We note that if a set of K j 's satisfies the above equations, 

then they hold for the set of opposite elements ( - K j 's) as 
well; however, a similar statement does not hold for the Sj's. 

This Lie group acts on the normalized Pauli spinors. We 
distinguish between spinors that obey a Lie algebra where 
Kj's have a positive and a negative sign. So 

X +,X -, for K j = 1/2iO'j' 

i' +,i' -, for K j = - 1/2iO'j, 

where + and - stand for "up" and "down," respectively. 
The Dirac equation relates the dotted spinors to the un

dotted ones, thus leaving only two out of four. However, it 
seems that supersymmetric theories have a richer structure if 
all spinors are taken to be independent, and therefore we will 
treat them as such. In the following considerations we will 
deal with undotted spinors only. Results for the dotted ones 
will be simply quoted in the end. 
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The matrices of Sec. II will take on the form 

[
c+snz Snx ] 

B",(fJ) = Snx C-Sn
z 

' R(t'l) = [: -;], 

A z = [~ I~N]' 
with C=(!(r-1»)I12, S=(!(r+1»)I12, nx=sin(¢), 
nz = cos(¢), c = cos(t'l12), s = sin(t'l 12), and 
N = [( 1 + a)/( 1 - a)] 1/4. Then the transformation D 
equals 

D(+) = [ ~T 12 aUN
2

] (9) 
- aulN2 ~T 12 

(where u, T are the expressions defined in Sec. II). 
We could now go on and repeat the calculations of Sec. 

III A to compute the Wigner angle. Instead, though, we can 
easily find the angle formed by the spin and momentum di
rections. When the particle is at the origin, it can be repre
sented by a spinor of the form X ± (assume a polarization 
along the z axis). After A z (a) is applied, the resulting ma
trix, X ± (p) = Az (a)x ± = N ± IX ± ' is boosted by B", to 
become 

x± (p') =B",(fJ)X± (p) =N±IX'±, 

where X'± is 

[( 
1 + b)1/2 (1 + b)1I2] -- - cos(¢) --

2b 2b 
X'+ 

- _ Sin(¢)C ;/)'/2 

[ 

_ Sin(¢)C ;/)112 ] 
X'- = (1 + b)1I2 (1 _ b)l12 ' 

-- +cos(¢)--
2b 2b 

with b = (1 - fJ 2) 1/2 = 1/y. 
The above spinors can also be obtained (in normalized 

form) using a pure rotation by an angle UJ ± around the y 
axis. The angles of rotation for dotted and undotted spinors 
will equal 

t (
UJ+)_I+b+fJCOS(¢) an - , 

2 ± fJ sin(¢) 
(10) 

tan(UJ -) = . + fJ sin (¢) , 
2 1 + b +fJcos(¢) 

where the upper sign refers to undotted spinors and the low
er to dotted ones. 

So the angle D between the spin and momentum at the 
point p' (in other words, the change in helicity resulting 
from B",) will be 

D± =t'l-UJ±, (11) 

t'l still having the same value as the one given by (5). 
These angles are plotted versus a and ¢ in Fig. 4 for the 

case of undotted spinors. In Fig. 5 their relative magnitudes 
are shown in comparison to <l>w. 

IV. THE MASSLESS-PARTICLE LIMIT 

So far our approach has been mass independent. It is 
interesting to check what happens if, keeping the momen-
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0.5 

2.0 

(b) 

FIG. 4. The actual change in helicity, {j ± (sign referring to the initial z 
polarization ofthe spinor). These angles are plotted against t/J and a (for 
undotted spinors). (a) {j+ and (b) {j_; P = 0.6. Notice that for a-I, {j+ 

goes to zero together with ct>w, unlike {j _ (that spinor remains nonaligned). 

tum finite, we take the mass to be zero, in other words, if the 
particle moves at the velocity oflight. That "infinite momen
tum/zero-mass" limit, as it is often called, can be taken in 
the end of our calculations, by setting a = 1. In this case 
there is no notion of a rest frame. So the approach taken to 
derive (7) cannot be repeated here. This is expressed in the 
limiting value of the Wigner angle <l>w: it becomes identical
ly zero [cf. (8)]. However, because the elements ofA z take 
on infinite values, D remains finite. It has the form 

D(a~ lJi.~) { 
o 

o 
o 

with u = {3 xl ({3 z + 1), which is identical to that of a gauge 
transformation that can be applied on a photon four-poten
tial A I' = (A x ,0,Az ,w). The above expression for D( a = 1) 
remains a gauge transformation seen from any frame of ref
erence: D '(u) = B({3)D(u)B -1(/3) = D(u'); where 
u' = [( 1 + {3)/( 1 - {3)] 1/2u. For the special caset: = 0, this 
transition from the Wigner rotation to a gauge transforma
tion matrix shows how the little group becomes locally iso
morphic to the E(2) group. The nature of the contraction 
and the singularity has already been discussed in the litera
ture.4•6 

Similar to Sec. III, we can extend these conclusions for 
spinors. If we apply D ( ± ) to X ± ,X ± ' we see that, in the 
a = 1 limit, two of them remain invariant, while each of the 
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a 

FIG. 5. The Wigner and {j ± angles (in radians) against a; parameters are 
p = 0.6 and t/J = 70'. 

two others mixes with the opposite-polarization spinor: 

D(+'X+ =X+, D(+'X- =X- + uX, 

D(-)X_ =X- - uX+, D(-X- =X-' (12) 

Physically the invariant set can be polarized neutrinos. For 
the two others, helicity is not preserved under the action of 
the little group as we go to the zero-mass limit; they are not 
forced to align. These two extra degrees of freedom corre
spond to the gauge degrees offreedom in the case of photons. 

v. CONCLUDING REMARKS 

In this paper, the general form of a decomposition 
theorem for Lorentz transformations was shown. It turns 
out that a boost can be decomposed in two factors: one keeps 
the four-momentum invariant (is a member of the little 
group for that momentum), the other one preserves helicity. 
In this way we are led to a natural parametrization of 
Wigner's little group. A member of that group, D, is ex
pressed in terms of the boost it acts on and the parameters 
(boost {3, relative angle ¢) of a boost that is equivalent to D 
with respect to helicity. Little-group members also have a 
Wigner's angle associated with them. This gives a measure of 
the amount of spin rotation when Dacts on the particle (mo
mentum and spin) state. Here we calculated this angle as 
well as the actual change in helicity (using the spinor repre
sentation). Finally, it was shown that, at the zero-mass limit 
(case of photons or neutrinos), the little group turns into a 
gauge transformation matrix. Only one out of two spinors in 
each pair aligned with the momentum in this limit. The non
alignment of the remaining spinors gives rise to the particle's 
gauge degrees of freedom. 
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A geometric connection is established between the group cocycle used by Mickelsson 
[Topological and Geometrical Methods in Field Theory (World Scientific, Singapore, 1986), 
pp. 117-131] to realize the Kac-Moody extension of the group ofloops in SU (n) as the 
quotient ofa topologically trivial extension of maps from the disk into SU(n) and the gauge 
anomaly for Quillen's determinant bundle over the Cauchy-Riemann operators on the spin 
bundle over S 2. 

I. INTRODUCTION 

Let G denote the group SU(n). In Ref. 1, Mickelsson 
observed that the gauge anomaly for chiral fermions on the 
two sphere2 could be used to define a central extension, DO, 
of the maps from the disk, D, into G, which has the Kac
Moody extension of the loop group as a natural quotient. 
Because the central extension of the maps from the disk into 
G is topologically trivial and this is not the case for the Kac
Moody extension, one has achieved something in this real
ization (one may find some fUrther discussion of Mickels
son's construction in Frenkel's paper3

). 

In this paper we are concerned with examining the rela
tion between the group extension defined by Mickelsson and 
the gauge anomaly for chiral fermions. In Sec. II we use 
some ideas from Pressley and Sega14 to give an alternative 
picture of the group extension for maps from the disk into G 
defined by Mickelsson in Ref. 1. Some ideas from geometric 
quantization figure here.5 

In Sec. III we introduce the spin bundle over the Rie
mann sphere and examine Quillen's determinant line bundle 
over the space of Cauchy-Riemann operators on this bun
dle. We split the sphere into the upper and lower hemi
spheres, identifying the lower hemisphere with the disk and 
the equator with the circle S 1 • We consider the space of 
Cauchy-Riemann operators which "live" on the disk and 
using some results of G. Segal and Wilson6 show that there is 
a natural map from this space of Cauchy-Riemann opera
tors into the Grassmannian of subspaces of L 2 (S 1) that are 
"close" to the Hardy space H + in a precise sense. The map 
essentially assigns to each Cauchy-Riemann operator the 
subspace of boundary values of sections over the disk, which 
are holomorphic with respect to the associated complex 
structure. We show that det· bundle over the Grassmannian 
pulls back to Quillen's determinant bundle under this map. 
This is an expression of the correspondence between "path 
integrals" and an operator formalism on the boundary that 
has attracted much attention in recent work on conformal 
field theories. 7 

In Sec. IV we use some results of Quillen8 to calculate 
the gauge anomaly for the action of a subgroup of the gauge 
group acting on the spin bundle in the holomorphic triviali
zation introduced by Quillen. We arrive at the Wess-Zu-

mino term, whose appearance is understood from more so
phisticated topological considerations. 2 This calculation is 
rather similar to the calculation of gauge anomalies on the 
sphere that can be found in Kupianen and Mickelsson,9 al
though they do not explicitly consider Quillen's holomor
phic trivialization. 

Fina~, in Sec. V we show that Mickelsson's group ex
tension lJ(] acts on a line bundle over a base, which can be 
identified with the contractible space DG /G. This line bun
dle intersects a piece of Quillen's determinant bundle over 
the base DoG of maps from D to G, which are the identity on 
the boundary S 1. Over this intersection the gauge action of 
DoG in Quillen's determinant bundle is shown to agree with 
the action of a subgroup in fiG (which acts naturally in the 
det· bundle). We use the gauge anomaly result for Quillen's 
trivialization to show that there is a natural trivialization of 
the pull back bundle det· ~DG /G, which agrees with Quil
len's trivialization over the cosets DoG·G. Relative to this 
common trivialization, the gauge anomaly for Quillen's tri
vialization of det can be identified with the group cocycle for 
D-;;G. This is the principal result of this paper and constitutes 
our account of the surprising relation between these two no
tions. 

Not all ofthe work in the first three sections is essential 
for the final result. However, we believe that most of the 
material in the first three sections is of independent interest 
as a simple concrete example of the developments in Refs. 4, 
6, and 8. 

II. TWO GROUP EXTENSIONS 

Let D denote the closed unit disk {zeC: Izl.;;; 1} in C and 
writeS 1 = aD for the boundary of D. Let G denote the group 
SU (n), of unitary maps on en with determinant 1. Let DG 
denote the group of C'" maps from D into G with the group 
operation being pointwise multiplication (each element in 
DG is the restriction of a smooth map from a neighborhood 
of Din C into G). Let LG denote the group of C'" maps from 
S 1 into G under pointwise multiplication. There is a natural 
homomorphism b: DG~LG, which sends an element ¢eDG 
to b¢l = ¢lIs" the boundary value of the map ¢l. 

In this section we will construct central extensions fiG 
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............ 
and LG, which covers the homomorphism b. The central ............ 
extension LG will be the Kac-Moody extension of LG 4 and 
the group JSG is related to the extension defined by Mickels
son in Ref. 1 (the reader should be aware that the group 
referred to as "DG" in Ref. 1 has a base point condition that 
we have dropped here). An alternative construction of this 
extension can be found in Ref. 10. The cocycle in Ref. 10 for 
1SG matches the one we find here. The homomorphism b has 
a kernel that is naturally homomorphic to DoG, the kernel of 
the homomorphism b. Thus as was done in Ref. 1, we may 
realize the Kac-Moody extension LG as a quotient iSG / 
DoG. ............ ............ 

The construction of LG and DG and the homomor-
phism b all follow directly from proposition (4.42) in Press
ley and Segal. 4 Before we explain this we will review some 
facts about line bundles with connections that may serve as 
motivation and that will provide a link with later develop
ments concerning determinant bundles. A detailed account 
of the material we review here may be found in Kostant5 and 
some infinite dimensional generalizations in Ref. 4. 

To keep the exposition free of extra explanations, we 
will review the situation in the finite-dimensional case, even 
though we have in mind an application to a special infinite
dimensional problem. Let X denote a smooth finite-dimen
sional, connected, simply connected manifold and suppose 
that 1T: L->X is a smooth complex line bundle over X. A 
section of L is a smooth map s: X -> L whose value s(x) at any 
point xEX' is in the fiber of Lover x. A connection V on L is a 
way of differentiating sections of L along tangent directions 
in X. To each local section s of L, and each local smooth 
vector field v, both defined on some open set U~X, the con
nection determines a new local section V v son U (the deriva
tive of s with respect to the vector field v). The section V v s is 
a linear function of v and for any Coo functionJ on U we have 
Vfvs =}Vvs and Vv (fs) = v( J)s + JVvs. It makes sense to 
differentiate a section s along a curve y( t) in the base X, and 
this makes possible the notion of parallel translation in L. If 
the curve [a,b] 3t->y(t)EX'joins Xa = y(a) to Xb = y(b), 
then we can transport an element IE1T- 1 (xa ) to 1T- 1 (xb) by 
lifting y(t) to a section yU) over y( t), which starts at I and is 
flat with respect to the connection along y. That is 
'ij y (t) y( t) = O. The end point y( b) is the parallel translation 
of I to 1T- 1 (x b ) along y, for which we write P ~ (I) or just 
P y (I) when the connection is understood. 

The curvature of a connection is the infinitesimal paral
lel translation about a parallelogram in the base (determined 
by two tangent vectors U and v). For line bundles this may be 
identified with a closed two form w on the base X. The global 
version of this is a fundamental result for line bundles. Sup
pose y is a closed oriented curve in X and let a denote an 
oriented surface in X whose boundary is y. Parallel transla
tion about y is multiplication by a complex number Q( y) 
(the holonomy ofy) and we have 

Q(y) = eiSifU. 

Since parallel translation along y does not depend on the 
choice of surface element a it follows that W/21T must be an 
integral two form. 

A smooth map ¢: X ->X of the base is said to have a lift, 
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;P, intoL if there is a smooth map ;P:L ->L that is linear on the 
fibers of L and covers the action of ¢ on the base. If;P is an 
invertible lift of a map ¢ on X, then ;p acts on sections, s, of L 
by ;P*s = ;P-IS( ¢) (the pullback of s by ¢). A lift;P is said to 
be flat, relative to a connection V if it preserves the connec
tion in the following sense: 

Vv (;P*s) = ;P*Vd4>(V)s. 

A smooth map ¢ of the base X will have a flat lift into L if and 
only if ¢*w = w, that is, it preserves the curvature two-form 
on X. This condition may also be expressed as the invariance 
Q(¢y) = Q( y) of the holonomy function on loops under the 
action of ¢ on loops. Any two flat lifts of the same map on the 
base differ by a connection preserving cover of the identity 
map on X. Such a map is necessarily constant when X is 
connected.5 

Suppose that r is a group of diffeomorphisms of X that 
preserves the curvature w of a connection on L. The group r 
of flat lifts of elements in r is a central extension of r by 
C*: = C - {O}. We can be more explicit about the group r. 
Fix a choice of base point xoEX'. Suppose that ¢Er, let P 
denote a path in X that joins Xo to ¢(xo), and let UEC*. The 
triple (¢,p,u) determines a flat lift of ¢ in the following man
ner. The action of (¢,p,u) on the fiber Lx", of Lover Xo is 
given by parallel translation Pp along p from Lx" to L4>(x,,) 
followed by multiplication by u. To obtain the action of 
(¢,p,u) on the fiber Lx choose a path y from Xo to x and 
define 

(¢,p,u)'1 = uP,I>"yPp (Py ) -1'1 

for lux. This map does not depend on the choice of the 
curve y, since a change in this curve produces holonomy 
changes in P y and P",.y that exactly cancel, because the ho
lonomy function is invariant under the action of ¢. This ac
tion on the fibers associates a flat lift of ¢ to each triple 
(¢,p,u) and every flat lift can be so realized. It is easy to 
check that the composition law for the triples (¢,p,u) is 

(¢I,PI'U I) . (¢z,pz,uz) = (¢I¢Z,PI *¢tPz,u IU2), (2.1) 

where PI*¢tPZ denotes the path obtained by first following 
the path P 1 and then following the path ¢ tPz (* is the homo
topy product). Two triples (¢I,PI'U 1 ) and (¢z,pz,uz) deter
mine the same map on L provided that 

(2.2) 

where a(p 1 *pz- I) is an oriented surface whose boundary is 
PI*P2- I. In proposition (4.4.2) in Ref. 4 it is observed that if 
r is a group acting on a manifold X (possibly infinite dimen
sional), which leaves invariant a closed integral two-form 
w/21TonX, then the set of triples (¢,p,u), as above, subject to 
the equivalence relation (2.2), forms a group r under the 
composition law (2.1). This group is a central extension ofr 
by C* and the map (¢,p,u) -> ¢ is a homomorphism from r 
to r. If the two-form w is real, then it is clear that we can 
reduce the extension to the one torus T by restricting u to be 
of absolute value 1. 

In the situation of interest for us X is an infinite-dimen
sional Grassmannian. Let H + denote the Hardy space of 
analytic functions on the disk with boundary values in 
L z(S t,en), thought of as a subspace of L z(S I,en ). The 
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group LG acts onL 2 (S I,en ) by left multiplication. The orbit 
of H + under this action can be identified with the group nG 
of based loops in G (loops that start and finish at the identity 
in G). 4 This is because any unitary loop with a holomorphic 
invertible extension into the interior of the disk is necessarily 
constant (Schwartz' reflection produces an invertible homo
morphic map on pI). With the identification of the Grass
mannian with nG, the action of ifJELG on gEnG is given by 
g(eiO ) -+ifJ(eiO )g(eiO)ifJ( 1) -I. 

The space nG has a closed integral two-form W/21T, 
which is invariant under the action of LG on nG. To write 
this form down suppose that gEnG and that Dig for i = 1,2, 
are tangent vectors to nG at g identified in the natural way 
with n X n matrix valued functions on S I. Then 

1 1217 
Wg (Dlg,D~) = - Tr(Jo (g-IDlg)g-ID~)dO. 

21T 0 

That this form is invariant is easily checked. The inte
grality is proved in propositions (4.44) and (4.45) in Ref. 4. 
If one prefers, this integrality also follows from the indepen
dent construction of the group extension for LG (wi~h the 
appropriate Lie algebra cocycle) acting on the determinant 
bundle over nG (see Chap. 7 in Ref. 4). The form W is easily 
seen to be real. The set of triples (ifJ,p,u) with ifJELG,p a path 
in the Grassmannian connecting H + with ifJH +, and UEC 

with I u I = 1 is thus seen to be a group under the composition 
law (2.1) subject to the equivalence relation (2.2). We de
note this group by Wand note that it is clearly a central 
extension of LG by the one torus T. .---.... 

The definition of DG is very much the same. However, 
for reasons that will not be apparent until the last section we 
will modify the sort of "path" that appears in the definition. 
The boundary value map DG3 ifJ-+ bifJ = ifJls' ELGis a homo
morphism and bifJ acts on nG preserving the form w. Thus 
we define DG as the set of triples (ifJ,p,u) with ifJEDG,p a path 
in DG connecting some constant map, gEG, to ifJ, and UEC 
with lui = 1. Ifp is a path in DGwe writep: = bifJH+ for the 
image of this path in the Grassmannian. Note that since Gis 
connected we can move around the initial constant map gEG 
without effecting the induced map p. The composition law -for DG is (2.1) with the understanding that ifJ acts on the 
Grassmannian via bifJ, the paths that appear in the definition 
arepj rather thanpj' and the equivalence relation is (2.2). 
Observe that the composition law and the equivalence rela--tion that define DG depend only on the induced maps p. The 
extra information in p will only be used to simplify matters in 
Sec. V and can be ignored for the present. It is clear that DG 
is a central extension of DG by T. A_ .---.... 

We define a homomorphism b: DG-+LG by 

b(ifJ,p,u) = (bifJ,p,u). 

It is trivial to see that this is well defined and a homomor
phism. To connect this more explicitly with the results in 
Ref. 10, note that the bundle DG -+ DG has an obvious sec
tion. For ifJEDG, let ifJr denote the "radial homotopy" given 
by 

ifJr(z) = ifJ(rz), O<r< 1. 

Associated with any ifJEDG there is a natural path p in DG 
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joining the constant map ifJ(O) to ifJ. Namely, [0,1] 3r-+ifJr. 
The secti?n ~e have in mind is ifJ -- (ifJ,ifJr ,1): = ;Po We n~w 
multiply ifJ 1 • ifJ2 and reexpress the result as a multiple of ifJ 1 ifJ2 
to find 

A A A 

ifJl'ifJ2 = c(ifJl,ifJ2)ifJ 1 ifJ2' 

where 

C(ifJl,ifJ2) = eiSa '", 

and u is the surface obtained by mapping the triangle 
Ll: = {(r,s) 10<s<r< 1} to the Grassmannian by 

Ll3 (r,s) --bifJ~ ifJ~H +. 

We identify the surface u( r,s) = bifJ~ ifJ~ H + 10 the 
Grassmannian with 

u(r,s) = ifJl (reiO )ifJ2(seiO )ifJ2(S) -lifJl (r)-I 
in nG and we write ifJl for ifJl (re iO ) and ifJ2 for ifJ2(seiO ). Then 

( u*w = - _1_ ( dr ds (217 dO Tr[ ifJl-1JrifJl ifJ2 
J", 21T J", Jo 

xJo (ifJ2- IJs ifJ2)ifJ2- I]. 

This result is precisely the cocycle found in Ref. 10. One 
may also calculate the kernel of the homomorphism b. It is 
the set of triples (ifJ,p,e - is a(p)'") with bifJ = identity, p a closed 
path starting and finishing at H +, and u(p) is an oriented 
surface with boundary p. Let U r = u(;Pr). It is not difficult 
to check that the radial homotopy ifJr (z) gives us a homo
morphism: 

ifJ -+ (ifJ,"¢>r,e - i J",c") 

from DoG onto the kernel of b. 
Mickelsson made the interesting observation that the 

- iJallJ. 
term e 'IS related to the Wess-Zumino term in the gauge 
anomaly for chiral Fermions on S 2 (though it might be fairer 
to say that the cocycle property for the Wess-Zumino term 
inspired his definition of the group extension for DG, see also 
Ref. 11). He accounted for this by noting a homotopy equiv
alence between nG and the space of potentials modulo gauge 
equivalence. The rest of this paper will be devoted to an alter
native explanation of this observation by making a connec
tion with Quillen'S determinant bundle for the space of 
Cauchy-Riemann operators on the spin bundle on S2.8 

III. CAUCHY-RIEMANN OPERATORS ON 52 

In this section we will introduce a ex; vector bundle on 
S 2 and a family of Cauchy-Riemann operators on this vector 
bundle. The vector bundle is chosen so that the index of the 
Cauchy-Riemann operators is 0 (it is the direct sum of n 
copies of the spin bundle on the sphere). The family of 
Cauchy-Riemann operators we are interested in lives in just 
one hemisphere (which we identify with the unit disk D). 
The boundary of this hemisphere we identify with the unit 
circle S I. For each fixed Cauchy-Riemann operator the 
boundary values of holomorphic sections in the disk deter
mine a subspace of L 2 (S I,cn ), which is in the Grassmannian 
of subspaces introduced by Segal and Wilson in Ref. 6. The 
principal result of this section is that under the map, which 
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takes a Cauchy-Riemann operator to a subspace in the 
Grassmannian, the det· bundle over the Grassmannian 
pulls back to Quillen's determinant bundle over the Cauchy
Riemann operators. This observation will allow us to direct
ly relate the cocycle that appears in the lift of DoG, into DG 
with the gauge anomaly for Quillen's determinant bundle. 
We will do this in Sec. V. 

The vector bundle on S 2 that we are interested in is the 
direct sum of n copies of a distinguished line bundle on S 2 
that arises naturally from the identification of S 2 with pl. If 
we think of pI as CU{oo}, then the maps 
pI _ {oo} 3z--+ {(l,lz): IEC} and pI - {a} 3z--+ {(l /z,l): 
IEC} give the usual identification of C U { 00 } with projective 
one space. Consider the line bundle over pI, which consists 
of pairs of points (m,v) where mEpl and v is an element of 
the line in C2 to which m maps. There are natural trivializa
tions of this line bundle given by 

pI _ {00}3z--+eo(z): = (z,(l,z») 

and 

pI _ {0}3z--+e oo (z): = (z,(l/z,l)), 

where 1/ 00 = 0 in the second definition. The transition 
function between the two trivializations is 

eoo(z) =Z-leo(Z), for ZEC-{O}. 

We denote the line bundle over S2 defined by this transition 
function as E (it is the spin bundle over S 2). The bundle E 
has a natural Hermitian structure that arises from the fact 
that its fibers can be regarded as subspaces of C2. Thus we 
define 

peo(z)'veo(z): = (p,pz)'(v,vz) =jlv(l + Iz12) 

and 

peoo (z)'ve oo (z): =jlv(1 + Izl-2). 

The vector bundle we wish to consider is the direct sum of n 
copies of E, which we denote by En. Let ekj denote thejth 
copy of the k trivialization for En (k = 0,00) and write 

edz): = [ek,1 (z), ... ,ek,n (z)]. 

Define D={z: Izl<l} and Doo ={z: Izl>l}U{oo} 
(note that D is closed and D"" is open). Now choose E> 0 
and define DE = {z:lzl < 1 + d and D"",E = {z: 
Izl > 1 - du{oo}. We may clearly regard eo(z) ande"" (z) 

as trivializations of En over DE and D
OO

•E, respectively. If 
fk (z) is a en -valued function then we write 

n 

ek(z)fk(Z):= ~ ekj(z)fkj(Z) 
j= I 

for the corresponding local section of En . 
Next we wish to introduce a family of Cauchy-Riemann 

operators on the bundle En. Let do denote the set of 
eoo n X n matrix-valued functions on the interior of the disk 
D with support in the closed disk D. Each "potential" AEd 0 

determines a Cauchy-Riemann operator, a A' on the bundle 
En in the following manner: 

aAeO(z) fo(Z): = dZ eo(z)(az + A (z) ).fo(z), 

aAe oo (w)foo (w): =aweoo (w)awfoo (w), 

where w = Z-I is the natural local parameter in D oo,E and in 
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the first equation the potential A has been smoothly ex
tended to DE by setting it equal to zero outside of D. 

A Cauchy-Riemann operator maps sections of En to 
(0,1) form valued sections of En . A local section, s, of En is 
holomorphic with respect to a A , provided a AS = O. It is not 
difficult to show that it is always possible to find local trivia
lizations holomorphic with respect to a A • Any two such tri
vializations differ by an n X n matrix-valued function that is 
holomorphic in the usual sense. Thus a Cauchy-Riemann 
operator determines a holomorphic structure for the bundle 
En (for more details about Cauchy-Riemann operators see 
Ref. 12). 

For AEd 0' let WA denote the subspace of L 2(S I,en 
) 

obtained by taking L 2 boundary values of solutions, f, to 
(az + A (z) )f(z) = 0 for z in the interior of D. The subspace 
WA is in the Grassmannian of subs paces of L 2(SI,en

), 

which are close to the usual Hardy space 

H+:={fE£2(S'):fhas an analytic continuation 

into the interior of D}, 

in a sense that we now explain. Let Gr denote the collection 
of subspaces, W, of L 2(S I,en

) with the property that the 
orthogonal projection on W differs from the orthogonal pro
jection on H + by a Schmidt class map. Let Gro denote the 
connected component of Gr containing the subspace H +. 

Then proposition (8.11.10) in Ref. 4 implies that WA EGr o' 
The trivialization used in Ref. 4 is the "exterior" one rather 
than the "interior" one we use. Confusion will result if this 
difference is overlooked. We will not pause at this point to 
adapt proposition (8.11.10) in more detail to our circum
stances, since the adaptation required will emerge naturally 
in the course of explaining the main result of this section, to 
which we now turn. 

In Ref. 6, Segal and Wilson construct a holomorphic 
line bundle, det, over Gro, which is a natural extension of the 
notion of a determinant bundle for finite-dimensional Grass
mannians (the line bundles whose fibers over a subspace is 
the highest exterior power of that subspace). The dual bun
dle, det·, is most important for us. In Ref. 8, Quillen defines 
a determinant line bundle over the space of Cauchy-Rie
mann operators on a fixed e 00 vector bundle with a compact 
Riemann surface for its base. The principal result of this 
section is that under the map d o3A--+ WAEGro the det· 
bundle over Gro pulls back to Quillen'S determinant bundle 
over do. This is one version of the transition between a path 
integral formalism in the disk D and an operator formalism 
on the boundary, which is much studied in the physics litera
ture. 7 

The fiber of the determinant bundle over AEd 0 is A (ker
(aA »). ®A (coker(aA »), where A(') is the highest exterior 
power of a finite-dimensional vector space (see Ref. 8). It is 
useful to identify the subspaces ker(aA) and coker(aA ) in 
cohomological terms. Let 'if! A denote the sheaf of germs of 
sections of En holomorphic with respect to a A • Let 'if! A ( U) 

denote the space of holomorphic sections of En over the 
open set U. Define a map 

by 
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(3.1) 

The kernel of this map is HO(S2,~ A) and may clearly be 
identified with ker(aA ). The cokernel of this map is 
H I(S2,~ A) and may be identified with the cokernel ofaA> as 
we now indicate. TosolveaAI= gforf, givenganL 2 section 
of En ® 1'0.1) [here T(P.q) is the bundle of (p,q) forms on 
pi), one might try to solve the two problems: 

(3.2) 

then piece the results together. It is always possible to solve 
the local problems (see Ref. 13, Theorem 13.2). If one has a 
pair of solutions 10 and I", to (3.2) then the difference 
10 - I", is defined and holomorphic in the usual sense on 
DE nD", [when this difference is identified with a function 
via the trivialization eo(z) on DE)' Iflo - I", is in the image 
of the map (3.1) wehavelo-I", =ho-h", or 

10 - ho =/00 - hoo on DEnDoo ' 

But aA(Io-ho)=g-O and aA(/oo -hoo)=g-O, so 
that the global section definedbylo - hoonDE and/oo - hoo 
on D", is a solution to a AI = g. Let R (X) denote the range of 
a map X and let R temporarily denote the range of the map 
(3.1). Consider the map that sends g + R (a A ) into the coset 

10 - I", + R, where.t;)and/oo are any two solutions to (3.2). 
It is easy to check that this map is well defined and the calcu
lation above shows that the map is injective. To see that it is 
surjective suppose that H is a holomorphic section of Em 
over DE nD 00 , which has L 2 boundary values at Izl = 1. By 
subtracting from H a function that is holomorphic in the 
exterior of the unit disk, we can ensure that the difference 
has a smooth extension into the interior of D. Thus, in con
sidering the coset H + R, we can suppose that H has a 
smooth extension into the interior of D. But a A H = 0 out
side of D and so a A H has a smooth extension to a global 
(0,1) form valued section g of En. Now chooselo = Hand 

100 = 0 to see that the coset for H is in the image of the map 
from coker(aA) to H I (S2,~ A) defined above. The isomor
phism betweencoker(aA) andH I(S2,~ A) is known as 001-
beault's theorem (see Theorem 15.14 in Ref. 13 for a more 
precise account). 

Next we sketch the connection with the Grassmannian 
in L 2 (S I ). It is useful, at this point, to think in terms of the 
covering of S 2 given by DE and D 00 ,E (we want to let E -> 0 to 
get DEnD"',E->SI). The map that takes 
ho al h", E~ A (DE) al ~ A (D OO,E) to ho - h", formally be
comes the map 

WA alHoo 3hoalh oo ->ho-hoo EL 2 (SI,en), 

where H", is the space of sections of En holomorphic in D 00 

with L 2 boundary values on the unit circle. To be more pre
cise we must specify the trivialization with respect to which 
we are to understand ho - h", as a function on S I. The trivia
lization we choose is the interior trivialization eo(z) over DE 
[this is not the trivialization considered in proposition 
(8.11.10) of Ref. 4, which we are otherwise following at this 
point). We now identify H 00 in this trivialization. A sectionl 
in En is holomorphic over D 00 , provided that the vector
valued function I", defined by I = e oo (z)/oo (z) is holomor
phic in D 00 • To have boundary values in L 2, we must have 
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00 

100 (z) = L loo.n z - n 
n=O 

where/",.n is a square summable function of n. The coordi
nates of this same section in the eo(z) trivialization are given 
by Io(z) = z- II", (z). Thus we see that the L 2 boundary val
ues of H 00 are identified in the eo(z) trivialization with the 
Hardy space H _ (S I,en) = the set of L 2 functions on the 
circle with analytic continuations into the exterior of the 
disk that vanish at 00. 

We have identified the kernel and cokernel of the map: 

WA al H _ (S I,en) 3ho al hoo ->ho - h", EL 2(S I,en), 
(3.3 ) 

with the kernel and cokernel ofaA • The kernel of (3.3) is 
WA nH _, which is also the kernel of the orthogonal projec
tion of WA on H+. The cokernel of (3.3) may be identified 
with the cokernel of the very same projection P +: WA -> H +, 

as we now indicate. Let R denote the range of (3.3) and 
suppose that gEL 2 (S I). Consider the map that takes g + R 
to P +g + P + WA • This map is well defined since two repre
sentativesgl andg2 of the same class differ by w - v (WEWA 
and VEH _), which is zero in the coset class on the right 
[P+(w-v) =P+WEP+WA ). The map is injective since 
P +h + P + WA = 0 implies that P +hEP + WA, which in tum 
implies that for some WEWA we haveP +h = P +w. But then 

h =P+h +P_h 

= w-P_W+P_hEWA +H_ =R. 

The map is surjective since if h is any element in H + we have 

h+R->h+P+WA' 

Thus we have identified the kernel and cokernel of a A with 
the kernel and cokernel of the orthogonal projection P + : 

WA ->H+. 
The kernel and cokernel of the projection P +: WA ->H + 

are the data for the determinant bundle over Gro as we now 
explain (following Segal and Wilson6

). The first thing to 
note is that because we are working on En the index of a A is 0 
[Riemann-Roch gives the index as n (1 - g) + degree, with 
g = 0 and the degree = n X ( - 1) for n copies of the spin 
bundle). This implies that the index of the orthogonal pro
jection of WA on H + is 0 which in tum means that WA is in 
the connected component of the Grassmannian containing 
H+ (that is, GrO).4 Recall from Ref. 6 that the information 
needed to define an element in the fiber of the det* bundle 
over WEGr 0 is an isomorphism w: H + -> W, such that P +w is 
a trace class perturbation of the identity on H +. Such an 
isomorphism is called an admissible basis for W. If one 
knows ker(P + I w) and coker(P + I w) it is easy to construct 
such maps. Let F denote the orthogonal complement of 
P+Win H+ and let i: ker(P+lw)->coker(P+lw) denote 
any isomorphism of these two finite-dimensional vector 
spaces. There is a natural isomorphism of F with the coker
nel of P + I w given by F3x->x + P + W. Compose iwith this 
isomorphism to get a map (which we still call i) i: 
ker(P + I w) ->F. Now extend ito the rest of Wby making it 0 
on the orthogonal complement ofker(P + I w)' Keep the no
tation i for this extension and define 
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W;:=(p++i)-I. 

The map P + + i is invertible since it is Fredholm with index 
o and has no kernel. One may easily check that P +w; is a 
finite rank perturbation of the identity and so W; is suitable 
as an admissible basis for W. The fiber in the det* bundle 
over WEGro is a set of equivalence classes of pairs (w,/1) 

where W is an admissible basis for Wand/1 is an element ofC. 
A pair (w 1,/11) is equivalent to (W2,/12) if and only if 

/12 = /11 det(w l- I W2 )· 

What we will show next is that the fiber over W in the 
det* bundle may be naturally identified with the vector space 

A (ker(P + 1 w»)* ®A (coker(P + 1 w»), 

where A(') denotes the highest exterior power. Let W; and 
Wj denote two admissible bases arising from isomorphisms i 
andj of the kernel and cokernel of P + 1 w' Then 

det(w;-I Wj ) = det(P + + i)(P + + j)-I) 
= det(I + (i _ j)(P + + j) -I). 

Since the range of i and the range ofj are both contained in F, 
the operator whose determinant appears above has the ma
trix (~ ~), relative to the decomposition F1 (fj F. Thus 
det(w;-IWj ) =detPF(I+ (i-j)(P+ +j)-I)PF, where 
P F denotes the orthogonal projection on F. But 
(P + + j) -IPF = r IPF' so that finally 

det(w;-I Wj ) = det(ij-I). 

Now we define a map from the fiber of det* at W to 

A (ker(P + 1 w))* ® A (coker(P + 1 w»), 

which is a natural isomorphism. Choose an isomorphism i of 
ker(P + 1 w) with coker(P + 1 w) as above. By taking highest 
exterior powers this defines a map A (i) from A (ker (P + 1 w ) ) 
tOA (coker(P + 1 w »). Thus we may regard A (i) as an element 
of 

A (ker(P + 1 w))* ® A (coker(P + 1 w»)· 

With this understood define a map 

(w;./1) ..... /1A (i). 

The transition function (2.3) above shows that this is a well
defined identification of the fiber in det* over WEGro with 
A (ker(P +1 w »)* ®A (coker(P +1 w »). We have concentrated 
on the description of the fibers over the non invertible 
Cauchy-Riemann operators in J:1' 0' The fiber over the in
vertible elements in J:1' is canonically identified with C (via 
the canonical section of the determinant bundles). This is 
also true in the det* bundle. The fibers in the det* bundle 
over the subs paces in the Grassmannian that are transverse 
to H _ are canonically identified with C via the canonical 
section of this bundle.4 

Return now to the map J:1' 0:3 A ..... WA • The fiber in the 
det* bundle over WA EGro is naturally identified with 
A (ker(P + 1 WA »)* ®A (coker(P + 1 WA ») (or C when WA is 
transverse to H _ ); however, this is the same space as 
A (ker(JA »)* ®A (coker(JA») (or C when the Cauchy-Rie
mann operator associated with A is invertible), which is the 
fiber in Quillen's determinant bundle over the Cauchy-Rie-
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mann operators [ since ker ( J A) is isomorphic to 
ker(P + 1 WA ) and coker(JA) is isomorphic to co
ker(P + 1 WA ) as shown above]. Observe that it is clear from 
our description that the canonical section on det* pulls back 
to the canonical section on det under the map: A ..... WA (the 
canonical section in det* is lEC over the subspaces trans
verse to H _ and 0 over the nontransverse subspaces; the 
canonical section in det is lEC over the invertible Cauchy
Riemann operators and 0 over the noninvertible ones). This 
will be of use to us in Sec. V. 

The space J:1' ° and the Grassmannian Gro have natural 
holomorphic structures4 and it is not hard to show that the 
map J:1'o:3A ..... WAEGro is a holomorphic map. The simple 
calculation we did above shows that the pullback of the det* 
bundle over Gro may be algebraically identified with Quil
len's determinant bundle over J:1' 0' We did not show that the 
holomorphic structure of the pullback bundle agrees with 
the holomorphic structure of Quillen'S determinant bundle. 
We do not need this result and for simplicity we will not take 
up this matter here. 

IV. THE GAUGE ANOMALY IN QUILLEN'S 
DETERMINANT BUNDLE 

In this section we will examine the lift of the group DoG 
of gauge transformations acting on J:1' ° (thought of as 
Cauchy-Riemann operators) into the determinant bundle 
over J:1' o' To be explicit we will consider the lift relative to the 
holomorphic trivialization introduced by Quillen.s 

We begin by explaining the results from Ref. 8 that we 
need to calculate the gauge anomaly in the holomorphic tri
vialization. Suppose that E is a fixed Coo vector bundle (En 
in our case) over a compact Riemann surface M (pi in our 
case). A Cauchy-Riemann operator J A on E is a first-order 
differential operator that maps smooth sections of E into one 
form valued sections of E and, which, relative to some local 
parameter z and local frame on E, has the form 

JA = dZ(Jz +A(z»), 

where A (z) is a smooth matrix function. Let J:1' denote the 
space of such operators. Suppose now that we are given an 
inner product on E (described in Sec. II for En ) and a metric 
on M compatible with its complex structure (we take the 
induced metric on S 2 regarded as a submanifold of R3

). The 
spaces nO,q (E), of (O,q) form valued sections of E then have 
inner products, which allows one to define the adjoint J ~ 
and the Laplacian J ~ J A' Quillen shows that the zeta func
tion determinant for J ~ J A can be interpreted as a Hermitian 
structure on the holomorphic determinant line bundle over 
the space of Cauchy-Riemann operators J:1'. A holomorphic 
line bundle with Hermitian structure has a unique connec
tion compatible with these two structures. Quillen'S main 
result is that the curvature of the connection in the determi
nant line bundle associated with the Hermitian structure de
rived from the zeta determinant of J ~ J A is the Kahler form 
on J:1', which it has as an affine space relative to the inner 
product space: :!lJ: = n°· I [End(E) ]. Because of the special 
form of the curvature one may scale the inner product in the 
determinant bundle by the exponential of a quadratic form 
in :!lJ to get a metric whose associated connection has zero 
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curvature. A flat section of the determinant bundle relative 
to this flat connection then gives Quillen the desired holo
morphic trivialization of the determinant bundle. The inner 
product on !1iJ may be described as follows. Given B in !1iJ , 
say B = A (z)dZ, relative to an orthonormal framing of E, let 
B*=A(z)*dz in !l1.O[End(E)]. Then TrE(B*B) is a 
(1,1) form, which can be integrated, and we define 

liB 112: =_1_· r TrE(B*B). 
21T JM 

Let ao denote a fixed Cauchy-Riemann operator in E and 
define 

q(aA) = IlaA - ao11 2
• 

The Kahler form on d is a aq. This form does not depend on 
the choice of base point ao but the function eq by which one 
scales the metric on the det bundle does depend on ao. 

Now suppose that the index of the Cauchy-Riemann 
operators on E is zero. Let /) (a A ) denote the trivialization of 
the determinant bundle described above and let u( a A ) de
note the canonical section of det. Then there is a holomor
phic function of aA, det(aA ;ao), such that (aA) 
= det(aA;ao)/)(aA). Furthermore one has4 

(4.1 ) 

where det;- (a ~ a A ) = e - nO) is the zeta function determi
nant for a~ aA [for Re(s) > 1, ;(s) = ~A -s and the sum 
runs over the nonzero eigenvalues A of a ~ a A ]. 

We will use (4.1) and some further results in Ref. 8 to 
calculate the gauge anomaly for Quillen's holomorphic tri
vialization over do. Before we do this we discuss the action 
of the gauge group !l [Hom (E) ] on the determinant bundle. 
Suppose that the index of the Cauchy-Riemann operators 
on E is zero. There is a way of constructing the determinant 
bundle over d, which makes it clear that the gauge group 
!l[Hom(E)] acts on det. Each Cauchy-Riemann operator 
a A Ed determines a Fredholm map with index ° from the 
Sobolev space of sections of E that are square integrable to
gether with their first derivatives to the space of square inte
grable (0,1) form valued sections of E. Because each 
Cauchy-Riemann operator a A has index 0, it is possible to 
find a finite rank map Fso that aA + F is invertible. Let UF 

denote the open set of a A Ed such that a A + F is invertible. 
Over each such open set consider the trivial bundle U F X C 
with the section U F (a A ) = (a A' 1 ). Define a line bundle over 
d by relating two such sections, U F and U G , by the transi
tion function 

UF(aA) = det((aA + F)-I(aA + G»)uG(aA)· 

The determinant in this definition makes sense since a A + G 
is a finite rank perturbation of a A + F and the cocycle con
dition that must be satisfied for this to define a line bundle 
follows from the multiplicative property of determinants. 
The canonical section of det is det(a A (a A + F) - I) U F over 
UFO Suppose now that gE!l[Hom(E)] is a gauge transfor
mation. We can define a lift of the action a A ..... g a A g- 1 into 
det by 

guF(aA): = UgFg-, (gaAg- 1). 

It is not hard to check that because of the similarity invar-
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iance ofthe determinant this lift is well defined. It obviously 
covers the action of g on .xff. Thus we may lift the action of 
the gauge group into the determinant bundle. Of special in
terest to us is the way in which the holomorphic trivializa
tion o(aA ) transforms under the gauge action. In a special 
case we will calculate go (g- 1 a A g) /0 (a A ), the gauge anoma
ly for the holomorphic trivialization. The special case we 
consider has aA in the space of Cauchy-Riemann operators 
associated with .xff 0 on En and gEDoG, thought of as a gauge 
transformation on all of En (one extends it smoothly outside 
of the disk, D, as the constant map to the identity). 

To do this explicitly we require some further informa
tion about the Green's function for invertible Cauchy-Rie
mann operators on En. We will explain slightly more than 
we need for our final calculation, since the relation between 
the asymptotics of the Green's function and matrix factor
izations is of independent interest in other contexts. 1 

Recall from Sec. III that eo(z) is the trivialization of E" 
over the epsilon collar of the unit disk, DE' and e oo (z) is the 
trivialization of En over Doo related bye", (z) =Z-leo(Z) 
on the overlap. Suppose that AEd 0 and let aA denote the 
associated Cauchy-Riemann operator on En , defined in Sec. 
III. To make use of a formula for the derivative of the zeta 
function given in Ref. 8 we need to know the behavior of the 
Green's function near the diagonal for invertible a A. It will 
be enough for our purposes to analyze the solution of 
aAf = g when g has support in D" (it is not hard to use a 
partition of unity to remove this restriction in any case). Let 
fo and go denote the coordinates off and g relative to the eo 
trivialization of En over D". Then we have 

(az + A (z) )fo(z) = go(z), for zED .. (4.2) 

Since D" is a noncom pact Riemann surface the holo
morphic bundle (En ,aA ) is holomorphically trivial 13 over 
D". This is the same as saying that there exists a Coo matrix
valued function M(z), defined for zEDE' such that 
M(z) -I(az + A (z») M(z) = az [the columns of M are the 
coordinates of a basis of holomorphic sections of (En ,aA ) 

over D,,]. The Birkhoff factorization theorem (Theorem 
8.1.2 in Ref. 4) implies that the restriction of M to the unit 
circle S 1 has a factorization 

Mis' =M_AM+, 

where M + (z) has an invertible holomorphic extension into 
the interior of the unit disk, M _ (z) has an invertible holo
morphic extension into the exterior of the unit disk [which 
we normalize so that M _ ( 00 ) = identity], and A is a diag

onal matrix withjth diagonal entry Zkj for some integer kj . 

Now define N(z) = M(z)M + (z) -I for zED. Then since 
M + (z) -I is holomorphic inside D, it is clear that 
N-1(az +A)N=a)nsideD.However,Nls' =M_A hasa 
holomorphic extension to the exterior of the disk with per
haps a pole at 00. Thus if we extend N by M _A into D" and 
note that A = ° outside D, then it follows that 

N(z) -I(az + A (z) )N(z) = az , for zED •. 

Now we introduce the trivialization eo: = eoN on D" and 
e oo : = e oo M_ on Doo. The Cauchy-Riemann operator aA 

acts on coordinates in the eo frame by dZ az and in the e oo 
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frame by dW aw , where w = z- I. The two frames are related 
by 

(4.3 ) 

Suppose now that for some j we have kj < o. Let e pJ denote 
the jth section in the row vector cp • Then the section that is 

eOJ on DE and Zkj + 1 e '" J on D", is an element of the kernel of 
a A. Thus if a A is invertible no kj can be negative. The degree 
of the bundle En is - n, but by (4.3) this must be equal to 
- n - ~kj. Thus since no kj is negative ~kj = 0 implies 

that all the integers kj are 0 and we have A (z) = identity. 
We now return to the solution of (4.2). We find 

N-1(az +A)/o = N-1go, 

a
z 
(N - 10) = N -Igo, 

N(Z)-I/O(Z) =_l_· r N(U)-lgO(U) du 1\ du, 
2rr JD. u-z 

or 

/o(z) =_l_· r N(z)N(u)-1 go(u)du 1\ du, (4.4) 
2rrJD. u-z 

where we have used a standard Green's function for az (see 
Ref. 13). What is interesting is that this formula is the cor
rect formula for a A Ig (or more properly the coordinates of 
this section over DE). To see this it is enough to check that 
z/o(z) extends to a holomorphic function in the exterior of 
the disk. Since N(z) and the integral in (4.4) are holomor
phic for z outside DE and N(z) = 1+ O(Z-I) near 00, it 
follows that/o(z) = O(Z-I), so that z/o(z) is indeed holo
morphic in the complement of DE" 

We are now in a position to calculate the asymptotics of 
the Green's function for a A near the diagonal. To make use 
of Quillen's results we need the Green's function in an ortho

normalframefor En. The frame e'(z): = e(z)/~1 + Izl2 is 
an orthonormal frame for En with respect to the Hermitian 
structure defined in Sec. III. Define 

n(z) = ~1 + IzI2N(z), for zEDE. 

Then the Green's function for a A' relative to the orthonor
mal frame e' (z), is 

G(z,u): = _l_· ~ n(z)n(u)-I 
2rr z - u 

in the normalization used by Quillen. 8 In the notation used 
by Quillen, the relevant asymptotics near the diagonal are 

G(z,u) = _l_· ~{I + (z - u)/3(u) - (z - u)a(u) 
2rr z - u 

+ O( Iz - uI 2
)}, 

where 

and 
a(u) = - (aun(u»)n(u)-I. 

Note that a(u) represents the potential A in the orthonor
mal frame e'. That is, 

a(u) =A(u) + [uiO + luI 2
)]/. 

Define p(z): = ~(1 + IzI2).2 Then the metric, d~, on S2, 
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which it has as a submanifold of R3 (in the z coordinate of 
stereographic projection), is given by 

ds2 = p(z) Idzl 2
• 

Finally we make one last definition before we state the 
result from Ref. 8 that we will use. Define J(z) by 

J(z) = i dZ(/3(Z) - a(z)* - ~ az 10gP(Z») . 
2rr 2 

In Ref. 8, J naturally arises as the difference "on the diag
onal" between the Green's function for a A and a geometri
cally defined parametrix for a A . Suppose now that AEd 0 is a 
family of potentials that depends holomorphically on the 
parameter wand is such that each associated Cauchy-Rie
mann operator is invertible. Then in Ref. 8 it is shown that 

(4.5 ) 

We will now use (4.1) and (4.5) to calculate the gauge 
anomaly in Quillen's holomorphic trivialization. Suppose 
that AEd 0 and gEDoG. Define 

A·g: =g-IAg+g- 1 azg, 

so thatg- I aAg = aAog. We wish to calculate 

gO(aAog) 

o(aA ) 

Write OEd 0 and choose the base point ao in the space of 
Cauchy-Riemann operators. It is not hard to check that the 
canonical section l7 is equivariant under the action of the 
gauge group on the determinant bundle. Using this equivar
iance, one finds that when a A is invertible, 

det(aA;ao) 

det(aA-g;ao) 
(4.6) 

We will make use of this result by connecting gElJoG to the 
identity map by a "piecewise holomorphic" path in Do ( G c ), 
the smooth maps from D into the complexification of G, 
which are equal to the identity on S I. The determinant, 
det(aA ,ao), depends holomorphically on A, so that if 
gElJo( Gc ) depends holomorphically on a parameter w then 
aAog and consequently also det(aA-g;ao) are holomorphic 
functions of the parameter w. Suppose now that gElJo ( G c ) 
depends holomorphically on the parameter w. Then it fol
lows from (4.1) that 

aw 10g(det(aA-g;ao ») = awllaA-g - ao l1 2 

+ aw 10g(det~(a~ogaA-g»). 
(4.7) 

The right-hand side of this last equation is rendered more 
explicit by Quillen's formula for the logarithmic derivative 
of the zeta determinant of the Laplacian (4.5). 

Suppose now that gEDoG. Then g can be connected to 
the constant map from D to the identity in Gby a continuous 
path in DoG. To see this observe that a map gEDoG can be 
thought of as a map from the two sphere S 2 into G, obtained 
by identifying the boundary of the disk with the north pole 
00. The map so obtained is the identity at the north pole. The 
second homotopy group rr 2 (G) is known to be trivial, so that 
any map from S 2 to G can be continuously deformed to the 
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map that is constant and equal to the identity at every point 
of S 2. It is easy to see that the homotopy can be chosen to 
respect the base point condition g( 00) = I. Let 
[0,1 ] 3 t -+ gl EDoG denote a continuous path in DoG with 

gO = identity and gl = g. We will now deform this homotopy 
to a piecewise holomorphic homotopy in Do ( G c ). Choose 
8> ° and define UI (8), an open neighborhood of tE [0,1] by 

UI (8): = {rE[O,l]:lIgr -gill <8}, 

where 11'11 is the supremum of the operator norm over the 
disk D. Suppose now that t I and t2 are two elements of UI (!). 

Then it is easy to see thatgl , andgl , are close enough in norm 
so that the line segment 

[ u - tl t2 - u 
tl,t2] 3u-+---gl, + ---gl" 

t2 - tl - t2 - tl 

joining gl, to gl" stays inside the space of maps into the com
plexification ofG (the n Xn complex invertible matrices). It 
is also clear that the elements in this line segment are equal to 
the identity on the boundary of D. As t ranges over [0,1] the 
sets UI (!) cover the unit interval. Let 8 > ° denote a Lebes
gue number for this covering (any set with diameter less 
than 8 is completely contained in some element of this cover
ing). Choose a partition {tl, ... ,tn } of [0,1] whose norm (the 
maximum of the adjacent differences I tj + I - tj I ) is less than 
8. The path r which consists of the line segments joining gl 

1 

to gl is then a piecewise holomorphic path in Do(Gc ) 
1+1 

connecting g to the identity, in the sense that along each such 
line segment one may extend the path from a function of u to 
a holomorphic function of w: = u + iv in a neighborhood of 
[t;,t;+ I] in C. 

Suppose now that AE.sf 0 and that the associated 
Cauchy-Riemann operator is invertible. LetgEDoG and sup
pose that r is a piecewise holomorphic path in G c joining the 
identity to g as above. Define 

ji 
det(JA-y;Jo) 

(r) = . 
det(aA;ao) 

We wish to differentiate f( r) with respect to w along the 
path r and then integrate over r to findf(g). There is, of 
course, more than one parameter w along r and one ought to 
do the calculation along each line segment separately then 
add the results up in the end. To avoid burdensome notation 
we will not distinguish the different parameters w on r with 
the understanding that the calculation of derivatives is done 
in the interior of the line segments, which the path r com
prises. Using (4.5) and (4.7) one finds that 

a,J'(r) = alia' 112 
f(r) w r 

+_/_. r Tr(p'y-a'r*-c)awA'r)dzl\dZ, 
21T JD 

(4.8) 

where P'y: = az (r-In)(r-In) -I and c = ~az logp and we 
used the fact that awa'r = awA'r One immediate simplifi
cation in (4.8) is that the term aw lIa'Y112 is exactly cancelled 
by the term in the integral, which involves a'Y* (these are 
the only two terms that do not depend holomorphically on 
A). Now define 
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rp = r- IN 

and recall that A = - JzNN -I so that A 'Y = - Jzrprp -I. 
One also finds that since n = (2p) 1/2 N one has 
P'y = azrprp -I + az logp. Substituting these expressions in 
(4.8) and integrating one finds that 

f(g) = eF
, 

where 

F= __ 1_' r dw r Tr(azrprp-law(Jzrprp-I)) 
21T Jy JD 

Xdzl\dZ. 

The term involving p in this calculation is zero since 
Tr(A . g - A) = 0. This is a consequence of the similarity 
invariance of the trace and the factthat J zgg - I has zero tra~e 
wheng takes values in G = SU(n). 

Suppose that as above r is a piecewise linear approxima
tion to a smooth homotopy t -+ gl' Then in the limit in which 
the norm of the partition {tw .. ,tn } tends to 0, one finds that 
the path r(t) tends to gl and the derivative aw rtends to algi 
in a fashion that is regular enough to permit the substitution 
of these limits in the integral for F given above. Make these 
substitutions and write 

rp =gl-IN. 

One finds 

F = - _/_. i l 
dt r Tr(azrprp -I al (azrprp -I)) 

21T 0 JD 

Xdzl\dZ. (4.9) 

We have one further observation to make regarding this 
calculation. Suppose that U is an open connected set in Rn 

with coordinates {ul, ... ,un } and that U3u-+g(u)EDoG is a 
smooth map. Suppo$e that AE.sf 0 and that the associated 
Cauchy-Riemann operator is invertible with N(z) the solu
tion to 

N(z)-I(az +A(z))N(z) =az, 

which is holomorphic in the exterior of the unit disk and 
equal to the identity at 00. As above write 

rp=g(U)-IN, 

Now write du for exterior differentiation with respect to the 
parameters u and define the one-form F by 

F:= __ 1_ r Tr(azrprp-ldu(azrprp-I))dzl\dZ. 
21T JD 

Suppose that Uo and u I are two points in U and that r is a 
smooth path in U with initial point Uo and final point u I' 
DefineA k = A 'g(Uk ) for k = 0,1. Then a calculation along 
the lines given above shows that 

det(aA ;ao) ;S.F 
---=:-:..:'-=_ = e 1 • 

det(DA,,;ao) 

For this to make sense it is clearly necessary that the 
integral ofF is independent of the path joining Uo to u I (mod
ulo 21T). We will show that F is locally exact by calculating 
the exterior derivative du F. Because we wish to make use of 
some of the calculations in the next section we will work in a 
more general setting than is required for the anomaly calcu-
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lation. Suppose now that t/>: D X U-+GL(n,C) is a smooth 
map and write d = dz az + dZaz for the exterior derivative 
with respect to z, Z. Making use of the identity 

du Tr(azt/> t/>-lazt/> t/>-l) = Tr(du(azt/>t/>-l)azt/>t/>-l) 

+ Tr(azt/> t/>-l du (azt/> t/>-l »), 

one sees that 

Tr(azt/> t/>-ldu (azt/> t/>-l »)dz AdZ 

= -~Tr(dt/>t/>-ldu(dt/>t/>-l») 

+ du~ Tr(azt/> t/>-l azt/> t/>-l )dz AdZ, ( 4.10) 

where the wedge product of forms is understood in each of 
the terms. From this it is clear that to calculate the exterior 
derivative d u F, it suffices to compute 

du LTr(dt/>t/>-'du(dt/>t/>-'») 

= LTr(du(dt/>t/>-')du(dt/>t/>-'»). (4.11 ) 

Now observe that 

du(dt/>t/>-') = -t/>d(t/>-' dut/»t/>-'· 

Substituting this onto the right-hand side of (4.10) and us
ing the similarity invariance of the trace, one finds that 

duF = _1_ f Tr(d(t/>-' dut/»d(t/>-' dut/»). 
41T JD 

Using Stoke's theorem we obtain the identity we desire: 

(4.12 ) 

where 

F:= __ 1_ f Tr(azt/>t/>-' du (azt/> t/>-'»)dzAdZ. 
21T JD 

For t/> = cp, given above in the anomaly calculation, the 
right-hand side of (4.11) vanishes, since the integrand on the 
right-hand side has a holomorphic extension to a neighbor
hood of the exterior of the unit disk in pl. 

In the next section (4.12) will allow us to define a natu
ral trivialization of a pullback of the det* bundle over the 
Grassmannian. 

V. COMPATIBLE TRIVIALIZATIONS 

In this section we will connect the group extensions of 
the first section with the gauge action analyzed in Sec. IV. 
Let .s£ D denote the family of C= maps from D into the n X n 
complex matrices. We identify AE.s£ D with the "Cauchy
Riemann" operator az + A on the disk D. If AE.s£ 0 then we 
may extend az + A to a Cauchy-Riemann operator on the 
bundle En , as was done in Sec. III. If AE.s£ D but A is not in 
.s£ 0' then no such natural identification is possible. An ele
ment t/>EDG acts on .s£ D by 

a z + A -+t/>(az + A )t/>-'. 

We are especially interested in the orbit ofaz under the ac
tion of DG. Since the only invertible holomorphic maps on D 
with boundary values in G are constants, it follows that this 
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orbit space can be identified with DG /G. There is a natural 
map from DG /G into Gro, given by 

DG/G3t/>G-+b(t/»H+, 

where the boundary value map b is the same as in Sec. II. We 
may pull back the det* bundle from Gro to DG /G via this 
map. To avoid introducing extra notation we will refer to 
this pullback as the det* bundle over DG /G. Note that the 
results of Sec. III show that det* is an extension of Quillen's 
determinant bundle over DoG' G (which can be identified 
with the orbit ao under DoG in the space of Cauchy-Rie-
mann operators on En ). __ 

Next we will show that the group DG acts on the det* --bundle over DG /G. Recall that an element (t/>,p,u) of DG 
consists of an element t/> of DG, a path p connecting the iden
tity e in DG to t/> in DG, and a complex number u of absolute 
value 1. As before, let p denote the path b ( p) H + in the 
Grassmannianjoining H + to b (t/»H +. Let P denote parallel 
translation in the det* bundle over Gro, relative to the con
nection whose curvature is the form, OJ, of Sec. II (see Ref. 
4), the action of (t/>,p,u) on an element v in the fiber of det* 
over gGEDG /G is given by 

(5.1 ) 

where yis a path joining H+ to b(g)H+ in Gro and we have 
freely identified the fiber of det* over gG with the fiber of 
det* over b (g) H +. As in Sec. II the fact that OJ is invariant 
under the action of LG implies that this action in the det* 
bundle does not depend on the choice of the path y. 

The space DG /G is contractible and this means that the 
pullback of the closed curvature form OJ on Gro to DG /G 
under the map given above is necessarily exact. In fact we 
may reinterpret Eq. (4.12) as an explicit expression of this 
fact. Suppose that, as at the end of Sec. IV the set U is an open 
subset of R" and that t/>: D X U -+ G is a smooth map. Then 
(4.12) is 

(5.2) 

where we use the notation OJ for the pullback of the curvature 
from the det* bundle over DG /G. 

A line bundle with a connection over a simply connected 
base that has a curvature form which is an exact differential 
on the base may be trivialized in a canonical fashion. Let 1T: 
L -+ X denote a line bundle with connection one-form a on L. 
Suppose that the curvature of this connection OJ is equal to 
da for a one-form a on the base X. The difference a - 1T* (a) 
satisfies the conditions necessary for it to be a connection 
one-form on the bundle L and the curvature of this connec
tion is clearly zero. We can choose a flat section to trivialize 
the bundle L. It is possible to describe parallel translation 
with respect to the flat connection in terms of the parallel 
translation P with respect to the connection a. If y is a curve 
in the base X then parallel translation along y relative to the 
flat connection described above is given by 

-iJpp 
e y' 

We may now apply this observation to the det* bundle 
over DG /G. The pullback of the connection on det* -+ Gro 
has curvature OJ = d F. Thus one may trivialize this bundle in 
a natural fashion, choosing a = F [this is not perhaps as 
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"natural" a choice as say, the left-hand side of (4.11), but it 
is the choice that will make the connection with Quillen's 
trivialization particularly transparent]. We are especially 
interested in this trivialization over the coset space DoG' G in 
DG IG. Suppose that t/JEDoG and y is a path in DoG which 
joins the identity e to t/J. The path b( y)H + = H + is constant 
so that parallel translation in the pullback bundle along y is 
trivial. If u· (H +) denotes the canonical section over H +, 

then the trivialization discussed above is 

e-iI,l'u·(H+) 

in the fiber over t/J. G. The factor e - iI,l' is the determinant of 
ao.",-' which in turn is the same as the ratio of the canonical 
section of Quillen'S det bundle to the holomorphic trivializa
tion. Since the canonical section in the det bundle is identi
fied with the canonical section in the det· bundle under the 
isomorphism discussed in Sec. III, it follows that we have 
identified a natural trivialization on the pullback bundle 
det· --+DG IG which agrees with Quillen'S holomorphic tri
vialization over the cosets DoG' G where the two bundles can 
be identified. 

Next observe that since the canonical section in det is 
equivariant with respect to the gauge action of DoG and the ............ 
lift Do G given by (5.1) also leaves invariant the canonical 
section of the det· bundle over DoG' G, it follows that these 
two actions may be identified. Relative to the trivialization 
discussed above it follows that the cocycle for the action of ............ 
Do G agrees with the gauge anomaly in Quillen'S trivializa-
tion. This is, finally, the promised connection between the 
gauge anomaly and the group cocycle described in the Intro
duction. 

To conclude we would like to point out that the relation 
d F = UJ does not give a relationship between the curvature 
form and Quillen'S holomorphic anomaly outside of DoG' G. 
The reason is that the form F represents a holomorphic 
anomaly only when t/J has a holomorphic continuation into 
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the exterior of the unit disk and UJ gives the curvature form 
only when t/J takes values in G = SU(n). The intersection of 
these two classes consists of functions that are constant on 
the boundary S I. 
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